Skip to main content

Redefined intuitionistic fuzzy bi-ideals of ordered semigroups

Abstract

In this article, we try to obtain a more general form than (,q)-intuitionistic fuzzy bi-ideals in ordered semigroups. The notion of an (, q k )-intuitionistic fuzzy bi-ideal is introduced, and several properties are investigated. Characterizations of an (, q k )-intuitionistic fuzzy bi-ideal are established. A condition for an (, q k )-intuitionistic fuzzy bi-ideal to be an intuitionistic fuzzy bi-ideal is provided. It is shown that every (,)-intuitionistic fuzzy bi-ideal is an (,q)-intuitionistic fuzzy bi-ideal, and every (,q)-intuitionistic fuzzy bi-ideal is an (, q k )-intuitionistic fuzzy bi-ideal but the converse is not true. The important achievement of the study with an (, q k )-intuitionistic fuzzy bi-ideal is that the notion of an (,q)-intuitionistic fuzzy bi-ideal is a special case of an (, q k )-intuitionistic fuzzy bi-ideal, and, thus, several results in the paper (Jun et al. in Bi-ideals of ordered semigroups based on the intuitionistic fuzzy points (submitted)) are the corollaries of our results obtained in this paper.

1 Introduction

In mathematics, an ordered semigroup is a semigroup together with a partial order that is compatible with the semigroup operation. Ordered semigroups have many applications in the theory of sequential machines, formal languages, computer arithmetics, design of fast adders and error-correcting codes. The concept of a fuzzy filter in ordered semigroups was first introduced by Kehayopulu and Tsingelis in [1], where some basic properties of fuzzy filters and prime fuzzy ideals were discussed. A theory of fuzzy generalized sets on ordered semigroups can be developed. Mordeson et al. in [2] presented an up-to-date account of fuzzy sub-semigroups and fuzzy ideals of a semigroup. Murali [3] proposed the definition of a fuzzy point belonging to a fuzzy subset under a natural equivalence on fuzzy subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy set played a vital role in generating different types of fuzzy subgroups. Bhakat and Das [4, 5] gave the concepts of (α,β)-fuzzy subgroups by using the ‘belong to’ () relation and ‘quasi-coincident with’ (q) relation between a fuzzy point and a fuzzy subgroup, and introduced the concept of (,q)-fuzzy subgroup. In [6], Davvaz started the generalized fuzzification in algebra. In [7], Jun et al. initiated the study of (α,β)-fuzzy bi-ideals of an ordered semigroup. In [8], Davvaz and Khan studied (,q)-fuzzy generalized bi-ideals of an ordered semigroup. Shabir et al. [9] studied characterization of regular semigroups by (α,β)-fuzzy ideals. Jun et al. [10] discussed a generalization of (,q)-fuzzy ideals of a BCK/BCI-algebra. Using the idea of a quasi-coincidence of a fuzzy point with a fuzzy set, Jun et al. [11] introduced the concept of (α,β)-intuitionistic fuzzy bi-ideals in an ordered semigroup. They introduced a new sort of intuitionistic fuzzy bi-ideals, called (α,β)-intuitionistic fuzzy bi-ideals, and studied (,q)-intuitionistic fuzzy bi-ideals.

In this paper, we try to have more general form of an (,q)-intuitionistic bi-ideal of an ordered semigroup. We introduce the notion of an (, q k )-intuitionistic bi-ideal of an ordered semigroup, and give examples which are (, q k )-intuitionistic fuzzy bi-ideals but not (,q)-intuitionistic fuzzy bi-ideals. We discuss characterizations of (, q k )-intuitionistic fuzzy bi-ideals in ordered semigroups. We provide a condition for an (, q k )-intuitionistic fuzzy bi-ideal to be an intuitionistic fuzzy bi-ideal. The important achievement of the study with an (, q k )-intuitionistic fuzzy bi-ideal is that the notion of an (,q)-intuitionistic fuzzy bi-ideal is a special case of an (, q k )-intuitionistic fuzzy bi-ideal, and, thus, several results in the paper [11] are the corollaries of our results obtained in this paper.

2 Basic definitions and preliminary results

By an ordered semigroup (or po-semigroup) we mean a structure (S,,), in which the following are satisfied:

(OS1) (S,) is a semigroup,

(OS2) (S,) is a poset,

(OS3) (x,a,bS) (abaxbx, xaxb).

In what follows, xy is simply denoted by xy for all x,yS.

A nonempty subset A of an ordered semigroup S is called a subsemigroup of S if A 2 A. A non-empty subset A of an ordered semigroup S is called a bi-ideal of S if it satisfies

(b1) (bS) (bA) (abbA),

(b2) (a,bS) (a,bAabA),

(b3) ASAA.

An intuitionistic fuzzy set (briefly IFS) A in a non-empty set X is an object having the form A={x, μ A (x), γ A (x)|xX}, where the function μ A :X[0,1] and γ A :X[0,1] denote the degree of membership (namely, μ A (x)) and the degree of non-membership (namely, γ A (x)) for each element xX to the set A, respectively, and 0 μ A (x)+ γ A (x)1 for all xX. For the sake of simplicity, we shall use the symbol A=x, μ A , γ A for the intuitionistic fuzzy set A={x, μ A (x), γ A (x)|xX}.

Let (S,,) be an ordered semigroup and A=x, μ A , γ A be an IFS of S. Then A=x, μ A , γ A is called an intuitionistic fuzzy subsemigroup of S [11] if

(x,yS) ( μ A ( x y ) min { μ A ( x ) , μ A ( y ) }  and  γ A ( x y ) max { γ A ( x ) , γ A ( y ) } ) .

Let (S,,) be an ordered semigroup and A=x, μ A , γ A be an intuitionistic fuzzy subsemigroup of S. Then A=x, μ A , γ A is called an intuitionistic fuzzy bi-ideal of S [11] if

(b4) (x,yS) (xy μ A (x) μ A (y) and γ A (x) γ A (y)),

(b5) (x,yS) ( μ A (xy)min{ μ A (x), μ A (y)} and γ A (xy)max{ γ A (x), γ A (y)}),

(b6) (x,y,zS) ( μ A (xyz)min{ μ A (x), μ A (z)} and γ A (xyz)max{ γ A (x), γ A (z)}).

Let A=x, μ A , γ A be an IFS of S and α(0,1] and β[0,1). Then the sets

U( μ A ;α)= { x S | μ A ( x ) α } andL( γ A ;β)= { x S | γ A ( x ) β }

are called μ A -level and γ A -level cuts of the intuitionistic fuzzy set A=x, μ A , γ A , respectively. For an IFS A=x, μ A , γ A and α(0,1], β[0,1), we define the ( μ A , γ A )-level cut as follows

C ( α , β ) (A)= { x S | μ A ( x ) α  and  γ A ( x ) β } .

Clearly, C ( α , β ) (A)=U( μ A ;α)L( γ A ;β).

Let x be a point of a non-empty set X. If α(0,1] and β[0,1) are two real numbers such that 0α+β1, then the IFS of the form

x ; ( α , β ) =x; x α ,1 x 1 β

is called an intuitionistic fuzzy point (IFP for short) in X, where α (resp. β) is the degree of membership (resp. non-membership) of x;(α,β) and xX is the support of x;(α,β).

Consider an IFP x;(α,β) in S, an IFS A=x, μ A , γ A and α{,q,q}, we define x;(α,β)αA as follows

(b7) x;(α,β)A (resp. x;(α,β)qA) means that μ A (x)α and γ A (x)β (resp. μ A (x)+α>1 and γ A (x)+β<1), and in this case, we say that x;(α,β) belongs to (resp. quasi-coincident with) an IFS A=x, μ A , γ A .

(b8) x;(α,β)qA (resp. x;(α,β)qA) means that x;(α,β)A or x;(α,β)qA (resp. x;(α,β)A and x;(α,β)qA).

By x;(α,β) α ¯ A, we mean that x;(α,β)αA does not hold.

3 (, q k )-Intuitionistic fuzzy bi-ideals

Let k denote an arbitrary element of [0,1) unless specified otherwise. For an IFP x;(α,β) and an IFS A=x, μ A , γ A of X, we say that

(c1) x;(α,β) q k A if μ A (x)+k+α>1 and γ A (x)+k+β<1.

(c2) x;(α,β) q k A if x;(α,β)A or x;(α,β) q k A.

(c3) x;(α,β) α ¯ A if x;(α,β)αA does not hold for α{ q k , q k }.

Theorem 3.1 Let A=x, μ A , γ A be an IFS of an ordered semigroup S. Then the following are equivalent

  1. (1)

    (α( 1 k 2 ,1]) (β[0, 1 k 2 )) ( C ( α , β ) (A) C ( α , β ) (A) is a bi-ideal of S).

