Skip to main content

Some generalized nonlinear retarded integral inequalities with applications

Abstract

In this article we discuss some new generalized nonlinear Gronwall-Bellman-Type integral inequalities with two variables, which include a non-constant term outside the integrals. We use our result to deal with the estimate on the solutions of partial differential equations with the initial and boundary conditions.

Mathematics Subject Classification 2000: 26D10; 26D15; 26D20; 34A40.

1 Introduction

Various generalizations of Gronwall inequality [1, 2] are fundamental tools in the study of existence, uniqueness, boundedness, stability and other qualitative properties of solutions of differential equations, integral equations, and differential-integral equations. There are a lot of articles investigating its generalizations such as [323]. Recently, Pachpatte [19] provided the explicit estimations of following integral inequalities:

u p ( t ) c + p i = 1 n α i ( t 0 ) α i ( t ) [ a i ( s ) u p ( s ) + b i ( s ) u ( s ) ] d s , u p ( t ) c + p i = 1 n α i ( t 0 ) α i ( t ) [ a i ( s ) u ( s ) w ( u ( s ) ) + b i ( s ) u ( s ) ] d s ,

and

u p ( x , y ) c + p i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) [ a i ( s , t ) u p ( s , t ) + b i ( s , t ) u ( s , t ) ] d t d s , u p ( x , y ) c + p i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) [ a i ( s , t ) u ( s , t ) w ( u ( s , t ) ) + b i ( s , t ) u ( s , t ) ] d t d s ,

where c is a constant. Cheung [7] investigated the inequality

u p ( x , y ) a + p p - q b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) g 1 ( s , t ) u q ( s , t ) d t d s + p p - q b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) g 2 ( s , t ) u q ( s , t ) ψ ( u ( s , t ) ) d t d s .

Agarwal et al. [3] obtained the explicit bounds to the solutions of the following retarded integral inequalities:

φ ( u ( t ) ) c + i = 1 n α i ( t 0 ) α i ( t ) u q ( s ) [ f i ( s ) φ ( u ( s ) ) + g i ( s ) ] d s , φ ( u ( t ) ) c + i = 1 n α i ( t 0 ) α i ( t ) u q ( s ) [ f i ( s ) φ 1 ( u ( s ) ) + g i ( s ) φ 2 ( log ( u ( s ) ) ) ] d s , φ ( u ( t ) ) c + i = 1 n α i ( t 0 ) α i ( t ) u q ( s ) [ f i ( s ) L ( s , u ( s ) ) + g i ( s ) u ( s ) ] d s ,

where c is a constant. Chen et al. [6] discussed the following inequalities:

ψ ( u ( x , y ) ) c + γ ( x 0 ) γ ( x ) δ ( y 0 ) δ ( y ) f ( s , t ) φ ( u ( s , t ) ) d t d s , ψ ( u ( x , y ) ) c + α ( x 0 ) α ( x ) β ( y 0 ) β ( y ) g ( s , t ) u ( u , s ) d t d s + γ ( x 0 ) γ ( x ) δ ( y 0 ) δ ( y ) f ( s , t ) u ( s , t ) φ ( u ( s , t ) ) d t d s , ψ ( u ( x , y ) ) c + α ( x 0 ) α ( x ) β ( y 0 ) β ( y ) g ( s , t ) w ( u ( s , t ) ) d t d s + γ ( x 0 ) γ ( x ) δ ( y 0 ) δ ( y ) f ( s , t ) w ( u ( s , t ) ) φ ( u ( s , t ) ) d t d s ,

where c is a constant.

In this article, motivated mainly by the works of Agarwal et al. [3] and Chen et al. [6], Cheung [7], Pachpatte [19], we discuss more general forms of following integral inequalities:

ψ ( u ( x , y ) ) a ( x , y ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) [ f i ( s , t ) φ ( u ( s , t ) ) + g i ( s , t ) ] d t d s ,
(1.1)
ψ ( u ( x , y ) ) a ( x , y ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) [ f i ( s , t ) φ 1 ( u ( s , t ) ) + g i ( s , t ) φ 2 ( log ( u ( s , t ) ) ) ] d t d s ,
(1.2)
ψ ( u ( x , y ) ) a ( x , y ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) [ f i ( s , t ) L ( s , t , u ( s , t ) ) + g i ( s , t ) u ( s , t ) ] d t d s ,
(1.3)

for (x, y) [x0, x1) × [y0, y1), where a(x, y), b(x, y) are nonnegative and nondecreasing functions in each variable. In inequalities (1.1)-(1.3), we generalized the constant c in [1, 5] to the function a(x,y), the function u(x) in [1] to the u(x,y) with two variables.

