Skip to main content

Remarks on contractive mappings via Ω-distance

Abstract

Very recently, some authors discovered that some fixed point results in thecontext of a G-metric space can be derived from the fixed point resultsin the context of a quasi-metric space and hence the usual metric space. In thisarticle, we investigate some fixed point results in the framework of aG-metric space via Ω-distance that cannot be obtained by theusual fixed point results in the literature. We also add an application toillustrate our results.

MSC: 47H10, 54H25, 46J10, 46J15.

1 Introduction and preliminaries

Very recently, Jleli and Samet [1] and Samet et al.[2] proved that some fixed point results in the setting of G-metricspaces, introduced by Sims and Mustafa [3], are consequences of the well-known fixed point theorem in the context ofthe usual metric space. Indeed, authors in [1, 2] noticed that G(x,y,y)=q(x,y) is a quasi-metric and obtained that the results arejust a characterization of existence results in the framework of a quasi-metric. Onthe other hand, a G-metric was introduced as a generalization of the(usual) metric. Basically, G-metrics claim the geometry of three pointsinstead of two points. Consequently, Jleli and Samet [1] and Samet et al.[2] concluded that if the expression in the fixed point theorem can bereduced to two points, then it can be written as a consequence of the relatedexistence result in the literature.

Recently, Saadati et al.[4] introduced the concept of Ω-distance on a complete G-metricspace as a generalized notion of ω-distance due to Kada etal.[5]. In these papers, the authors investigate the existence/uniqueness of afixed point of certain operators in this setting. In this paper, we revise somepublished papers (see, e.g., [6, 7]) and improve the statements in a way that cannot be manipulated by thetechniques used in [1, 2] (see also [810]).

We first recall some necessary definitions and basic results on the topics in theliterature.

Definition 1 ([3])

Let X be a non-empty set. A function G:X×X×X[0,) is called a G-metric if the followingconditions are satisfied:

  1. (i)

    G(x,y,z)=0 if x=y=z (coincidence),

  2. (ii)

    G(x,x,y)>0 for all x,yX, where xy,

  3. (iii)

    G(x,x,z)G(x,y,z) for all x,y,zX, with zy,

  4. (iv)

    G(x,y,z)=G(p{x,y,z}), where p is a permutation of x, y, z (symmetry),

  5. (v)

    G(x,y,z)G(x,a,a)+G(a,y,z) for all x,y,z,aX (rectangle inequality).

A G-metric is said to be symmetric if G(x,y,y)=G(y,x,x) for all x,yX.

Definition 2 ([3])

Suppose that (X,G) is a G-metric space.

  1. (1)

    A sequence { x n } in X is said to be G-Cauchy sequence if, for each ε>0, there exists a positive integer n 0 such that for all n,m,l n 0 , G( x n , x m , x l )<ε.

  2. (2)

    A sequence { x n } in X is said to be G-convergent to a point xX if, for each ε>0, there exists a positive integer n 0 such that for all m,n n 0 , G( x m , x n ,x)<ε.

Definition 3 ([4])

Let (X,G) be a G-metric space. Then a functionΩ:X×X×X[0,) is called an Ω-distance on X if thefollowing conditions are satisfied:

  1. (a)

    Ω(x,y,z)Ω(x,a,a)+Ω(a,y,z) for all x,y,z,aX,

  2. (b)

    Ω(x,y,),Ω(x,,y):X[0,) are lower semi-continuous for any x,yX,

  3. (c)

    for each ε>0, there exists δ>0 such that Ω(x,a,a)δ and Ω(a,y,z)δ imply G(x,y,z)ε.

Example 4 ([4])

Suppose that (X,d) is a metric space. Let G: X 3 [0,) be defined as follows:

G(x,y,z)=max { d ( x , y ) , d ( y , z ) , d ( x , z ) }

for all x,y,zX. Then one can easily show thatΩ=G is an Ω-distance on X.