  2. (2)

    A=x, μ A , γ A satisfies the following assertions

    (2.1) ( x y μ A ( y ) max { μ A ( x ) , 1 k 2 } and  γ A ( y ) min { γ A ( x ) , 1 k 2 } ) , (2.2) ( min { μ A ( x ) , μ A ( y ) } max { μ A ( x y ) , 1 k 2 } and  max { γ A ( x ) , γ A ( y ) } min { γ A ( x y ) , 1 k 2 } ) , (2.3) ( min { μ A ( x ) , μ A ( z ) } max { μ A ( x y z ) , 1 k 2 }  and max { γ A ( x ) , γ A ( z ) } min { γ A ( x y z ) , 1 k 2 } ) ,

for all x,y,zS.

Proof Assume that C ( α , β ) (A) is a bi-ideal of S for all α( 1 k 2 ,1] and β[0, 1 k 2 ) with C ( α , β ) (A). If there exist a,bS such that condition (2.1) is not valid, that is, there exist a,bS with ab and μ A (b)>max{ μ A (a), 1 k 2 }, γ A (b)<min{ γ A (a), 1 k 2 }. Then μ A (b)( 1 k 2 ,1], γ A (b)[0, 1 k 2 ) and b C ( μ A ( b ) , γ A ( b ) ) (A). But μ A (a)< μ A (b) and γ A (a)> γ A (b) imply that a C ( μ A ( b ) , γ A ( b ) ) (A). This is not possible. Hence (2.1) is valid. Suppose that (2.2) is false, that is,

s:=min { μ A ( a ) , μ A ( c ) } >max { μ A ( a c ) , 1 k 2 }

and

t:=max { γ A ( a ) , γ A ( c ) } <min { γ A ( a c ) , 1 k 2 }

for some a,cS. Then s( 1 k 2 ,1], t[0, 1 k 2 ) and a,c C ( s , t ) (A). But ac C ( s , t ) (A), since μ A (ac)<s and γ A (ac)>t. This is not possible, and so (2.2) is valid. If there exist a,b,cS such that (2.3) is not valid, that is,

s 0 :=min { μ A ( a ) , μ A ( b ) } >max { μ A ( a c b ) , 1 k 2 }

and

t 0 :=max { γ A ( a ) , γ A ( b ) } <min { γ A ( a c b ) , 1 k 2 } .

Then s 0 ( 1 k 2 ,1], t 0 [0, 1 k 2 ) and a,b C ( s 0 , t 0 ) (A). But acb C ( s 0 , t 0 ) (A), since μ A (acb)< s 0 and γ A (acb)> t 0 . This is a contradiction, and hence (2.3) is valid.

Conversely, assume that A=x, μ A , γ A satisfies the three conditions (2.1), (2.2) and (2.3). Suppose that C ( α , β ) (A) for all α( 1 k 2 ,1], and β[0, 1 k 2 ). Let x,yS be such that xy and y C ( α , β ) (A). Then μ A (y)α and γ A (y)β. Using (2.1), we have max{ μ A (x), 1 k 2 } μ A (y)α> 1 k 2 and min{ γ A (x), 1 k 2 } γ A (y)β< 1 k 2 . Hence μ A (x)α and γ A (x)β, i.e., x C ( α , β ) (A). If x,y C ( α , β ) (A), then μ A (x)α, γ A (x)β and μ A (y)α, γ A (y)β. By using (2.2), we have

max { μ A ( x y ) , 1 k 2 } min { μ A ( x ) , μ A ( y ) } α> 1 k 2

and

min { γ A ( x y ) , 1 k 2 } max { γ A ( x ) , γ A ( y ) } β< 1 k 2 ,

so that μ A (xy)α and γ A (xy)β, i.e., xy C ( α , β ) (A). Finally, if x,z C ( α , β ) (A) and yS, then μ A (x)α, γ A (x)β and μ A (z)α, γ A (z)β. By using (2.3), we have

max { μ A ( x y z ) , 1 k 2 } min { μ A ( x ) , μ A ( z ) } α> 1 k 2

and

min { γ A ( x y z ) , 1 k 2 } max { γ A ( x ) , γ A ( z ) } β< 1 k 2 ,

so that μ A (xyz)α and γ A (xyz)β, i.e., xyz C ( α , β ) (A). Therefore, C ( α , β ) (A) is a bi-ideal of S. □

If we take k=0 in Theorem 3.1, then we have the following corollary.

Corollary 3.2 [[11], Theorem 3.1]

Let A=x, μ A , γ A be an IFS of S. Then the following assertions are equivalent

  1. (1)

    (α(0.5,1]) (β[0,0.5)) ( C ( α , β ) (A) C ( α , β ) (A) is a bi-ideal of S).

  2. (2)

    A=x, μ A , γ A satisfies the following conditions

    (2.1) ( x y μ A ( y ) max { μ A ( x ) , 0.5 } and  γ A ( y ) min { γ A ( x ) , 0.5 } ) , (2.2) ( min { μ A ( x ) , μ A ( y ) } max { μ A ( x y ) , 0.5 } and  max { γ A ( x ) , γ A ( y ) } min { γ A ( x y ) , 0.5 } ) , (2.3) ( min { μ A ( x ) , μ A ( z ) } max { μ A ( x y z ) , 0.5 } and  max { γ A ( x ) , γ A ( z ) } min { γ A ( x y z ) , 0.5 } ) ,

for all x,y,zS.

Definition 3.3 An IFS A=x, μ A , γ A in S is called an (, q k )-intuitionistic fuzzy bi-ideal of S if for all x,y,zS, t, t 1 , t 2 (0,1] and s, s 1 , s 2 [0,1) it satisfies the following conditions

(q1) (xy, y;(t,s)Ax;(t,s) q k A),

(q2) (x;( t 1 , s 1 )A and y;( t 2 , s 2 )Axy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A),

(q3) (x;( t 1 , s 1 )A and z;( t 2 , s 2 )Axyz;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A).

An (, q k )-intuitionistic fuzzy bi-ideal of S with k=0 is an (,q)-intuitionistic fuzzy bi-ideal of S.

Example 3.4 Consider the set S={a,b,c,d,e} with the order relation ace, ade, bd and be and -multiplication table (see Table 1 above).

  1. (1)

    Define an IFS A=x, μ A , γ A by

    μ A :S[0,1] μ A (x)={ 0.40 if  x = a , 0.35 if  x = b , 0.30 if  x = c , 0.50 if  x = d , 0.20 if  x = e

and

γ A :S[0,1] γ A (x)={ 0.40 if  x = a , 0.30 if  x = b , 0.50 if  x = c , 0.40 if  x = d , 0.80 if  x = e .

Then A=x, μ A , γ A is an (, q 0.4 )-intuitionistic fuzzy bi-ideal of S.

  1. (2)

    Let A=x, μ A , γ A be an intuitionistic fuzzy set given by

    μ A :S[0,1] μ A (x)={ 0.80 if  x = a , 0.60 if  x = b , e , 0.30 if  x = c , 0.50 if  x = d

and

γ A :S[0,1] γ A (x)={ 0.20 if  x = a , 0.30 if  x = b , e , 0.60 if  x = c , 0.50 if  x = d .

Then A=x, μ A , γ A is an (, q 0.04 )-intuitionistic fuzzy bi-ideal of S.

Table 1 -multiplication table for S

Theorem 3.5 An IFS A=x, μ A , γ A of S is an (, q k )-intuitionistic fuzzy bi-ideal of S if and only if it satisfies the following conditions

(1) ( x y μ A ( x ) min { μ A ( y ) , 1 k 2 } and  γ A ( x ) max { γ A ( y ) , 1 k 2 } ) , (2) ( μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } and  γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } ) , (3) ( μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } and  γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } ) .

Proof Suppose that A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S. Let x,yS be such that xy. Assume that μ A (y) 1 k 2 and γ A (y) 1 k 2 . If μ A (x)< μ A (y) and γ A (x)> γ A (y), then μ A (x)<t μ A (y) and γ A (x)>s γ A (y) for some t(0, 1 k 2 ) and s( 1 k 2 ,1). It follows y;(t,s)A, but x;(t,s) ¯ A. Since μ A (x)+t<2t<1k and γ A (x)+s>2s>1k, we get x;(t,s) q k ¯ A. Therefore, x;(t,s) q k ¯ A, which is a contradiction. Hence μ A (x) μ A (y) and γ A (x) γ A (y). Now, if μ A (y) 1 k 2 and γ A (x) 1 k 2 , then y;( 1 k 2 , 1 k 2 )A, and so, x;( 1 k 2 , 1 k 2 ) q k A, which implies that x;( 1 k 2 , 1 k 2 )A or x;( 1 k 2 , 1 k 2 ) q k A, that is, μ A (x) 1 k 2 and γ A (x) 1 k 2 or μ A (x)+ 1 k 2 >1 and γ A (x)+ 1 k 2 <1. Hence μ A (x) 1 k 2 and γ A (x) 1 k 2 . Otherwise, μ A (x)+ 1 k 2 < 1 k 2 + 1 k 2 =1 and γ A (x)+ 1 k 2 > 1 k 2 + 1 k 2 =1, a contradiction. Consequently,