2 Main result

Throughout this article, x0, x1, y0, y1 are given numbers. I := [x0,x1), J := [y0,y1), Δ:= [x0,x1) × [y0,y1), + := [0,∞). Consider (1.1)-(1.3), and suppose that

(H1) ψ C(+, +) is a strictly increasing function with ψ(0) = 0 and ψ(t) → ∞ as t → ∞;

(H2) a, b: Δ → (0, ∞) are nondecreasing in each variable;

(H3) w, ϕ, ϕ1, ϕ2 C(+,+) are nondecreasing with w(0) > 0, ϕ(r) > 0, ϕ1(r) > 0 and ϕ2(r) > 0 for r > 0;

(H4) α i C1(I,I) and β i C1(J,J) are nondecreasing such that α i (x) ≤ x, α i (x0) = x0, β i (y) ≤ y and β i (y0) = y0, i = 1, 2,..., n;

(H5) f i , g i C(Δ,+), i = 1,2,...,n.

Theorem 1. Suppose that (H1-H5) hold and u(x,y) is a nonnegative and continuous function on Δ satisfying (1.1). Then we have

u ( x , y ) ψ - 1 ( W - 1 ( Φ - 1 ( B ( x , y ) ) ) ) ,
(2.1)

for all (x,y) [x0,X1) × [y0,Y1), where

W ( r ) : = 1 r d s w ( ψ - 1 ( s ) ) , r > 0 , W ( 0 ) : = lim r 0 + W ( r ) ,
(2.2)
Φ ( r ) : = 1 r d s φ ( ψ - 1 ( W - 1 ( s ) ) ) , r > 0 , Φ ( 0 ) : = lim r 0 + Φ ( r ) ,
(2.3)
B ( x , y ) : = Φ ( A ( x , y ) ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,
(2.4)
A ( x , y ) : = W ( a ( x , y ) ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s ,
(2.5)

ψ-1, W-1 and Φ-1 denote the inverse function of ψ, W and Φ, respectively, and (X1,Y1) Δ is arbitrarily given on the boundary of the planar region

: = { ( x , y ) Δ : B ( x , y ) Dom ( Φ - 1 ) , Φ - 1 ( B ( x , y ) ) Dom ( W - 1 ) } .
(2.6)

Proof. From assumption H2 and the inequality (1.1), we have

ψ ( u ( x , y ) ) a ( X , y ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) [ f i ( s , t ) φ ( u ( s , t ) ) + g i ( s , t ) ] d t d s ,
(2.7)

for all (x,y) [x0,X] × [y0,y1), where x0XX1 is chosen arbitrarily. Define a function η(x, y) by the right-hand side of (2.7). Clearly, η(x, y) is a positive and nondecreasing function in each variable, η(x0,y) = a(X,y) > 0. Then, (2.7) is equivalent to

u ( x , y ) ψ - 1 ( η ( x , y ) ) ,
(2.8)

for all (x,y) [x0,X] × [y0,y1). By the fact that α i (x) ≤ x for x [x0,x1), β i (y) ≤ y for y [y0,y1),i = 1,2,...,n, and the monotonicity of w,ψ-1,η, we have for all (x,y) [x0,X] × [y0,y1),

η x ( x , y ) = b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( α i ( x ) , t ) ) [ f i ( α i ( x ) , t ) φ ( u ( α i ( x ) , t ) ) + g i ( α i ( x ) , t ) ] d t w ( ψ 1 ( η ( x , y ) ) ) b ( x , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) [ f i ( α i ( x ) , t ) φ ( ψ 1 ( η ( α i ( x ) , t ) ) ) ] + g i ( α i ( x ) , t ) ] d t .
(2.9)

From (2.9), we get

η x ( x , y ) w ( ψ 1 ( η ( x , y ) ) ) b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) [ f i ( α i ( x ) , t ) φ ( ψ 1 ( η ( α i ( x ) , t ) ) ) + g i ( α i ( x ) , t ) ] d t ,
(2.10)

for all (x,y) [x0,X] × [y0,y1). Integrating (2.10) from x0 to x, by the definition of W in (2.2), we get for all (x,y) [x0,X] × [y0,y1),

W ( η ( x , y ) ) W ( η ( x 0 , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ ( ψ - 1 ( η ( s , t ) ) ) + g i ( s , t ) d t d s = W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ ( ψ - 1 ( η ( s , t ) ) ) + g i ( s , t ) d t d s W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s + b ( X , Y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ ( ψ - 1 ( η ( s , t ) ) ) d t d s = c ( X , y ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ ( ψ - 1 ( η ( s , t ) ) ) d t d s ,
(2.11)

where

c ( X , y ) = W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s .
(2.12)