Example 5 ([4])

Let X=R and (X,G) be a G-metric, where

G(x,y,z)= 1 3 ( | x y | + | y z | + | x z | )

for all x,y,zX. If we define Ω: R 3 [0,) as follows:

Ω(x,y,z)= 1 3 ( | z x | + | x y | )

for all x,y,zX, then it is an Ω-distance on .

We refer, e.g., to [4, 11] for more details and examples on the topic.

Lemma 6[4]

Suppose that(X,G)is aG-metric space and Ω is an Ω-distanceonX. Let{ x n }, { y n }be sequences inXand{ α n }, { β n }be sequences in[0,)converging to zero andx,y,z,aX. Then

  1. (a)

    ifΩ(y, x n , x n ) α n andΩ( x n ,y,z) β n fornN, thenG(y,y,z)<ε, and hencey=z;

  2. (b)

    ifΩ( y n , x n , x n ) α n andΩ( x n , y m ,z) β n form>n, thenG( y n , y m ,z)0, and hence y n z;

  3. (c)

    ifΩ( x n , x m , x l ) α n for anyl,m,nNwithnml, then{ x n }is aG-Cauchy sequence;

  4. (d)

    ifΩ( x n ,a,a) α n for anynN, then{ x n }is aG-Cauchy sequence.

Definition 7 ([4])

Suppose that (X,G) is a G-metric space and Ω is anΩ-distance on X. (X,G) is called Ω-bounded if there is a constantC>0 with Ω(x,y,z)C for all x,y,zX.

Definition 8 Let (X,) be a partially ordered set. A self-mappingT:XX is said to be non-decreasing if, forx,yX,

xyT(x)T(y).

The tripled (X,G,) is called a partially ordered G-metric spaceif (X,) is a partially ordered set endowed with aG-metric on X; see also [12, 13].

2 Fixed point theorems on partially ordered G-metric spaces

We start this section with the following classes of mappings:

Φ = { ϕ | ϕ : [ 0 , ) [ 0 , )  continuous, non-decreasing } and  Ψ = { ψ | ψ : [ 0 , ) [ 0 , )  continuous, non-decreasing }

with ϕ 1 ({0})= ψ 1 ({0})={0}.

Definition 9 Let (X,) be a partially ordered space. Suppose that thereexists a G-metric on X such that (X,G) is a complete G-metric space. A self-mappingT:XX is said to be a generalized weak-contraction mappingif it satisfies the following condition:

ψ ( Ω ( T x , T 2 x , T y ) ) ψ ( Ω ( x , T x , y ) ) ϕ ( Ω ( x , T x , y ) ) for all x,yX, with xy,

where ψΨ and ϕΦ.

Theorem 10Let(X,G,)be a partially ordered completeG-metric space, and let Ω be anΩ-distance onX. Suppose that a non-decreasing self-mappingT:XXis a generalized weak-contraction mapping, that is,

ψ ( Ω ( T x , T 2 x , T y ) ) ψ ( Ω ( x , T x , y ) ) ϕ ( Ω ( x , T x , y ) ) for allx,yX, with xTx,

withψΨandϕΦ. Suppose also thatinf{Ω(x,y,x)+Ω(x,y,Tx)+Ω(x,Tx,y):xTx}>0for everyyXwithyTy. If there exists x 0 Xwith x 0 T x 0 , thenThas a unique fixed point, sayuX. Moreover, Ω(u,u,u)=0.

Proof If x 0 =T x 0 , then the proof is finished. Suppose that x 0 T x 0 . Since x 0 T x 0 and T is non-decreasing, we obtain

x 0 T x 0 T 2 x 0 T n + 1 x 0 .

Now, if for some nN, Ω( T n x 0 , T n + 1 x 0 , T n + 1 x 0 )=0, then

ψ ( Ω ( T n + 1 x 0 , T n + 2 x 0 , T n + 2 x 0 ) ) ψ ( Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) ) ϕ ( Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) ) ,

then Ω( T n + 1 x 0 , T n + 2 x 0 , T n + 2 x 0 )=0. Due to [(a), Definition 3], we haveΩ( T n x 0 , T n + 2 x 0 , T n + 2 x 0 )=0. On the other hand, by [(c), Definition 3], weeasily derive that G( T n x 0 , T n + 2 x 0 , T n + 2 x 0 )=0, which completes the proof.