μ A (x)min { μ A ( y ) , 1 k 2 }

and

γ A (x)max { γ A ( y ) , 1 k 2 }

for all x,yS with xy. Let x,yS be such that min{ μ A (x), μ A (y)}< 1 k 2 and max{ γ A (x), γ A (y)}> 1 k 2 . We claim that μ A (xy)min{ μ A (x), μ A (y)} and γ A (xy)max{ γ A (x), γ A (y)}. If not, then μ A (xy)<tmin{ μ A (x), μ A (y)} and γ A (xy)>smax{ γ A (x), γ A (y)} for some t(0, 1 k 2 ) and s( 1 k 2 ,1). It follows that x;(t,s)A and y;(t,s)A, but xy;(t,s) ¯ A and μ A (xy)+t<2t<1k and γ A (xy)+s>2s>1k, i.e., xy;(t,s) q k ¯ A. This is a contradiction. Thus, μ A (xy)min{ μ A (x), μ A (y)} and γ A (xy)max{ γ A (x), γ A (y)} for all x,yS with min{ μ A (x), μ A (y)}< 1 k 2 and max{ γ A (x), γ A (y)}> 1 k 2 . If min{ μ A (x), μ A (y)} 1 k 2 and max{ γ A (x), γ A (y)} 1 k 2 , then x;( 1 k 2 , 1 k 2 )A and y;( 1 k 2 , 1 k 2 )A. Using (q2), we have

x y ; ( 1 k 2 , 1 k 2 ) = x y ; min { 1 k 2 , 1 k 2 } , max { 1 k 2 , 1 k 2 } q k A ,

and so, μ A (xy) 1 k 2 and γ A (xy) 1 k 2 or μ A (xy)+ 1 k 2 >1 and γ A (xy)+ 1 k 2 <1. If μ A (xy)< 1 k 2 and γ A (xy)> 1 k 2 , then

μ A (xy)+ 1 k 2 < 1 k 2 + 1 k 2 =1

and

γ A (xy)+ 1 k 2 > 1 k 2 + 1 k 2 =1,

which is impossible. Consequently, μ A (xy)min{ μ A (x), μ A (y), 1 k 2 } and γ A (xy)max{ γ A (x), γ A (y), 1 k 2 } for all x,yS. Let a,b,cS be such that min{ μ A (a), μ A (c)}< 1 k 2 and max{ γ A (a), γ A (c)}> 1 k 2 . We claim that

μ A (abc)min { μ A ( a ) , μ A ( c ) } and γ A (abc)max { γ A ( a ) , γ A ( c ) } .

If not, then μ A (abc)< t 0 min{ μ A (a), μ A (c)} and γ A (abc)> s 0 max{ γ A (a), γ A (c)} for some t 0 (0, 1 k 2 ) and s 0 ( 1 k 2 ,1). It follows that a;( t 0 , s 0 )A and c;( t 0 , s 0 )A, but abc;( t 0 , s 0 ) ¯ A and μ A (abc)+ t 0 <2 t 0 <1k and γ A (abc)+ s 0 >2 s 0 >1k, i.e., abc;( t 0 , s 0 ) q k ¯ A. This is a contradiction. Thus, μ A (abc)min{ μ A (a), μ A (c)} and γ A (abc)max{ γ A (a), γ A (c)} for all a,b,cS with min{ μ A (a), μ A (c)}< 1 k 2 and max{ γ A (a), γ A (c)}> 1 k 2 . If min{ μ A (a), μ A (c)} 1 k 2 and max{ γ A (a), γ A (c)} 1 k 2 , then a;( 1 k 2 , 1 k 2 )A and c;( 1 k 2 , 1 k 2 )A. Using (q3), we have

a b c ; ( 1 k 2 , 1 k 2 ) = a b c ; min { 1 k 2 , 1 k 2 } , max { 1 k 2 , 1 k 2 } q A ,

and so μ A (abc) 1 k 2 and γ A (abc) 1 k 2 or μ A (abc)+ 1 k 2 >1 and γ A (abc)+ 1 k 2 <1. If μ A (abc)< 1 k 2 and γ A (abc)> 1 k 2 , then

μ A (abc)+ 1 k 2 < 1 k 2 + 1 k 2 =1

and

γ A (abc)+ 1 k 2 > 1 k 2 + 1 k 2 =1,

which is impossible. Therefore, μ A (xyz)min{ μ A (x), μ A (z), 1 k 2 } and γ A (xyz)max{ γ A (x), γ A (z), 1 k 2 } for all x,y,zS.

Conversely, let A=x, μ A , γ A be an IFS of S that satisfies the three conditions (1), (2) and (3). Let x,yS, t(0,1] and s[0,1) be such that xy and [y;(t,s)]A. Then μ A (y)t and γ A (y)s, and so,

μ A ( x ) min { μ A ( y ) , 1 k 2 } min { t , 1 k 2 } = { t if  t 1 k 2 , 1 k 2 if  t > 1 k 2

and

γ A ( x ) max { γ A ( y ) , 1 k 2 } max { s , 1 k 2 } = { s if  s 1 k 2 , 1 k 2 if  s < 1 k 2 .

It follows that μ A (x)t and γ A (x)s or μ A (x)+t 1 k 2 +t>1k and γ A (x)+s 1 k 2 +s<1k, i.e., x;(t,s)A or x;(t,s) q k A. Hence, x;(t,s) q k A. Let x,yS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that x;( t 1 , s 1 )A and y;( t 2 , s 2 )A. Then μ A (x) t 1 , γ A (x) s 1 and μ A (y) t 2 , γ A (y) s 2 . It follows from (2) that

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } min { t 1 , t 2 , 1 k 2 } = { min { t 1 , t 2 } if  min { t 1 , t 2 } 1 k 2 , 1 k 2 if  min { t 1 , t 2 } 1 k 2

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } max { s 1 , s 2 , 1 k 2 } = { max { s 1 , s 2 } if  max { s 1 , s 2 } 1 k 2 , 1 k 2 if  max { s 1 , s 2 } < 1 k 2 .

It follows that xy;min{ t 1 , t 2 },max{ s 1 , s 2 }A or μ A (xy)+min{ t 1 , t 2 } 1 k 2 +min{ t 1 , t 2 }> 1 k 2 + 1 k 2 =1k and γ A (xy)+max{ s 1 , s 2 } 1 k 2 +max{ s 1 , s 2 }< 1 k 2 + 1 k 2 =1k, i.e., xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Therefore, xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Let x,y,zS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that x;( t 1 , s 1 )A and z;( t 2 , s 2 )A. Then μ A (x) t 1 , γ A (x) s 1 and μ A (z) t 2 , γ A (z) s 2 . It follows from (3) that

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } min { t 1 , t 2 , 1 k 2 } = { min { t 1 , t 2 } if  min { t 1 , t 2 } 1 k 2 , 1 k 2 if  min { t 1 , t 2 } 1 k 2

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } max { s 1 , s 2 , 1 k 2 } = { max { s 1 , s 2 } if  max { s 1 , s 2 } 1 k 2 , 1 k 2 if  max { s 1 , s 2 } < 1 k 2 .

Thus, we have xyz;min{ t 1 , t 2 },max{ s 1 , s 2 }A or μ A (xyz)+min{ t 1 , t 2 } 1 k 2 +min{ t 1 , t 2 }> 1 k 2 + 1 k 2 =1k and γ A (xyz)+max{ s 1 , s 2 } 1 k 2 +max{ s 1 , s 2 }< 1 k 2 + 1 k 2 =1k, i.e., xyz;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Therefore, xyz;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Thus, A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S. □

If we take k=0 in Theorem 3.5, then we have the following corollary.

Corollary 3.6 [[11], Theorem 3.5]

An IFS A=x, μ A , γ A of S is an (, q k )-intuitionistic fuzzy bi-ideal of S if and only if it satisfies the conditions

(1) ( x y μ A ( x ) min { μ A ( y ) , 0.5 } and  γ A ( x ) max { γ A ( y ) , 0.5 } ) , (2) ( μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 0.5 } and  γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 0.5 } ) , (3) ( μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 0.5 } and  γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 0.5 } ) .

Obviously, every intuitionistic fuzzy bi-ideal is an (,)-intuitionistic fuzzy bi-ideal, and we know that every (,)-intuitionistic fuzzy bi-ideal of S is an (,q)-intuitionistic fuzzy bi-ideal of S, and every (,q)-intuitionistic fuzzy bi-ideal is an (, q k )-intuitionistic fuzzy bi-ideal of S. But the converse may not be true. The following example shows that every (, q k )-intuitionistic fuzzy bi-ideal of S may not be an (,q)-intuitionistic fuzzy bi-ideal nor an intuitionistic fuzzy bi-ideal of S.

Example 3.7 Consider the ordered semigroup of Example 3.4 and define an IFS A=x, μ A , γ A by

μ A :S[0,1] μ A (x)={ 0.80 if  x = a , 0.60 if  x = b , 0.40 if  x = c , 0.30 if  x = d , e

and

γ A :S[0,1] γ A (x)={ 0.20 if  x = a , 0.30 if  x = b , 0.40 if  x = c , 0.70 if  x = d , e .