Now, define a function Γ(x,y) by the right-hand side of (2.11). Clearly, Γ(x,y) is a positive and nondecreasing function in each variable, Γ(x0,y) = c(X, y) > 0. then, (2.11) is equivalent to

η ( x , y ) W - 1 ( Γ ( x , y ) ) ,
(2.13)

for all (x,y) [x0,X] × [y0,Y1), where Y1 is defined in (2.6). By the fact that α i (x) ≤ x for x [x0,x1), β i (y) ≤ y for y [y0,y1), i = 1, 2,...,n, and the monotonicity of ϕ, ψ-1, W-1, Γ, we have for all (x,y) [x0,X] × [y0,Y1),

Γ x ( x , y ) = b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) φ ( ψ - 1 ( η ( α i ( x ) , t ) ) ) d t b ( X , y ) φ ( ψ - 1 ( W - 1 ( Γ ( x , y ) ) ) ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) d t .
(2.14)

From (2.14), we have for all (x,y) [x0,X] × [y0,Y1),

Γ x ( x , y ) φ ( ψ - 1 ( W - 1 ( Γ ( x , y ) ) ) ) b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) d t .
(2.15)

Integrating (2.15) from x0 to x, by the definition of Φ in (2.3), we get

Φ ( Γ ( x , y ) ) Φ ( Γ ( x 0 y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s = Φ ( c ( X , Y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,
(2.16)

for all (x,y) [x0,X] × [y0,Y1). From (2.12) and (2.16), we find

Γ ( x , y ) Φ - 1 Φ ( c ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s = Φ - 1 Φ W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,
(2.17)

for all (x, y) [x0, X] × [y0, Y1). From (2.8), (2.13), and (2.17), we get

u ( x , y ) ψ - 1 ( η ( x , y ) ) ψ - 1 ( W - 1 ( Γ ( x , y ) ) ) ψ - 1 W - 1 Φ - 1 Φ W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,
(2.18)

for all (x, y) [x0,X] × [y0,Y1). Let x = X, from (2.18), we observe that

u ( X , y ) ψ - 1 W - 1 Φ - 1 Φ W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s | + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,
(2.19)

for all (X, y) [x0, X1) × [y0, Y1), where X1 is defined by (2.6). Since X [x0, X1) is arbitrary, from (2.19), we get the required estimations

u ( x , y ) ψ - 1 W - 1 Φ - 1 Φ W ( a ( x , y ) ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) g i ( s , t ) d t d s + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) d t d s ,

for all (x,y) [x0,X1) × [y0,Y1). Theorem 1 is proved.

Remark that Theorem 1 generalizes Theorem 2.1 in [3].

Theorem 2. Suppose that (H1-H5) hold and u(x,y) is a nonnegative and continuous function on Δ satisfying (1.2). Then

(i) if ϕ1(u) ≥ ϕ2(log(u)), we have

u ( x , y ) ψ - 1 W - 1 ψ 1 - 1 D 1 ( x , y ) ,
(2.20)

for all (x,y) [x0,X2) × [y0,Y2),

(ii) if ϕ1(u) < ϕ2(log(u)), we have

u ( x , y ) ψ - 1 W - 1 Ψ 2 - 1 ( D 2 ( x , y ) ) ,
(2.21)

for all (x,y) [x0,X3) × [y0,Y3), where W is defined by (2.2) in Theorem 1,

D j ( x , y ) : = Ψ j ( W ( a ( x , y ) ) ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s , Ψ j ( r ) : = 1 r d s φ j ( ψ - 1 ( W - 1 ( s ) ) ) , Ψ j ( 0 ) : = lim r 0 + Ψ j ( r ) ,
(2.22)

j = 1, 2, ψ-1, W-1, Ψ 1 - 1 and Ψ 2 - 1 denote the inverse function of ψ, W, Ψ1 and Ψ2, respectively, (X2,Y2) is arbitrarily given on the boundary of the planar region

1 : = ( x , y ) Δ : D 1 ( x , y ) Dom Ψ 1 - 1 , Ψ 1 - 1 ( D 1 ( x , y ) ) Dom ( W - 1 ) ,
(2.23)

and (X3,Y3) is arbitrarily given on the boundary of the planar region

2 : = ( x , y ) Δ : D 2 ( x , y ) Dom Ψ 2 - 1 , Ψ 2 - 1 ( D 2 ( x , y ) ) Dom ( W - 1 ) .
(2.24)