Consequently, throughout the proof, we suppose that Ω( T n x 0 , T n + 1 x 0 , T n + 1 x 0 )>0 for all nN. Hence, we have

ψ ( Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) ) ψ ( Ω ( T n 1 x 0 , T n x 0 , T n x 0 ) ) ϕ ( Ω ( T n 1 x 0 , T n x 0 , T n x 0 ) ) ,
(2.1)

which yields that

ψ ( Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) ) ψ ( Ω ( T n 1 x 0 , T n x 0 , T n x 0 ) ) .

As a result, we conclude that {Ω( T n x 0 , T n + 1 x 0 , T n + 1 x 0 )} is non-increasing. Thus, there existsr0 such that

lim n Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) =r.

We shall show that r=0. Suppose, on the contrary, thatr>0. Then we have ϕ(r)>0. Letting n on (2.1), we obtain

ψ(r)ψ(r)ϕ(r),

a contraction. Hence, we have

lim n Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) =0.
(2.2)

Recursively, we obtain that

lim n Ω ( T n x 0 , T n + 1 x 0 , T n + t x 0 ) =0
(2.3)

for every tN.

Let lmn with m=n+k and l=m+t (k,tN). By the triangle inequality, we derive that

Ω ( T n x 0 , T m x 0 , T l x 0 ) Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) + Ω ( T n + 1 x 0 , T m x 0 , T l x 0 ) Ω ( T n x 0 , T n + 1 x 0 , T n + 1 x 0 ) + Ω ( T n + 1 x 0 , T n + 2 x 0 , T n + 2 x 0 ) + + Ω ( T m 1 x 0 , T m x 0 , T l x 0 ) .

Letting n in the inequality above, by keeping the limits (2.2)and (2.3), we obtain

lim n , m , l Ω ( T n x 0 , T m x 0 , T l x 0 ) =0.

Therefore, { T n x 0 } is a G-Cauchy sequence. Since X isG-complete, { T n x 0 } converges to a point uX. Now, for ε>0 and by the lower semi-continuity of Ω,

Ω ( T n x 0 , T m x 0 , u ) lim inf p Ω ( T n x 0 , T m x 0 , T p x 0 ) ε,mn,

and

Ω ( T n x 0 , u , T l x 0 ) lim inf p Ω ( T n x 0 , T p x 0 , T l x 0 ) ε,ln.

Assume that uTu. Since T n x 0 T n + 1 x 0 ,

0<inf { Ω ( T n x 0 , u , T n x 0 ) + Ω ( T n x 0 , u , T n + 1 x 0 ) + Ω ( T n x 0 , T n + 1 x 0 , u ) : n N } 3ε,

a contraction. Hence, we have u=Tu.

We shall show that u is the unique fixed point of T. Suppose, onthe contrary, that v is another fixed point of T. So, we have

ψ ( Ω ( u , u , v ) ) = ψ ( Ω ( T u , T 2 u , T v ) ) ψ ( Ω ( u , T u , v ) ) ϕ ( Ω ( u , T u , v ) ) = ψ ( Ω ( u , u , v ) ) ϕ ( Ω ( u , u , v ) ) < ψ ( Ω ( u , u , v ) ) ,

a contraction. Thus, the fixed point u is unique. Now, sinceu=Tu, we have

ψ ( Ω ( u , u , u ) ) = ψ ( Ω ( T u , T 2 u , T u ) ) ψ ( Ω ( u , T u , u ) ) ϕ ( Ω ( u , T u , u ) ) = ψ ( Ω ( u , u , u ) ) ϕ ( Ω ( u , u , u ) ) .

So, Ω(u,u,u)=0. □

Definition 11 Let (X,) be a partially ordered space. Suppose that thereexists a G-metric on X such that (X,G) is a complete G-metric space. A self-mappingT:XX is said to be a weak-contraction mapping if itsatisfies the following condition:

Ω ( T x , T 2 x , T y ) Ω(x,Tx,y)ϕ ( Ω ( x , T x , y ) ) for all x,yX, with xy,

where ϕΦ.