Then A=x, μ A , γ A is an (, q 0.4 )-intuitionistic fuzzy bi-ideal of S. But

  1. (1)

    A=x, μ A , γ A is not an (,q)-intuitionistic fuzzy bi-ideal of S. Since a;(0.8,0.2)A and b;(0.6,0.3)A but ab;(0.6,0.3) q ¯ A.

  2. (2)

    A=x, μ A , γ A is not an intuitionistic fuzzy bi-ideal of S. Since

    μ A (ab)= μ A (d)=0.30<m { μ A ( a ) = 0.80 , μ A ( b ) = 0.60 }

and

γ A (ab)= γ A (d)=0.70>M { γ A ( a ) = 0.20 , μ A ( b ) = 0.30 } .

In the following, we give a condition for an (, q k )-intuitionistic fuzzy bi-ideal of S to be an ordinary intuitionistic fuzzy bi-ideal of S.

Theorem 3.8 Let A=x, μ A , γ A be an (, q k )-intuitionistic fuzzy bi-ideal of S. If μ A (x) 1 k 2 and γ A (x) 1 k 2 for all xS, then A=x, μ A , γ A is an (,)-intuitionistic fuzzy bi-ideal of S.

Proof The proof is straightforward by Theorem 3.5. □

Corollary 3.9 [[11], Theorem 3.8]

Let A=x, μ A , γ A be an (,q)-intuitionistic fuzzy bi-ideal of S. If μ A (x)0.5 and γ A (x)0.5 for all xS, then A=x, μ A , γ A is an (,)-intuitionistic fuzzy bi-ideal of S.

Proof The proof follows from Theorem 3.8, by taking k=0. □

Theorem 3.10 For an IFS A=x, μ A , γ A of S, the following are equivalent:

  1. (1)

    A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S.

  2. (2)

    (t(0, 1 k 2 ]) (s[ 1 k 2 ,1)) ( C ( α , β ) (A) C ( α , β ) (A)is a bi-ideal ofS) .

Proof Assume that A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S, let t(0, 1 k 2 ] and s[ 1 k 2 ,1) be such that C ( α , β ) (A). Using Theorem 3.5(1), we have

μ A (x)min { μ A ( y ) , 1 k 2 } and γ A (x)max { γ A ( y ) , 1 k 2 }

for any x,yS with xy and x C ( t , s ) (A). It follows that μ A (x)min{t,0.5}=t and γ A (x)max{s,0.5}=s, so that y C ( t , s ) (A). Let x,y C ( α , β ) (A). Then μ A (x)t, γ A (x)s and μ A (y)t, γ A (y)s. Theorem 3.5(2) implies that

μ A (xy)min { μ A ( x ) , μ A ( y ) , 1 k 2 } min { t , 1 k 2 } =t

and

γ A (xy)max { γ A ( x ) , γ A ( y ) , 1 k 2 } max { s , 1 k 2 } =s.

Thus, xy C ( α , β ) (A). Now let x,z C ( α , β ) (A). Then μ A (x)t, γ A (x)s and μ A (z)t, γ A (z)s. Theorem 3.5(3) induces that

μ A (xyz)min { μ A ( x ) , μ A ( z ) , 1 k 2 } min { t , 1 k 2 } =t

and

γ A (xyz)max { γ A ( x ) , γ A ( z ) , 1 k 2 } max { s , 1 k 2 } =s.

Thus, xyz C ( α , β ) (A), therefore, C ( α , β ) (A) is a bi-ideal of S.

Conversely, let A=x, μ A , γ A be an IFS of S such that C ( α , β ) (A) is non-empty and is a bi-ideal of S for all t(0, 1 k 2 ] and s[ 1 k 2 ,1). If there exist a,bS with ab and b C ( α , β ) (A) such that μ A (a)<min{ μ A (b), 1 k 2 } and γ A (a)>max{ γ A (b), 1 k 2 }, then μ A (a)< t a min{ μ A (b), 1 k 2 } and γ A (a)> s a max{ γ A (b), 1 k 2 } for some t a (0, 1 k 2 ] and s a [ 1 k 2 ,1). Then a C ( t a , s a ) (A), a contradiction. Therefore, μ A (x)min{ μ A (y), 1 k 2 } and γ A (x)>max{ γ A (y), 1 k 2 } for all x,yS with xy. Assume that there exist a,bS such that

μ A (ab)<min { μ A ( a ) , μ A ( b ) , 1 k 2 }

and γ A (ab)>max{ γ A (a), γ A (b), 1 k 2 }. Then

μ A (ab)< t 0 min { μ A ( a ) , μ A ( b ) , 1 k 2 }

and

γ A (ab)> s 0 max { γ A ( a ) , γ A ( b ) , 1 k 2 }

for some t 0 (0, 1 k 2 ] and s 0 [ 1 k 2 ,1). It follows that a C ( t 0 , s 0 ) (A) and b C ( t 0 , s 0 ) (A), but ab C ( t 0 , s 0 ) (A). This is a contradiction. Hence

μ A (xy)min { μ A ( x ) , μ A ( y ) , 1 k 2 }

and

γ A (xy)max { γ A ( x ) , γ A ( y ) , 1 k 2 }

for all x,yS. Suppose that

μ A (abc)<min { μ A ( a ) , μ A ( c ) , 1 k 2 }

and

γ A (abc)>max { γ A ( a ) , γ A ( c ) , 1 k 2 }

for some a,b,cS. Then there exist t 1 (0, 1 k 2 ] and s 1 [ 1 k 2 ,1) such that

μ A (abc)< t 1 min { μ A ( a ) , μ A ( c ) , 1 k 2 }

and

γ A (abc)> s 1 max { γ A ( a ) , γ A ( c ) , 1 k 2 } .

Then a C ( t 1 , s 1 ) (A) and c C ( t 1 , s 1 ) (A), but abc C ( t 1 , s 1 ) (A). This is impossible, and hence μ A (xyz)<min{ μ A (x), μ A (z), 1 k 2 } and

γ A (xyz)>max { γ A ( x ) , γ A ( z ) , 1 k 2 }

for all x,y,zS. Therefore, A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S. □

By taking k=0 in Theorem 3.10, we get the following corollary.

Corollary 3.11 [[11], Theorem 3.10]

For an IFS A=x, μ A , γ A of an ordered semigroup (S,,), the following are equivalent

  1. (1)

    A=x, μ A , γ A is an (,q)-intuitionistic fuzzy bi-ideal of S.

  2. (2)

    (t(0,0.5]) (s[0.5,1)) ( C ( α , β ) (A) C ( α , β ) (A) is a bi-ideal of S) .

For an IFP x;(α,β) of S and an IFS A=x, μ A , γ A of S, we say that

(c4) x;(α,β) q ̲ A if μ A (x)+α1 and γ A (x)+β1,

(c5) x;(α,β) q k ̲ A if μ A (x)+α+k1 and γ A (x)+β+k1.

We denote by Q ( α , β ) k (A) (resp. Q k ̲ ( α , β ) (A)) the set {xS|x;(α,β) q k A} (resp. {xS|x;(α,β) q k ̲ A}), and [ A ] ( t , s ) k :={xS|[x;(t,s)] q k A}. It is obvious that [ A ] ( t , s ) k = C ( t , s ) (A) Q ( t , s ) k (A).

Proposition 3.12 If A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S, then

( t ( 1 k 2 , 1 ] ) ( s [ 0 , 1 k 2 ) ) ( Q ( t , s ) k ( A ) Q ( t , s ) k ( A ) is a bi-ideal of S ) .

Proof Assume that A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S. Let t[ 1 k 2 ,1] and s[0, 1 k 2 ] be such that Q ( t , s ) k (A). Let y Q ( t , s ) k (A) and xS be such that xy . Then μ A (y)+t+k>1 and γ A (y)+s+k<1. By means of Theorem 3.5(1), we have

μ A ( x ) min { μ A ( y ) , 1 k 2 } = { 1 k 2 if  μ A ( y ) 1 k 2 , μ A ( y ) if  μ A ( y ) < 1 k 2 > 1 t k

and

γ A ( x ) max { γ A ( y ) , 1 k 2 } = { 1 k 2 if  γ A ( y ) < 1 k 2 , γ A ( y ) if  γ A ( y ) 1 k 2 < 1 s k .

It follows that x Q ( t , s ) (A). Let x,y Q ( t , s ) (A). Then μ A (x)+t>1k and γ A (x)+s<1k, μ A (y)+t>1k and γ A (y)+s<1k. Using (2) of Theorem 3.5, we have that

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = { 1 k 2 if  min { μ A ( x ) , μ A ( y ) } 1 k 2 , min { μ A ( x ) , μ A ( y ) } if  min { μ A ( x ) , μ A ( y ) } < 1 k 2 > 1 t k ,

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = { 1 k 2 if  max { γ A ( x ) , γ A ( y ) } < 1 k 2 , max { γ A ( x ) , γ A ( y ) } if  max { γ A ( x ) , γ A ( y ) } 1 k 2 < 1 s k .