Proof. From the inequality (1.2), we have

ψ ( u ( x , y ) ) a ( X , y ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) f i ( s , t ) φ 1 ( u ( s , t ) ) + g i ( s , t ) φ 2 ( log ( u ( s , t ) ) ) d t d s ,
(2.25)

for all (x,y) [x0,X] × [y0,y1), where x0XX2 is chosen arbitrarily. Let Ξ(x,y) denote the right-hand side of (2.25), which is a positive and nondecreasing function in each variable, Ξ(x0,y) = a(X,y). Then, (2.25) is equivalent to u(x,y) ≤ ψ-1(Ξ(x,y)). By the fact that α i (x) ≤ x for x [x0, x1), β i (y) ≤ y for y [y0, y1), i = 1, 2,..., n, and the monotonicity of w,ψ-1,Ξ, we have for all (x,y) [x0,X] × [y0,y1),

Ξ x ( x , y ) = b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( α i ( s ) , t ) ) f i ( α i ( x ) , t ) φ 1 ( u ( α i ( x ) , t ) ) + g i ( α i ( x ) , t ) φ 2 ( log ( u ( α i ( x ) , t ) ) ) d t b ( X , y ) w ( ψ - 1 ( Ξ ( x , y ) ) ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) φ 1 ( ψ - 1 ( Ξ ( α i ( x ) , t ) ) ) + g i ( α i ( x ) , t ) φ 2 ( log ( ψ - 1 ( Ξ ( α i ( x ) , t ) ) ) ) d t ,
(2.26)

for all (x,y) [x0,X] × [y0,y1). From (2.26), we have

Ξ x ( x , y ) w ( ψ - 1 ( Ξ ( x , y ) ) ) b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) φ 1 ( ψ - 1 ( Ξ ( α i ( x ) , t ) ) ) + g i ( α i ( x ) , t ) φ 2 ( log ( ψ - 1 ( Ξ ( α i ( x ) , t ) ) ) ) d t ,
(2.27)

for all (x,y) [x0,X] × [y0,y1). Integrating (2.27) from x0 to x, by the definition of W in (2.2), we get

W ( Ξ ( x , y ) ) W ( Ξ ( x 0 , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ 1 ( ψ - 1 ( Ξ ( s , t ) ) ) + g i ( s , t ) φ 2 ( log ( ψ - 1 ( Ξ ( s , t ) ) ) ) d t d s = W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) φ 1 ( ψ - 1 ( Ξ ( s , t ) ) ) + g i ( s , t ) φ 2 ( log ( ψ - 1 ( Ξ ( s , t ) ) ) ) d t d s ,
(2.28)

for all (x,y) [x0,X] × [y0,y1).

When ϕ1(u) ≥ ϕ2(log(u)), from the inequality (2.28), we have

W ( Ξ ( x , y ) ) W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) φ 1 ( ψ - 1 ( Ξ ( s , t ) ) ) d t d s ,
(2.29)

for all (x,y) [x0,X] × [y0,y1). Now, define a function Θ(x,y) by the right-hand side of (2.29). Clearly, Θ(x,y) is a positive and nondecreasing function in each variable, Θ(x0,y) = W(a(X,y)) > 0. Then, (2.29) is equivalent to

Ξ ( x , y ) W - 1 ( Θ ( x , y ) ) , ( x , y ) [ x 0 , X ] × y 0 , Y 2 ,
(2.30)

where Y2 is defined by (2.23). Differentiating Θ(x,y) in x for any fixed y [y0,Y2), we have

Θ x ( x , y ) = b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) + g i ( α i ( x ) , t ) φ 1 ( ψ - 1 ( Ξ ( α i ( x ) , t ) ) ) d t b ( X , y ) φ 1 ( ψ - 1 ( W - 1 ( Θ ( x , y ) ) ) ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) + g i ( α i ( x ) , t ) d t ,
(2.31)

for all (x,y) [x0,X] × [y0,Y2). From (2.31), we have

Θ x ( x , y ) φ 1 ( ψ - 1 ( W - 1 ( Θ ( x , y ) ) ) ) b ( X , y ) i = 1 n α i ( x ) β i ( y 0 ) β i ( y ) f i ( α i ( x ) , t ) + g i ( α i ( x ) , t ) d t ,
(2.32)

for all (x,y) [x0,X] × [y0,Y2). Integrating (2.32) from x0 to x, by the definition of Ψ1 in (2.22), we obtain