Corollary 12Let(X,G,)be a partially ordered completeG-metric space, and let Ω be anΩ-distance onX. Suppose that a non-decreasing self-mappingT:XXis a weak-contraction mapping, that is,

Ω ( T x , T 2 x , T y ) Ω(x,Tx,y)ϕ ( Ω ( x , T x , y ) ) for all x,yX, with xTx,

whereϕΦ. Suppose also thatinf{Ω(x,y,x)+Ω(x,y,Tx)+Ω(x,Tx,y):xTx}>0for everyyXwithyTy. If there exists x 0 Xwith x 0 T x 0 , thenThas a unique fixed point, sayuX. Moreover, Ω(u,u,u)=0.

If we take ϕ(t)=kt, where k[0,1), we derive Theorem 2.2 [4] as the following corollary.

Corollary 13Let(X,G,)be a partially ordered completeG-metric space, and let Ω be anΩ-distance onX. Suppose that there existsk[0,1)such that

Ω ( T x , T 2 x , T y ) kΩ(x,Tx,y)for all x,yX, with xTx.

Suppose also thatinf{Ω(x,y,x)+Ω(x,y,Tx)+Ω(x,Tx,y):xTx}>0for everyyXwithyTy. If there exists x 0 Xwith x 0 T x 0 , thenThas a unique fixed point, sayuX. Moreover, Ω(u,u,u)=0.

Definition 14 Let (X,) be a partially ordered space. Suppose that thereexists a G-metric on X such that (X,G) is a complete G-metric space. A self-mappingT:XX is said to be a Ćirić-type contractionmapping if it satisfies that there exists 0k<1 such that

Ω ( T x , T 2 x , T y ) kM(x,x,y),

where

M(x,x,y)=max { Ω ( x , T x , T x ) , Ω ( y , T y , T y ) , 1 2 Ω ( x , T y , T y ) }

for all x,yX with xy.

Theorem 15Let(X,G,)be a partially ordered completeG-metric space, and let Ω be anΩ-distance onX. Suppose that a non-decreasing self-mappingT:XXis a Ćirić-type contraction mapping.

  1. (i)

    For everyxXandyXwithyT(y), inf{Ω(x,y,x)+Ω(x,y,Tx)+Ω(x,Tx,y):xT(x)}>0,

  2. (ii)

    There exists x 0 Xsuch that x 0 T( x 0 ),

thenThas a fixed pointuinXandΩ(u,u,u)=0.

Proof By assumption (ii), there exists x 0 X such that x 0 T( x 0 ). We fix x 1 X such that x 1 =T( x 0 ). Since T is a non-decreasing mapping,T x 0 T x 1 . There exists x 2 X such that T x 1 = x 2 . Recursively, we construct the sequence{ x n } in the following way:

x n + 1 =T x n T x n + 1 = x n + 2 for all n0.

Since T is a Ćirić-type contraction mapping, by replacingx= x n and y= x n + 1 , we get that

Ω( x n + 1 , x n + 2 , x n + 2 )=Ω(T x n ,T x n + 1 ,T x n + 1 )kM( x n , x n , x n + 1 ),
(2.4)

where

M ( x n , x n , x n + 1 ) = max { Ω ( x n , T x n , T x n ) , Ω ( x n + 1 , T x n + 1 , T x n + 1 ) , 1 2 Ω ( x n , T x n + 1 , T x n + 1 ) } = max { Ω ( x n , x n + 1 , x n + 1 ) , Ω ( x n + 1 , x n + 2 , x n + 2 ) , 1 2 Ω ( x n , x n + 2 , x n + 2 ) } max { Ω ( x n , x n + 1 , x n + 1 ) , Ω ( x n + 1 , x n + 2 , x n + 2 ) , 1 2 [ Ω ( x n , x n + 1 , x n + 1 ) + Ω ( x n + 1 , x n + 2 , x n + 2 ) ] } = max { Ω ( x n , x n + 1 , x n + 1 ) , Ω ( x n + 1 , x n + 2 , x n + 2 ) } .