Thus, xy Q ( t , s ) (A). Let x,z Q ( t , s ) (A) and yS. Then μ A (x)+t>1k and γ A (x)+s<1k, μ A (z)+t>1k and γ A (z)+s<1k. Using (3) of Theorem 3.5, we have that

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = { 1 k 2 if  min { μ A ( x ) , μ A ( z ) } 1 k 2 , min { μ A ( x ) , μ A ( z ) } if  min { μ A ( x ) , μ A ( z ) } < 1 k 2 > 1 t k

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = { 1 k 2 if  max { γ A ( x ) , γ A ( z ) } < 1 k 2 , max { γ A ( x ) , γ A ( z ) } if  max { γ A ( x ) , γ A ( z ) } 1 k 2 < 1 s .

Hence xyz Q ( t , s ) k (A). Therefore, Q ( t , s ) k (A) is a bi-ideal of S. □

Theorem 3.13 For any IFS A=x, μ A , γ A of S, the following are equivalent

  1. (1)

    A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S.

  2. (2)

    (t(0,1]) (s[0,1)) ( [ A ] ( t , s ) k [ A ] ( t , s ) k is a bi-ideal of S).

We call [ A ] ( t , s ) k an (q)-level bi-ideal of A=x, μ A , γ A .

Proof Assume that A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S, and let t(0,1] and s[0,1) be such that [ A ] ( t , s ) k . Let y [ A ] ( t , s ) k and xS be such that xy. Then y C ( t , s ) (A) or y Q ( t , s ) k (A), i.e., μ A (y)t and γ A (y)s or μ A (y)+t>1k and γ A (y)+s<1k. Using Theorem 3.5(1), we get

μ A (x)min { μ A ( y ) , 1 k 2 } and γ A (x)max { γ A ( y ) , 1 k 2 } .
(3.1)

We consider two cases μ A (y) 1 k 2 , γ A (y) 1 k 2 and μ A (y)> 1 k 2 , γ A (y)< 1 k 2 . The first case implies from (3.1) that μ A (x) μ A (y) and γ A (x) γ A (y). Thus, if μ A (y)t and γ A (y)s, then μ A (x)t and γ A (x)s, and so, x C ( t , s ) (A) [ A ] ( t , s ) k . If μ A (y)+t>1k and γ A (y)+s<1k, then μ A (x)+t μ A (y)+t>1k and γ A (x)+s γ A (y)+s<1k, which implies that [x;(t,s)] q k A, i.e., x Q ( t , s ) k (A) [ A ] ( t , s ) k . Combining the second case and (3.1), we have μ A (x) 1 k 2 and γ A (x) 1 k 2 . If t 1 k 2 and s 1 k 2 , then μ A (x)t and γ A (x)s, and hence x C ( t , s ) (A) [ A ] ( t , s ) k . If t> 1 k 2 and s< 1 k 2 , then μ A (x)+t> 1 k 2 + 1 k 2 =1k and γ A (x)+s< 1 k 2 + 1 k 2 =1k, which implies that x Q ( t , s ) k (A) [ A ] ( t , s ) k . Therefore, [ A ] ( t , s ) k satisfies the condition (b1). Let x,y [ A ] ( t , s ) k . Then x C ( t , s ) (A) or x;(t,s) q k A and y C ( t , s ) (A) or y;(t,s) q k A, that is, μ A (x)t, γ A (x)s or μ A (x)+t+k>1, γ A (x)+s+k<1 and μ A (y)t, γ A (y)s or μ A (y)+t+k>1, γ A (y)+s+k<1. We consider the following four cases

  1. (i)

    μ A (x)t, γ A (x)s and μ A (y)t, γ A (y)s,

  2. (ii)

    μ A (x)t, γ A (x)s and μ A (y)+t+k>1, γ A (y)+s+k<1,

  3. (iii)

    μ A (x)+t+k>1, γ A (x)+s+k<1 and μ A (y)t, γ A (y)s,

  4. (iv)

    μ A (x)+t+k>1, γ A (x)+s+k<1 and μ A (y)+t+k>1, γ A (y)+s+k<1.

For the case (i), Theorem 3.5(2) implies that

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } min { t , 1 k 2 } = { 1 k 2 if  t > 1 k 2 , t if  t 1 k 2

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } max { s , 1 k 2 } = { 1 k 2 if  s < 1 k 2 , s if  s 1 k 2 .

Then xy C ( t , s ) (A) or μ A (xy)+t+k> 1 k 2 + 1 k 2 +k=1 and γ A (xy)+s+k< 1 k 2 + 1 k 2 +k=1, that is, xy Q ( t , s ) k (A). Hence xy C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . For the second case, assume that t> 1 k 2 and s< 1 k 2 , then 1tk1t< 1 k 2 and 1sk1s 1 k 2 . Hence

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = { min { μ A ( y ) , 1 k 2 } > 1 t k if  min { μ A ( y ) , 1 k 2 } μ A ( x ) , μ A ( x ) t if  min { μ A ( y ) , 1 k 2 } > μ A ( x )

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = { max { γ A ( y ) , 1 k 2 } < 1 s k if  max { γ A ( y ) , 1 k 2 } γ A ( x ) , γ A ( x ) s if  max { γ A ( y ) , 1 k 2 } < γ A ( x ) .

Thus xy C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . Suppose that t 1 k 2 and s 1 k 2 . Then

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = { min { μ A ( x ) , 1 k 2 } t if  min { μ A ( x ) , 1 k 2 } μ A ( y ) , μ A ( y ) > 1 t k if  min { μ A ( x ) , 1 k 2 } > μ A ( y ) ,

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = { max { γ A ( x ) , 1 k 2 } s if  max { γ A ( x ) , 1 k 2 } γ A ( y ) , γ A ( y ) < 1 s k if  max { γ A ( x ) , 1 k 2 } < γ A ( y ) .

Thus xy C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . We have a similar result for the case (iii). For the final case, if t> 1 k 2 and s< 1 k 2 , then 1tk< 1 k 2 and 1sk> 1 k 2 . Hence

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = 1 k 2 > 1 t k whenever  min { μ A ( x ) , μ A ( y ) } 1 k 2

and

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = min { μ A ( x ) , μ A ( y ) } > 1 s k whenever  min { μ A ( x ) , μ A ( y ) } 1 k 2

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = 1 k 2 < 1 s k whenever  max { γ A ( x ) , γ A ( y ) } 1 k 2

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = max { γ A ( x ) , γ A ( y ) } < 1 s k , whenever  max { γ A ( x ) , γ A ( y ) } 1 k 2 .

Thus, xy Q ( t , s ) k (A) [ A ] ( t , s ) k . If t 1 k 2 and s 1 k 2 , then

μ A ( x y ) min { μ A ( x ) , μ A ( y ) , 1 k 2 } = { 1 k 2 t if  min { μ A ( x ) , μ A ( y ) } 1 k 2 , min { μ A ( x ) , μ A ( y ) } > 1 t k if  min { μ A ( x ) , μ A ( y ) } < 1 k 2 ,

and

γ A ( x y ) max { γ A ( x ) , γ A ( y ) , 1 k 2 } = { 1 k 2 s if  max { γ A ( x ) , γ A ( y ) } 1 k 2 , max { γ A ( x ) , γ A ( y ) } < 1 s k if  max { γ A ( x ) , γ A ( y ) } > 1 k 2 ,

which implies that xy Q ( t , s ) k (A) [ A ] ( t , s ) k . Let x,z [ A ] ( t , s ) k . Then x C ( t , s ) (A) or x;(t,s) q k A and z C ( t , s ) (A) or z;(t,s) q k A, that is, μ A (x)t, γ A (x)s or μ A (x)+t+k>1, γ A (x)+s+k<1 and μ A (z)t, γ A (z)s or μ A (z)+t+k>1, γ A (z)+s+k<1. We consider the following four cases

  1. (i)

    μ A (x)t, γ A (x)s and μ A (z)t, γ A (z)s,

  2. (ii)

    μ A (x)t, γ A (x)s and μ A (z)+t>1k, γ A (z)+s<1k,

  3. (iii)

    μ A (x)+t>1k, γ A (x)+s<1k and μ A (z)t, γ A (z)s,

  4. (iv)

    μ A (x)+t>1k, γ A (x)+s<1k and μ A (z)+t>1k, γ A (z)+s<1k.

For the case (i), Theorem 3.5(3) implies that

μ A (xyz)min { μ A ( x ) , μ A ( z ) , 1 k 2 } min { t , 1 k 2 } ={ 1 k 2 if  t > 1 k 2 , t if  t 1 k 2

and

γ A (xyz)max { γ A ( x ) , γ A ( z ) , 1 k 2 } max { s , 1 k 2 } ={ 1 k 2 if  s < 1 k 2 , s if  s 1 k 2 .

Then xyz C ( t , s ) (A) or μ A (xyz)+t+k> 1 k 2 + 1 k 2 +k=1 and γ A (xyz)+s+k< 1 k 2 + 1 k 2 +k=1, that is, xyz Q ( t , s ) k (A). Hence xyz C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . For the second case, assume that t> 1 k 2 and s< 1 k 2 , then 1tk1t< 1 k 2 and 1sk1s 1 k 2 . Hence

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = { min { μ A ( x ) , 1 k 2 } > 1 t k if  min { μ A ( z ) , 1 k 2 } μ A ( x ) , μ A ( x ) t if  min { μ A ( z ) , 1 k 2 } > μ A ( x )

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = { max { γ A ( z ) , 1 k 2 } < 1 s k if  max { γ A ( z ) , 1 k 2 } γ A ( x ) , γ A ( x ) s if  max { γ A ( z ) , 1 k 2 } < γ A ( x ) .