Ψ 1 ( Θ ( x , y ) ) Ψ 1 ( Θ ( x 0 , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s = Ψ 1 W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s .
(2.33)

From (2.30) and (2.33), we conclude

u ( x , y ) ψ - 1 ( Ξ ( x , y ) ) ψ - 1 ( W - 1 ( Θ ( x , y ) ) ) ψ - 1 W - 1 Ψ 1 - 1 Ψ 1 ( W ( a ( X , y ) ) ) + b ( X , y ) i = 1 n α i ( x ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s ,
(2.34)

for all (x,y) [x0,X] × [y0,Y2). Let x = X, from (2.34), we get

u ( X , y ) ψ - 1 W - 1 Ψ 1 - 1 Ψ 1 ( W ( a ( X , y ) ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s .
(2.35)

Since X [x0,X2) is arbitrary, from the inequality (2.35), we obtain the required inequality in (2.20).

When ϕ1(u) ≤ ϕ2(log(u)), from the inequality (2.28), we have

W ( Ξ ( x , y ) ) W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) φ 2 ( log ( ψ - 1 ( Ξ ( s , t ) ) ) ) d t d s , W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) φ 2 ( ψ - 1 ( Ξ ( s , t ) ) ) d t d s ,
(2.36)

for all (x,y) [x0,X] × [y0,y1), where x0XX3. Similarly to the above process from (2.29) to (2.35), from (2.36), we obtain

u ( X , y ) ψ - 1 W - 1 Ψ 2 - 1 Ψ 2 ( W ( a ( X , y ) ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) f i ( s , t ) + g i ( s , t ) d t d s .
(2.37)

Since X [x0,X3) is arbitrary, where X3 is defined by (2.24), from the inequality (2.37), we obtain the required inequality in (2.21).

Theorem 3. Suppose that (H1-H5) hold and that L,MC + 3 , + satisfy

0 L ( s , t , u ) - L ( s , t , v ) M ( s , t , v ) ( u - v ) ,
(2.38)

for s, t, u, v + with u > v ≥ 0. If u(x,y) is a nonnegative and continuous function on Δ satisfying (1.3), then we have

u ( x , y ) ψ - 1 W - 1 Ψ 3 - 1 E x , y ,
(2.39)

for all (x,y) [x0,X4) × [y0,Y4), where W is defined by (2.2),

Ψ 3 ( r ) : = 1 r d s ψ - 1 ( W - 1 ( s ) ) , r > 0 , Ψ 3 ( 0 ) : = lim r 0 + Ψ 3 ( r ) ,
(2.40)
E ( x , y ) : = Ψ 3 ( F ( x , y ) ) + b ( x , y ) i = 1 n i = 1 α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) M ( s , t , 0 ) + g i ( s , t ) d t d s ,
F ( x , y ) : = W ( a ( x , y ) ) + b ( x , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) L ( s , t , 0 ) d t d s ,

ψ-1,W-1 and Ψ 3 - 1 denote the inverse function of ψ, W and Ψ3, respectively, and (X4,Y4) Δ is arbitrarily given on the boundary of the planar region

: = { ( x , y ) Δ : E ( x , y ) Dom ( Ψ 3 - 1 ) , Ψ 3 - 1 ( E ( x , y ) ) Dom ( W - 1 ) } .
(2.41)

Proof. From the inequality (1.3), we have

ψ ( u ( x , y ) ) a ( X , y ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) f i ( s , t ) L ( s , t , u ( s , t ) ) + g i ( s , t ) u ( s , t ) d t d s ,
(2.42)

for all (x,y) [x0,X] × [y0,y1), where x0XX4 is chosen arbitrarily. Let P(x,y) denote the right-hand side of (2.42), which is a positive and nondecreasing function in each variable, P(x0,y) = a(X,y). Similarly to the process in the proof of Theorem 2 from (2.25) to (2.28), we obtain

W ( P ( x , y ) ) W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) L ( s , t , ψ - 1 ( P ( s , t ) ) ) + g i ( s , t ) ψ - 1 ( P ( s , t ) ) d t d s , ( x , y ) [ x 0 X ] × y 0 , y 1 .
(2.43)

From the inequality (2.38) and (2.43), we get

W ( P ( x , y ) ) W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) f i ( s , t ) L ( s , t , 0 ) d t d s + b ( X , y ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i ( s , t ) M ( s , t , 0 ) + g i ( s , t ) ψ - 1 ( P ( s , t ) ) d t d s ,

for all (x, y) [x0,X] × [y0,y1). Similarly to the process in the proof of Theorem 2 from (2.29) to (2.35), we obtain

u ( X , y ) ψ - 1 W - 1 Ψ 3 - 1 Ψ 3 W ( a ( X , y ) ) + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) f i ( s , t ) L ( s , t , 0 ) d t d s + b ( X , y ) i = 1 n α i ( x 0 ) α i ( X ) β i ( y 0 ) β i ( y ) f i ( s , t ) M ( s , t , 0 ) + g i ( s , t ) d t d s ,
(2.44)

where Ψ3 is defined by (2.40). Since X [x0,X4) is arbitrary, where X4 is defined by (2.41), from the inequality (2.44), we obtain the required inequality in (2.39).