Notice that if M( x n , x n , x n + 1 )Ω( x n + 1 , x n + 2 , x n + 2 ), then (2.4) yields a contradiction sincek<1.

Thus, M( x n , x n , x n + 1 )Ω( x n , x n + 1 , x n + 1 ) and inequality (2.4) and k<1 turn into

Ω( x n + 1 , x n + 2 , x n + 2 )kΩ( x n , x n + 1 , x n + 1 ).
(2.5)

Upon the discussion above, we conclude that the sequence {Ω( x n , x n + 1 , x n + 1 )} is non-increasing and bounded below. Therefore, thereexists r0 such that

lim n Ω( x n , x n + 1 , x n + 1 )=r.

We shall show that r=0. By a standard calculation, using inequality (2.5)and keeping k<1 in mind, we obtain lim n Ω( x n , x n + 1 , x n + 1 )=0. We claim that the sequence { x n } is G-Cauchy. Let lmn with m=n+k and l=m+t (k,tN). By the triangle inequality, we derive that

Ω ( x n , x m , x l ) Ω ( x n , x n + 1 , x n + 1 ) + Ω ( x n + 1 , x m , x l ) Ω ( x n , x n + 1 , x n + 1 ) + Ω ( x n + 1 , x n + 2 , x n + 2 ) + + Ω ( x m 1 , x m , x l ) .
(2.6)

On the other hand, we have

Ω ( x m 1 , x m , x m + t ) k M ( x m 2 , x m 2 , x m + t 1 ) = k max { Ω ( x m 2 , x m 1 , x m 1 ) , Ω ( x m + t 1 , x m + t , x m + t ) , 1 2 Ω ( x m 2 , x m + t , x m + t ) } k max { Ω ( x m 2 , x m 1 , x m 1 ) , Ω ( x m + t 1 , x m + t , x m + t ) , 1 2 [ Ω ( x m 2 , x m 1 , x m 1 ) + Ω ( x m 1 , x m , x m ) + + Ω ( x m + t 1 , x m + t , x m + t ) ] } .
(2.7)

By combining expressions (2.6) and (2.7), we find that

Ω ( x n , x m , x l ) Ω ( x n , x n + 1 , x n + 1 ) + Ω ( x n + 1 , x n + 2 , x n + 2 ) + + Ω ( x m 2 , x m 1 , x m 1 ) + k max { Ω ( x m 2 , x m 1 , x m 1 ) , Ω ( x m + t 1 , x m + t , x m + t ) , 1 2 [ Ω ( x m 2 , x m 1 , x m 1 ) + Ω ( x m 1 , x m , x m ) + + Ω ( x m + t 1 , x m + t , x m + t ) ] } .
(2.8)

Taking n in (2.8), we conclude that

lim n , m , l Ω( x n , x m , x l )=0,

and hence { x n } is a G-Cauchy sequence due to expression (c)of Lemma 6. Since X is G-complete, { x n } converges to a point uX. Thus, for ε>0 and by the lower semi-continuity of Ω, we have

Ω( x n , x m ,u) lim inf p Ω( x n , x m , x p )ε,mn,

and

Ω( x n ,u, x l ) lim inf p Ω( x n , x p , x l )ε,ln.

Assume that uTu. Since x n + 1 x n + 2 ,

0<inf { Ω ( x n + 1 , u , x n + 1 ) + Ω ( x n + 1 , u , x n + 2 ) + Ω ( x n + 1 , x n + 2 , u ) : n N } 3ε

for every ε>0, that is a contraction. Therefore, we haveu=Tu and Ω(u,u,u)=0. □

Definition 16 Let (X,) be a partially ordered space andf,g:XX. We say that g is an f-monotonemapping if

x,yX,f(x)f(y)g(x)g(y).