Thus, xyz C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . Suppose that t 1 k 2 and s 1 k 2 . Then

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = { min { μ A ( x ) , 1 k 2 } t if  min { μ A ( x ) , 1 k 2 } μ A ( z ) , μ A ( z ) > 1 t k if  min { μ A ( x ) , 1 k 2 } > μ A ( z ) ,

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = { max { γ A ( x ) , 1 k 2 } s if  max { γ A ( x ) , 1 k 2 } γ A ( z ) , γ A ( y ) < 1 s k if  max { γ A ( x ) , 1 k 2 } < γ A ( z ) .

Thus, xyz C ( t , s ) (A) Q ( t , s ) k (A)= [ A ] ( t , s ) k . We have a similar result for the case (iii). For the final case, if t> 1 k 2 and s< 1 k 2 , then 1tk< 1 k 2 and 1sk> 1 k 2 . Hence

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = 1 k 2 > 1 t k whenever  min { μ A ( x ) , μ A ( z ) } 1 k 2

and

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = min { μ A ( x ) , μ A ( z ) } > 1 s k whenever  min { μ A ( x ) , μ A ( z ) } 1 k 2

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = 1 k 2 < 1 s k whenever  max { γ A ( x ) , γ A ( z ) } 1 k 2

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = max { γ A ( x ) , γ A ( z ) } < 1 s k whenever  max { γ A ( x ) , γ A ( z ) } 1 k 2 .

Thus, xyz Q ( t , s ) k (A) [ A ] ( t , s ) k . If t 1 k 2 and s 1 k 2 , then

μ A ( x y z ) min { μ A ( x ) , μ A ( z ) , 1 k 2 } = { 1 k 2 t if  min { μ A ( x ) , μ A ( z ) } 1 k 2 , min { μ A ( x ) , μ A ( z ) } > 1 t k if  min { μ A ( x ) , μ A ( z ) } < 1 k 2 ,

and

γ A ( x y z ) max { γ A ( x ) , γ A ( z ) , 1 k 2 } = { 1 k 2 s if  max { γ A ( x ) , γ A ( z ) } 1 k 2 , max { γ A ( x ) , γ A ( z ) } < 1 s k if  max { γ A ( x ) , γ A ( z ) } > 1 k 2 ,

which implies that xyz Q ( t , s ) k (A) [ A ] ( t , s ) k . Therefore, [ A ] ( t , s ) k is a bi-ideal of S.

Conversely, suppose that (2) is valid. If there exist a,bS such that ab and

μ A (a)<min { μ A ( b ) , 1 k 2 } and γ A (a)>max { γ A ( b ) , 1 k 2 } .

Then μ A (a)< t a min{ μ A (b), 1 k 2 } and γ A (a)> s a max{ γ A (b), 1 k 2 } for some t a (0,1] and s a [0,1). It follows that b C ( t a , s a ) (A) [ A ] ( t a , s a ) k but a C ( t a , s a ) (A). Also we have μ A (a)+ t a <2 t a 1k and γ A (a)+ s a >2 s a 1k and so a;( t a , s a ) q k ¯ A, i.e., b Q ( t a , s a ) k (A). Therefore, a [ A ] ( t a , s a ) , a contradiction. Hence μ A (x)min{ μ A (y), 1 k 2 } and γ A (x)max{ γ A (y), 1 k 2 } for all x,yS with xy. Suppose that there exist a,bS such that

μ A (ab)<min { μ A ( a ) , μ A ( b ) , 1 k 2 }

and

γ A (ab)>max { γ A ( a ) , γ A ( b ) , 1 k 2 } .

Then

μ A (ab)<tmin { μ A ( a ) , μ A ( b ) , 1 k 2 }

and

γ A (ab)>smax { γ A ( a ) , γ A ( b ) , 1 k 2 }

for t(0,1] and s[0,1). It follows that a C ( t , s ) (A) [ A ] ( t , s ) k and b C ( t , s ) (A) [ A ] ( t , s ) k , so from (b2) ab [ A ] ( t , s ) k . Thus, μ A (ab)t, γ A (ab)s or μ A (ab)+t+k>1, γ A (ab)+s+k<1, a contradiction. Therefore, μ A (xy)min{ μ A (x), μ A (y), 1 k 2 } and γ A (xy)max{ γ A (x), γ A (y), 1 k 2 } for all x,yS. Assume that there exist a,b,cS such that

μ A (abc)<min { μ A ( a ) , μ A ( c ) , 1 k 2 }

and

γ A (abc)>max { γ A ( a ) , γ A ( c ) , 1 k 2 } .

Then μ A (abc)< t 0 min{ μ A (a), μ A (c), 1 k 2 } and γ A (abc)> s 0 max{ γ A (a), γ A (c), 1 k 2 } for t 0 (0,1] and s 0 [0,1). It follows that a C ( t 0 , s 0 ) (A) [ A ] ( t 0 , s 0 ) k and c C ( t 0 , s 0 ) (A) [ A ] ( t 0 , s 0 ) k so from (b2) abc [ A ] ( t 0 , s 0 ) . Thus, μ A (ab) t 0 , γ A (ab) s 0 or μ A (ab)+ t 0 +k>1, γ A (ab)+ s 0 +k<1, a contradiction. Therefore, μ A (xyz)min{ μ A (x), μ A (z), 1 k 2 } and γ A (xyz)max{ γ A (x), γ A (z), 1 k 2 } for all x,y,zS. Thus, A=x, μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S. □

Theorem 3.14 Let { A i |iΛ} be a family of (, q k )-intuitionistic fuzzy bi-ideals of S. Then A= i Λ A i is an (, q k )-intuitionistic fuzzy bi-ideal of S, where i Λ A i =x, i Λ μ A i , i Λ γ A i and

i Λ μ A i ( x ) = inf { μ A i ( x ) | i Λ and x S } , i Λ γ A i ( x ) = sup { γ A i ( x ) | i Λ and x S } .

Proof Let x,yS with xy, t(0,1] and s[0,1) be such that y;(t,s)A. Assume that x;(t,s) q k ¯ A. Then μ A (x)<t, γ A (x)>s and μ A (x)+t+k1, γ A (x)+s+k1, which imply that

μ A (x)< 1 k 2 and γ A (x)> 1 k 2 .

Let Ω 1 :={iΛ| μ A i (x)t, γ A i (x)s} and Ω 2 :={iΛ|x;(t,s) q k A i  and  μ A i (x)<t, γ A i (x)>s}.

Then Λ= Ω 1 Ω 2 and Ω 1 Ω 2 =. If Ω 2 =, then μ A i (x)t, γ A i (x)s for all iΛ, and so, μ A (x)t, γ A (x)s, which is a contradiction. Hence Ω 2 , and so, μ A i (x)+t+k>1, γ A i (x)+s+k<1 and μ A i (x)<t, γ A i (x)>s for every iΛ. It follows that t> 1 k 2 and s< 1 k 2 , so that μ A i (x) μ A (x)t> 1 k 2 and γ A i (x) γ A (x)s< 1 k 2 for all iΛ. Now, suppose that t x := μ A i (x)< 1 k 2 and s x := γ A i (x)> 1 k 2 for some iΛ. Let t x (0, 1 k 2 ) and s x ( 1 k 2 ,1) be such that t x < t x and s x < s x . Then μ A i (y)> 1 k 2 > t x and γ A i (y)< 1 k 2 < s x , i.e., y;( t x , s x ) A i . But μ A i (x)= t x < t x , γ A i (x)= s x > s x and μ A i (x)+ t x +k<1, γ A i (x)+ s x +k>1, that is, x;( t x , s x ) q k ¯ A i . This is a contradiction, and so, μ A i (x) 1 k 2 and γ A i (x) 1 k 2 for all iΛ. Thus, μ A (x) 1 k 2 and γ A (x) 1 k 2 , which is impossible. Therefore, y;(t,s) q k A.

Let x,yS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that x;( t 1 , s 1 )A and y;( t 2 , s 2 )A. Assume that xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k ¯ A. Then

μ A (xy)<min{ t 1 , t 2 }, γ A (xy)>max{ s 1 , s 2 }

and

μ A (xy)+min{ t 1 , t 2 }<1k, γ A (xy)+max{ s 1 , s 2 }>1k.