3 Applications to BVP

In this section we use our result to study certain properties of solution of the following boundary value problem (simply called BVP):

2 ψ ( z ( x , y ) ) x y = F ( x , y , z ( α 1 ( x ) , β 1 ( y ) ) , z ( α 2 ( x ) , β 2 ( y ) ) , . . . , z ( α n ( x ) , β n ( y ) ) ) , z ( x , y 0 ) = a 1 ( x ) , z ( x 0 , y ) = a 2 ( y ) , a 1 ( x 0 ) = a 2 ( y 0 ) = 0 ,
(3.1)

for x I,y J, where x0,y0,x1,y1 + are constants, I := [x0,x1), J := [y0,y1), F C(I × J × n,), ψ: is strictly increasing on + with ψ(0) = 0, |ψ(r)| = ψ(|r|) > 0, for |r| > 0 and ψ(t) → ∞ as t → ∞; functions α i C1(I,I);β i C1(J,J),i = 1,2,...,n are nondecreasing such that α i (x) ≤ x, β i (y) ≤ y,α i (x0) = x0, β i (y0) = y0; |a1| C1(I,+), |a2| C1(J,+) are both nondecreasing. Though this equation is similar to the equation discussed in Section 3 in [3], our results are more general than the results obtained in [3].

We first give an estimate for solutions of the BVP (3.1) so as to obtain a condition for boundedness.

Corollary 1. Consider BVP (3.1) and suppose that F C(I × J × n,) satisfies

F ( x , y , u 1 , u 2 , . . . , u n ) i = 1 n w u i f i ( x , y ) φ u i + g i ( x , y ) , ( x , y ) I × J ,
(3.2)

where f i ,g i C(I × J,+) and w,ϕ C(+,+) are nondecreasing such that w(u) > 0,ϕ(u) > 0 for u > 0. Then all solutions z(x,y) of BVP (3.1) have the estimate

z ( x , y ) ψ - 1 W - 1 Φ - 1 B ( x , y ) ,
(3.3)

for all (x,y) [x0,X1) × [y0,Y1), where

B ( x , y ) : = Φ ( A ( x , y ) ) + i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s , A ( x , y ) : = W ψ a 1 ( x ) + ψ a 2 ( y ) + i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i - 1 g i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s ,

for all (x,y) [x0,X1) × [y0,Y1), where functions W, W-1, Φ, Φ-1 and real numbers X1, Y1 are given as in Theorem 1.

Proof. The equivalent integral equation of BVP (3.1) is

ψ ( z ( x , y ) ) = ψ ( a 1 ( x ) ) + ψ ( a 2 ( y ) ) + x 0 x y 0 y F s , t , z ( α 1 ( s ) , β 1 ( t ) ) , z ( α 2 ( s ) , β 2 ( t ) ) , . . . , z ( α n ( s ) , β n ( t ) ) d t d s .
(3.4)

By (3.2) and (3.4), we get that

ψ z ( x , y ) ψ a 1 ( x ) + ψ a 2 ( y ) + x 0 x y 0 y F s , t , z ( α 1 ( s ) , β 1 ( t ) ) , z ( α 2 ( s ) , β 2 ( t ) ) , . . . , z ( α 2 ( s ) , β n ( t ) ) d t d s ψ a 1 ( x ) + ψ a 2 ( y ) + x 0 x y 0 y i = 1 n w z ( α i ( s ) , β i ( t ) ) f i ( s , t ) φ z ( α i ( s ) , β i ( t ) ) + g i ( s , t ) d t d s = ψ a 1 ( x ) + ψ a 2 ( y ) + i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w z ( s 1 , t 1 ) f i α i - 1 ( s 1 ) , β i - 1 ( t 1 ) φ z ( s 1 , t 1 ) + g i α i - 1 ( s 1 ) , β i - 1 ( t 1 ) α i α i - 1 ( s 1 ) β i β i - 1 ( t 1 ) d t 1 d s 1 ,
(3.5)

where a change of variables s1 = α i (s), t1 = β i (t),i = 1,2,...,n are made. Clearly, the inequality (3.5) is in the form of (1.1). Thus the estimate (3.3) of the solution z(x,y) in this corollary is obtained immediately by our Theorem 1.