Theorem 17Let(X,G,)be a partially ordered completeG-metric space, and let Ω be anΩ-distance onXsuch thatXis Ω-bounded. Letf:XXandg:f(X)Xcommute, fbe non-decreasing andgbe anf-monotone mapping such that:

  1. (a)

    gf(X) f 2 (X);

  2. (b)

    Ω(gfx,gy, g 2 x)kM(x,x,y), whereM(x,x,y)=max{Ω( f 2 x,fy,fgx),Ω(fy,fy,gy),Ω( f 2 x, f 2 x,fgx)}for allx,yXwithf(x)f(y)and0k<1;

  3. (c)

    for everyxXandzXwith f 2 zgfz,

    inf { Ω ( x , z , x ) + Ω ( x , x , z ) + Ω ( f 2 x , g x , g f x ) : f 2 x g f x } >0;
  4. (d)

    there exists x 0 f(X)such thatf( x 0 )g( x 0 );

thenfandghave a unique common fixed pointuinXandΩ(u,u,u)=0.

Proof Let x 0 f(X) such that f( x 0 )g( x 0 ). By part (a), we can choose x 1 f(X) such that f( x 1 )=g( x 0 ). Again from part (a), we can choose x 2 f(X) such that f( x 2 )=g( x 1 ). Continuing this process, we can construct sequences{ x n } in f(X) and { z n } in f 2 (X) such that

y n =g x n =f x n + 1 ,
(2.9)

and

z n =g y n 1 =gf x n =fg x n =f y n .
(2.10)

Since f( x 0 )g( x 0 ) and f( x 1 )=g( x 0 ), we have f( x 0 )f( x 1 ). Then by Definition 16, g( x 0 )g( x 1 ). Continuing, we obtain

g x n g x n + 1 ,n0.
(2.11)

So, by (2.9) and (2.11), for all t1, f x n f x n + t . Now, for all s0,

Ω ( z n , z n + s , z n + 1 ) = Ω ( g f x n , g x n + s 1 , g 2 x n ) k max { Ω ( f 2 x n , f y n + s 1 , f g x n ) , Ω ( f y n + s 1 , f y n + s 1 , g y n + s 1 ) , Ω ( f 2 x n , f 2 x n , f g x n ) } = k max { Ω ( z n 1 , z n + s 1 , z n ) , Ω ( z n + s 1 , z n + s 1 , z n + s ) , Ω ( z n 1 , z n 1 , z n ) } .

Then, for s=0,

Ω( z n , z n , z n + 1 )kΩ( z n 1 , z n 1 , z n ).

For s=1,

Ω( z n , z n + 1 , z n + 1 ) k 1 + 1 max { Ω ( z n 1 , z n , z n ) , Ω ( z n 1 , z n 1 , z n ) } .

For s=2,

Ω( z n , z n + 2 , z n + 1 ) k 1 + 2 max { Ω ( z n 1 , z n + 1 , z n ) , Ω ( z n 1 , z n 1 , z n ) }

and

Ω ( z n 1 , z n 1 , z n ) k max { Ω ( z n 2 , z n 2 , z n 1 ) , Ω ( z n 2 , z n 2 , z n 1 ) , Ω ( z n 2 , z n 2 , z n 1 ) } = k Ω ( z n 2 , z n 2 , z n 1 ) k n 1 Ω ( z 0 , z 0 , z 1 ) .

Therefore, for all n1 and s0,

Ω( z n , z n + s , z n + 1 ) k n + s max { Ω ( z n 1 , z n + s 1 , z n ) , Ω ( z 0 , z 0 , z 1 ) } .
(2.12)

Notice that if Ω( z n , z n + s , z n + 1 ) k n + s Ω( z 0 , z 0 , z 1 ), so for all s0, lim n Ω( z n , z n + s , z n + 1 )=0. If Ω( z n , z n + s , z n + 1 ) k n + s Ω( z n 1 , z n + s 1 , z n ), so {Ω( z n 1 , z n + s 1 , z n )} is non-increasing and bounded below. Therefore, thereexists r0 such that

lim n Ω( z n 1 , z n + s 1 , z n )=r.