It follows that μ A (xy)< 1 k 2 and γ A (xy)> 1 k 2 . Let Ω 3 :={iΛ| μ A i (xy)min{ t 1 , t 2 } and γ A i (xy)max{ s 1 , s 2 }} and Ω 4 :={iΛ|xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A i  and  μ A i (xy)<min{ t 1 , t 2 } and  γ A i (xy)>max{ s 1 , s 2 }}. Then Ω 3 Ω 4 =Λ and Ω 3 Ω 4 =. If Ω 4 =, then μ A i (xy)min{ t 1 , t 2 } and γ A i (xy)max{ s 1 , s 2 } for all iΛ, and so, μ A (xy)min{ t 1 , t 2 } and γ A (xy)max{ s 1 , s 2 }, which is a contradiction. Hence Ω 4 and xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A i , i.e., μ A i (xy)+min{ t 1 , t 2 }>1k, γ A i (xy)+max{ s 1 , s 2 }<1k. It follows that min{ t 1 , t 2 }> 1 k 2 and max{ s 1 , s 2 }< 1 k 2 , so that μ A i (x) μ A (x) t 1 min{ t 1 , t 2 }> 1 k 2 and γ A i (x) γ A (x) s 1 max{ s 1 , s 2 } for all iΛ. By a similar way, we have μ A i (y) μ A (y) t 1 min{ t 1 , t 2 }> 1 k 2 and γ A i (y) γ A (y) s 1 max{ s 1 , s 2 } for all iΛ. Now, suppose that t:= μ A i (xy)< 1 k 2 and s:= γ A i (xy)> 1 k 2 for some iΛ. Let t (0, 1 k 2 ) and s ( 1 k 2 ,1) be such that t< t and s> s . Then μ A i (x)> 1 k 2 > t , γ A i (x)< 1 k 2 < s and μ A i (y)> 1 k 2 > t , γ A i (y)< 1 k 2 < s , i.e., x;( t , s )A and y;( t , s )A. But μ A i (xy)=t< t , γ A i (xy)=s> s and μ A i (xy)+ t +k<1, γ A i (xy)+ s +k>1, that is, xy;( t , s ) ¯ q k ¯ A i . This is a contradiction. Thus, μ A i (xy) 1 k 2 and γ A i (xy) 1 k 2 for all iΛ. Therefore, μ A (xy) 1 k 2 and γ A (xy) 1 k 2 , which is invalid. Consequently, xy;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Finally, suppose that x,y,zS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that x;( t 1 , s 1 )A and z;( t 2 , s 2 )A. Assume that xyz;min{ t 1 , t 2 },max{ s 1 , s 2 } q k ¯ A. Then

μ A (xyz)<min{ t 1 , t 2 }, γ A (xyz)>max{ s 1 , s 2 }

and

μ A (xyz)+min{ t 1 , t 2 }<1k, γ A (xyz)+max{ s 1 , s 2 }>1k.

It follows that μ A (xyz)< 1 k 2 and γ A (xyz)> 1 k 2 . Let

Ω 5 := { i Λ | μ A i ( x y z ) min { t 1 , t 2 }  and  γ A i ( x y z ) max { s 1 , s 2 } }

and

Ω 6 : = { i Λ | x y z ; min { t 1 , t 2 } , max { s 1 , s 2 } q k A i and  μ A i ( x y z ) < min { t 1 , t 2 }  and  γ A i ( x y z ) > max { s 1 , s 2 } } .

Then Ω 5 Ω 6 =Λ and Ω 5 Ω 6 =. If Ω 6 =, then μ A i (xyz)min{ t 1 , t 2 } and γ A i (xyz)max{ s 1 , s 2 } for all iΛ, and so μ A (xyz)min{ t 1 , t 2 } and γ A (xyz)max{ s 1 , s 2 } which is a contradiction. Hence Ω 6 and

x y z ; min { t 1 , t 2 } , max { s 1 , s 2 } q k A i ,

i.e.,

μ A i (xyz)+min{ t 1 , t 2 }>1k, γ A i (xyz)+max{ s 1 , s 2 }<1k.

It follows that min{ t 1 , t 2 }> 1 k 2 and max{ s 1 , s 2 }< 1 k 2 , so that

μ A i (x) μ A (x) t 1 min{ t 1 , t 2 }> 1 k 2

and

γ A i (x) γ A (x) s 1 max{ s 1 , s 2 }

for all iΛ. Similarly, we have

μ A i (z) μ A (z) t 1 min{ t 1 , t 2 }> 1 k 2

and

γ A i (z) γ A (z) s 1 max{ s 1 , s 2 }

for all iΛ. Now, suppose that t:= μ A i (xyz)< 1 k 2 and s:= γ A i (xyz)> 1 k 2 for some iΛ. Let t (0, 1 k 2 ) and s ( 1 k 2 ,1) be such that t< t and s> s . Then μ A i (x)> 1 k 2 > t , γ A i (x)< 1 k 2 < s and μ A i (y)> 1 k 2 > t , γ A i (y)< 1 k 2 < s , i.e., x;( t , s )A and y;( t , s )A. But

μ A i (xyz)=t< t , γ A i (xyz)=s> s

and

μ A i (xyz)+ t <1, γ A i (xyz)+ s >1,

that is, xyz;( t , s ) ¯ q k ¯ A i . This is a contradiction. Thus, μ A i (xyz) 1 k 2 and γ A i (xyz) 1 k 2 for all iΛ. Therefore, μ A (xyz) 1 k 2 and γ A (xyz) 1 k 2 , which is invalid. Thus, xyz;min{ t 1 , t 2 },max{ s 1 , s 2 } q k A. Therefore, i Λ A i is an (, q k )-intuitionistic fuzzy bi-ideal of S. □

The following example shows that the union of two (, q k )-intuitionistic fuzzy bi-ideals of S may not be an (, q k )-intuitionistic fuzzy bi-ideal of S.

Example 3.15 Consider the ordered semigroup of Example 3.4 with the -multiplication Table 1 and the IFS of Examples 3.4 and 3.7, then a;(0.7,0.3)AB and b;(0.5,0.4)AB, but abmin{0.7,0.5},max{0.3,0.4}=d;(0.5,0.4) q k ¯ AB.

Definition 3.16 An IFS A=x, μ A , γ A of S is called an ( ¯ , ¯ q k ¯ )-intuitionistic fuzzy bi-ideal of S if for all x,y,zS, t, t 1 , t 2 (0,1] and s, s 1 , s 2 [0,1), it satisfies the following conditions

(q4) (x;(t,s) ¯ Ay;(t,s) ¯ q k ¯ A with xy),

(q5) (xy;min{ t 1 , t 2 },max{ s 1 , s 2 } ¯ Ax;( t 1 , s 1 ) ¯ q k ¯ A or y;( t 2 , s 2 ) ¯ q k ¯ A),

(q6) (xyz;min{ t 1 , t 2 },max{ s 1 , s 2 } ¯ Ax;( t 1 , s 1 ) ¯ q k ¯ A or z;( t 2 , s 2 ) ¯ q k ¯ A).

Let A=x, μ A , γ A be an ( ¯ , ¯ q k ¯ )-intuitionistic fuzzy bi-ideal of an ordered semigroup S. Suppose that there exist a,bS with ab such that

μ A (b)>max { μ A ( a ) , 1 k 2 } and γ A (b)<min { γ A ( a ) , 1 k 2 } .

Then μ A (b)t>max{ μ A (a), 1 k 2 } and γ A (b)s<min{ γ A (a), 1 k 2 } for some t( 1 k 2 ,1] and s[0, 1 k 2 ). It follows that a;(t,s) ¯ A, b;(t,s)A and μ A (b)+t2t>1k, γ A (b)+s2s<1k, i.e., b;(t,s) q k A. This is a contradiction, and so the following inequalities hold.

(e1) ( x y μ A ( b ) max { μ A ( a ) , 1 k 2 }  and  γ A ( b ) min { γ A ( a ) , 1 k 2 } ) .

Suppose that max{ μ A (ab), 1 k 2 }<min{ μ A (a), μ A (b)} and min{ γ A (ab), 1 k 2 }>max{ γ A (a), γ A (b)} for some a,bS. Then max{ μ A (ab), 1 k 2 }<tmin{ μ A (a), μ A (b)} and min{ γ A (ab), 1 k 2 }>smax{ γ A (a), γ A (b)}. Thus, a;(t,s) ¯ A, b;(t,s) ¯ A, μ A (a)+t2t>1k, γ A (a)+s2s<1k, i.e., a;(t,s) q k A and μ A (b)+t2t>1k, γ A (b)+s2s<1k, i.e., b;(t,s) q k A. This is impossible, and hence A=x, μ A , γ A satisfies the following assertion

(e2) max{ μ A (xy), 1 k 2 }<min{ μ A (x), μ A (y)} and min{ γ A (xy), 1 k 2 }>max{ γ A (x), γ A (y)} for all x,yS.

Now, assume that

max { μ A ( a b c ) , 1 k 2 } <min { μ A ( a ) , μ A ( c ) }

and

min { γ A ( a b c ) , 1 k 2 } >max { γ A ( a ) , γ A ( c ) }

for some a,b,cS. Then

max { μ A ( a b c ) , 1 k 2 } <tmin { μ A ( a ) , μ A ( c ) }

and

min { γ A ( a b c ) , 1 k 2 } >smax { γ A ( a ) , γ A ( c ) } .