Our Corollary 1 actually gives a condition of boundedness for solutions. Concretely, if

ψ a 1 ( x ) + ψ a 2 ( y ) < , i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) f i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s < , i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) g i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s < ,

on [x0,X1) × [y0,Y1), then every solution z(x,y) of BVP (3.1) is bounded on [x0,X1) × [y0,Y1).

Next, we discuss the uniqueness of solutions for BVP (3.1).

Corollary 2. Consider BVP (3.1) and suppose that F C(I × J × n,) satisfies

F ( x , y , u 1 , u 2 , , u n ) - F ( x , y , v 1 , v 2 , , v n ) i = 1 n f i ( x , y ) ψ ( u i ) - ψ ( v i ) ,
(3.6)

for all (x,y) I × J and u i , v i , i = 1, 2,..., n, where I = [x0, x1], J = [y0, y1] are two finite intervals, and f i C(I × J, +),i = 1,2,...,n. Then BVP (3.1) has at most one solution on I × J.

Proof. Assume that both z(x,y) and z ̃ ( x , y ) are solutions of BVP (3.1). From the equivalent integral Equations (3.4) and (3.6), we have

ψ ( z ( x , y ) ) - ψ ( z ̃ ( x , y ) ) x 0 x y 0 y F ( s , t , z ( α 1 ( s ) , β 1 ( t ) ) , z ( α 2 ( s ) , β 2 ( t ) ) , , z ( α n ( s ) , β n ( t ) ) ) - F ( s , t , z ̃ ( α 1 ( s ) , β 1 ( t ) ) , z ̃ ( α 2 ( s ) , β 2 ( t ) ) , , z ̃ ( α n ( s ) , β n ( t ) ) ) d t d s
x 0 x y 0 y i = 1 n f i ( s , t ) ψ ( z ( α i ( s ) , β i ( t ) ) ) - ψ ( z ̃ ( α i ( s ) , β i ( t ) ) ) d t d s ε + α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) i = 1 n f i ( α i - 1 ( s 1 ) , β i - 1 ( t 1 ) ) ψ ( z ( s 1 , t 1 ) ) - ψ ( z ̃ ( s 1 , t 1 ) ) α i ( α i - 1 ( s 1 ) ) β i ( β i - 1 ( t 1 ) ) d t 1 d s 1 ,
(3.7)

for all (x,y) I × J, where changes of variables s1 = α i (s), t1 = β i (t) are made, ε > 0 is an arbitrary small number. Clearly, the inequality (3.7) is in the form of (1.1). Suitably applying our Theorem 1 to (3.7), we get an estimate of the form (2.1) for all (x,y) I × J,

ψ ( z ( x , y ) ) - ψ ( z ̃ ( x , y ) ) ε exp α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) i = 1 n f i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s .
(3.8)

Letting ε → 0+, since α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) i = 1 n f i α i - 1 ( s ) , β i - 1 ( t ) α i α i - 1 ( s ) β i β i - 1 ( t ) d t d s is finite on finite intervals I and J, ψ is a strictly increasing function, from (3.8), we conclude that ψ ( z ( x , y ) ) - ψ ( z ̃ ( x , y ) ) 0 , implying that z ( x , y ) = z ̃ ( x , y ) for all (x,y) I × J. The uniqueness is proved.

Remark Suppose that F C(I × J × n,) in BVP (3.1) satisfies

F ( x , y , u 1 , u 2 , , u n ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) f i ( s , t ) φ 1 ( u ( s , t ) ) + g i ( s , t ) φ 2 ( log ( u ( s , t ) ) ) d t d s .

By using Theorem 2, we can give an estimate for solutions of the BVP (3.1).

Suppose that F C(I × J × n,) in BVP (3.1) satisfies

F ( x , y , u 1 , u 2 , , u n ) i = 1 n α i ( x 0 ) α i ( x ) β i ( y 0 ) β i ( y ) w ( u ( s , t ) ) f i ( s , t ) L ( s , t , u ( s , t ) ) + g i ( s , t ) u ( s , t ) d t d s .

By using Theorem 3, we can give an estimate for solutions of the BVP (3.1) too.