Thus, a;(t,s) ¯ A,c;(t,s) ¯ A, μ A (a)+t2t>1k, γ A (a)+s2s<1k, i.e., a;(t,s) q k A and μ A (c)+t2t>1k, γ A (c)+s2s<1k, i.e., c;(t,s) q k A. This is a contradiction, and hence we have the following assertion

(e3) max{ μ A (xyz), 1 k 2 }<min{ μ A (x), μ A (z)} and min{ γ A (xyz), 1 k 2 }>max{ γ A (x), γ A (z)} for all x,y,zS.

Let A=x, μ A , γ A be an IFS of S satisfying the three conditions (e1), (e2) and (e3). Let t( 1 k 2 ,1] and s[0, 1 k 2 ) be such that C ( t , s ) (A). Then there exist b C ( t , s ) (A) and Sab, by using (e1), we get

1 k 2 <t μ A (b)max { μ A ( a ) , 1 k 2 } = μ A (a)

and

1 k 2 >s γ A (b)min { γ A ( a ) , 1 k 2 } = γ A (a).

Hence a C ( t , s ) (A). Let a,bS be such that a C ( t , s ) (A) and b C ( t , s ) (A). Then μ A (a)t, γ A (a)s and μ A (b)t, γ A (b)s. Using (e2), we get

max { μ A ( a b ) , 1 k 2 } min { μ A ( a ) , μ A ( b ) } t> 1 k 2

and

min { γ A ( a b ) , 1 k 2 } max { γ A ( a ) , γ A ( b ) } s< 1 k 2 ,

which implies that μ A (ab)=max{ μ A (ab), 1 k 2 }t and γ A (ab)=min{ γ A (ab), 1 k 2 }s. Thus, ab C ( t , s ) (A). Now, suppose that a,c C ( t , s ) (A) and bS. Then μ A (a)t, γ A (a)s and μ A (c)t, γ A (c)s. Using (e3), we get

max { μ A ( a b c ) , 1 k 2 } min { μ A ( a ) , μ A ( c ) } t> 1 k 2

and

min { γ A ( a b c ) , 1 k 2 } max { γ A ( a ) , γ A ( c ) } s< 1 k 2 ,

which implies that μ A (abc)=max{ μ A (abc), 1 k 2 }t and γ A (abc)=min{ γ A (abc), 1 k 2 }s. Thus, abc C ( t , s ) (A). Consequently, C ( t , s ) (A) is a bi-ideal of S. Therefore, we conclude that if an IFS A=x, μ A , γ A of S satisfies the three conditions (e1), (e2) and (e3), then the following assertion is valid

(e4) (t(0.5,1]) (s[0, 1 k 2 )) ( C ( t , s ) (A) C ( t , s ) (A) is a bi-ideal of S).

Now, let A=x, μ A , γ A be an IFS of S satisfying (e4). Let a,bS with ab and t(0,1] and s[0,1) be such that b;(t,s) ¯ q k ¯ ¯ A. Then b;(t,s)A and b;(t,s) q k A. Hence b C ( t , s ) (A) and C ( t , s ) (A). Thus, by (e4), a C ( t , s ) (A) and so μ A (a)t, γ A (a)s, i.e., a;(t,s)A. This shows that (q4) is valid. Let a,bS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that a;( t 1 , s 1 ) ¯ q k ¯ ¯ A and b;( t 2 , s 2 ) ¯ q k ¯ ¯ A. Then a;( t 1 , s 1 )A, a;( t 1 , s 1 ) q k A and b;( t 2 , s 2 )A, b;( t 2 , s 2 ) q k A, which implies that a C ( t , s ) (A) C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A) and b C ( t , s ) (A) C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A). Since C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A) is bi-ideal of S by (e4), it follows by (b2) that ab C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A), that is, μ A (ab)min{ t 1 , t 2 }, and γ A (ab)max{ s 1 , s 2 }, so that ab;min{ t 1 , t 2 },max{ s 1 , s 2 }A. Hence (q5) is valid. Finally, let a,b,cS, t 1 , t 2 (0,1] and s 1 , s 2 [0,1) be such that a;( t 1 , s 1 ) ¯ q k ¯ ¯ A and c;( t 2 , s 2 ) ¯ q k ¯ ¯ A. Then a;( t 1 , s 1 )A, a;( t 1 , s 1 ) q k A and c;( t 2 , s 2 )A, c;( t 2 , s 2 ) q k A, which implies that a C ( t , s ) (A) C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A) and c C ( t , s ) (A) C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A). Since C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A) is bi-ideal of S by (e4), it follows by (b3) that abc C ( min { t 1 , t 2 } , max { s 1 , s 2 } ) (A), that is, μ A (abc)min{ t 1 , t 2 }, and γ A (abc)max{ s 1 , s 2 }, so that abc;min{ t 1 , t 2 },max{ s 1 , s 2 }A. Hence (q6) is valid.

Therefore, as a concluding remark, we have the following theorem.

Theorem 3.17 For an IFS A=x, μ A , γ A of S, the following are equivalent

  1. (1)

    A=x, μ A , γ A is an ( ¯ , ¯ q k ¯ )-intuitionistic fuzzy bi-ideal of S.

  2. (2)

    A=x, μ A , γ A satisfies the condition (e4).

  3. (3)

    A=x, μ A , γ A satisfies the three conditions (e1), (e2) and (e3).

For an IFS A=x; μ A , γ A of S, we consider the following sets

Γ 1 : = { t ( 0 , 1 ] | U ( μ A ; t ) U ( μ A ; t )  is a bi-ideal of  S } , Γ 2 : = { s [ 0 , 1 ) | L ( μ A ; t ) L ( μ A ; t )  is a bi-ideal of  S } .

Then

  1. (1)

    If Γ 1 =(0,1] and Γ 2 =[0,1), then A=x; μ A , γ A is an intuitionistic fuzzy bi-ideal of S.

  2. (2)

    If Γ 1 =(0,0.5] and Γ 2 =[0.5,1), then A=x; μ A , γ A is an (,q)-intuitionistic fuzzy bi-ideal of S.

  3. (3)

    If Γ 1 =(0, 1 k 2 ] and Γ 2 =[ 1 k 2 ,1), then A=x; μ A , γ A is an (, q k )-intuitionistic fuzzy bi-ideal of S.

  4. (4)

    If Γ 1 =( 1 k 2 ,1] and Γ 2 =[0, 1 k 2 ), then A=x; μ A , γ A is an ( ¯ , ¯ q k ¯ )-intuitionistic fuzzy bi-ideal of S.

References

  1. Kehayopulu N, Tsingelis M: Fuzzy bi-ideals in ordered semigroups. Inf. Sci. 2005, 171: 13–28.

    Article  MathSciNet  Google Scholar 

  2. Mordeson JN, Malik DS, Kuroki N Studies in Fuzziness and Soft Computing 131. In Fuzzy Semigroups. Springer, Berlin; 2003.

    Chapter  Google Scholar 

  3. Murali V: Fuzzy points of equivalent fuzzy subsets. Inf. Sci. 2004, 158: 277–288.

    Article  MathSciNet  Google Scholar 

  4. Bhakat SK, Das P:(,q)-fuzzy subgroups. Fuzzy Sets Syst. 1996, 80: 359–368.

    Article  MathSciNet  Google Scholar 

  5. Bhakat SK, Das P: Fuzzy subrings and ideals redefined. Fuzzy Sets Syst. 1996, 81: 383–393.

    Article  MathSciNet  Google Scholar 

  6. Davvaz B: Fuzzy R-subgroups with thresholds of near-rings and implication operators. Soft Comput. 2008, 12: 875–879.

    Article  Google Scholar 

  7. Jun YB, Khan A, Shabir M:Ordered semigroups characterized by their (,q)-fuzzy bi-ideals. Bull. Malays. Math. Soc. 2009, 32(3):391–408.

    MathSciNet  Google Scholar 

  8. Davvaz B, Khan A:Characterizations of regular ordered semigroups in terms of (α,β)-fuzzy generalized bi-ideals. Inf. Sci. 2011, 181: 1759–1770.

    Article  MathSciNet  Google Scholar 

  9. Shabir M, Jun YB, Nawaz Y:Characterization of regular semigroups by (α,β)-fuzzy ideals. Comput. Math. Appl. 2010, 59: 161–175.

    Article  MathSciNet  Google Scholar 

  10. Jun YB:Generalizations of (,q)-fuzzy subalgebras in BCK/BCI-algebras. Comput. Math. Appl. 2009, 58: 1383–1390.

    Article  MathSciNet  Google Scholar 

  11. Jun, YB, Khan, A, Sarmin, NH, Khan, H: Bi-ideals of ordered semigroups based on the intuitionistic fuzzy points (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Khan.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK proposed the structure, reviewed the mathematical concepts and coordinated the manuscript. BD participated in its design and helped to check the examples constructed for new concepts in the manuscript. NHS linguistically edited, sequenced and drafted the manuscript. HK introduced new concepts, proofs to mathematical results and typed the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Khan, A., Davvaz, B., Sarmin, N.H. et al. Redefined intuitionistic fuzzy bi-ideals of ordered semigroups. J Inequal Appl 2013, 397 (2013). https://doi.org/10.1186/1029-242X-2013-397

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-397

Keywords