References

  1. Bellman R: The stability of solutions of linear differential equations. Duke Math J 1943, 10: 643–647. 10.1215/S0012-7094-43-01059-2

    Article  MATH  MathSciNet  Google Scholar 

  2. Gronwall TH: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math 1919, 20: 292–296. 10.2307/1967124

    Article  MATH  MathSciNet  Google Scholar 

  3. Agarwal RP, Kim YH, Sen SK: New retarded integral inequalities with applications. J Inequal Appl 2008, 2008: 15. (Article ID 908784)

    Article  MathSciNet  Google Scholar 

  4. Bainov D, Simeonov P: Integral Inequalities and Applications. Kluwer Academic, Dordrecht; 1992.

    Chapter  Google Scholar 

  5. Bihari IA: A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation. Acta Math Acad Sci Hung 1956, 7: 81–94. 10.1007/BF02022967

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen CJ, Cheung WS, Zhao D: Gronwall-Bellman-Type integral inequalities and applications to BVPs. J Inequal Appl 2009, 2009: 15. (Article ID 258569)

    Google Scholar 

  7. Cheung WS: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal 2006, 64: 2112–2128. 10.1016/j.na.2005.08.009

    Article  MATH  MathSciNet  Google Scholar 

  8. Choi SK, Deng S, Koo NJ, Zhang W: Nonlinear integral inequalities of Bihari-Type without class H. Math Inequal Appl 2005, 8(4):643–654.

    MATH  MathSciNet  Google Scholar 

  9. Dafermos CM: The second law of thermodynamics and stability. Arch Rat Mech Anal 1979, 70: 167–179.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dannan F: Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations. J Math Anal Appl 1985, 108: 151–164. 10.1016/0022-247X(85)90014-9

    Article  MATH  MathSciNet  Google Scholar 

  11. Dragomir SS, Kim YH: Some integral inequalities for functions of two variables. Electron J Diff Equ 2003, 2003(10):1–13.

    MathSciNet  Google Scholar 

  12. Lipovan O: A retarded Gronwall-like inequality and its applications. J Math Anal Appl 2000, 252: 389–401. 10.1006/jmaa.2000.7085

    Article  MATH  MathSciNet  Google Scholar 

  13. Ma QH, Yang EH: Some new Gronwall-Bellman-Bihari type integral inequalities with delay. Periodica Mathematica Hungarica 2002, 44: 225–238. 10.1023/A:1019600715281

    Article  MATH  MathSciNet  Google Scholar 

  14. Massalitina EV: On the Perow integro-summable inequality for functions of two variables. Ukrainian Math J 2004, 56: 1864–1872. 10.1007/s11253-005-0156-0

    Article  MathSciNet  Google Scholar 

  15. Medina R, Pinto M: On the asymptotic behavior of solutions of a class of second order nonlinear differential equations. J Math Anal Appl 1988, 135: 399–405. 10.1016/0022-247X(88)90163-1

    Article  MATH  MathSciNet  Google Scholar 

  16. Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht; 1991.

    Chapter  Google Scholar 

  17. Pachpatte BG: On some new inequalities related to certain inequalities in the theory of differential equations. J Math Anal Appl 1995, 189: 128–144. 10.1006/jmaa.1995.1008

    Article  MATH  MathSciNet  Google Scholar 

  18. Pachpatte BG: Inequalities for Differential and Integral Equations. Academic Press Limited, London; 1998.

    Google Scholar 

  19. Pachpatte BG: On some new nonlinear retarded integral inequalities. J Inequal Pure Appl Math 2004, 5(3):8. (Article ID 80)

    Google Scholar 

  20. Pinto M: Integral inequalities of Bihari-type and applications. Funkcial Ekvac 1990, 33: 387–430.

    MATH  MathSciNet  Google Scholar 

  21. Wang WS: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl Math Comput 2007, 191: 144–154. 10.1016/j.amc.2007.02.099

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang WS, Shen CX: On a generalized retarded integral inequality with two variables. J Inequal Appl 2008, 2008: 9. (Article ID 518646)

    Google Scholar 

  23. Wang WS: Some new nonlinear Gronwall-Bellman-Type integral inequalities and applications to BVPs. J Appl Math Comput 2010.

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and the referees for their helpful comments and valuable suggestions. This research was supported by the National Natural Science Foundation of China (Project No. 11161018), Guangxi Natural Science Foundation (Project No. 0991265), the Key Project of Hechi University (2009YAZ-N001) and the Key Discipline of Applied Mathematics of Hechi University of China(200725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Sheng Wang.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Wang, WS. Some generalized nonlinear retarded integral inequalities with applications. J Inequal Appl 2012, 31 (2012). https://doi.org/10.1186/1029-242X-2012-31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-31

Keywords