We shall show that r=0. By a standard calculation, using inequality (2.12)and keeping k<1 in mind, we obtain lim n Ω( z n 1 , z n + s 1 , z n )=0. Now, for any lmn with m=n+k and l=m+t (k,tN), we have

Ω ( z n , z m , z l ) Ω ( z n , z n + 1 , z n + 1 ) + Ω ( z n + 1 , z m , z l ) Ω ( z n , z n + 1 , z n + 1 ) + Ω ( z n + 1 , z n + 2 , z n + 2 ) + + Ω ( z m 1 , z m , z l ) Ω ( z n , z n + 1 , z n + 1 ) + Ω ( z n + 1 , z n + 2 , z n + 2 ) + + Ω ( z m 1 , z m , z m ) + Ω ( z m , z m + 1 , z m + 1 ) + + Ω ( z m + t 1 , z m , z m + t ) .

So,

lim n , m , l Ω( z n , z m , z l )=0,

and consequently, by Part (3) of Lemma 6, { z n } is a G-Cauchy sequence. Since X isG-complete, { z n } converges to a point zX. Thus, for ε>0 and by the lower semi-continuity of Ω, we have

Ω( z n , z m ,z) lim inf p Ω( z n , z m , z p )ε,mn,

and

Ω( z n ,z, z l ) lim inf p Ω( z n , z p , z l )ε,ln.

Assume that f 2 zgfz. Since f is non-decreasing, we obtain

z n = f 2 x n + 1 =f(f x n + 1 )f(f x n + 2 )=gf x n + 1 = z n + 1 ,

then z n z n + 1 . Also, for all n1,

Ω ( f 2 z n , g z n , g f z n ) = Ω ( g f z n 1 , g z n , g 2 z n 1 ) k max { Ω ( f 2 z n 1 , f z n , f g z n 1 ) , Ω ( f z n , f z n , g z n ) , Ω ( f 2 z n 1 , f 2 z n 1 , f g z n 1 ) } = k max { Ω ( g f z n 2 , g z n 1 , g 2 z n 2 ) , Ω ( f z n , f z n , g z n ) , Ω ( g f z n 2 , g f z n 2 , g 2 z n 2 ) } k 3 max { Ω ( f 2 z n 2 , f z n 1 , f g z n 2 ) , Ω ( f z n 1 , f z n 1 , g z n 1 ) , Ω ( f 2 z n 2 , f 2 z n 2 , f g z n 2 ) , Ω ( f z n , f z n , g z n ) , Ω ( f 2 z n 2 , f 2 z n 2 , f g z n 2 ) , Ω ( f 2 z n 2 , f 2 z n 2 , g f z n 2 ) , Ω ( f 2 z n 2 , f 2 z n 2 , f g z n 2 ) } = k 3 max { Ω ( f 2 z n 2 , f z n 1 , f g z n 2 ) , Ω ( f z n 1 , f z n 1 , g z n 1 ) , Ω ( f 2 z n 2 , f 2 z n 2 , f g z n 2 ) , Ω ( f z n , f z n , g z n ) } k 2 n + 1 max { Ω ( f 2 z 1 , g z 1 , g f z 1 ) , Ω ( f 2 z 1 , f 2 z 1 , f g z 1 ) , Ω ( f z i , f z i , g z i ) , 0 i n } k 2 n + 1 C ,

where C=max{Ω( f 2 z 1 ,g z 1 ,gf z 1 ),Ω( f 2 z 1 , f 2 z 1 ,fg z 1 ),Ω(f z i ,f z i ,g z i ),0in}, and consequently lim n Ω( f 2 z n ,g z n ,gf z n )=0. Therefore,

0<inf { Ω ( z n , z , z n ) + Ω ( z n , z n , z ) + Ω ( f 2 z n , g z n , g f z n ) : n N } 3ε

for every ε>0, that is a contraction. So, we have f 2 z=gfz. Then, by (b),

Ω ( g f 2 z , g ( g f z ) , g 2 f z ) k max { Ω ( f 2 f z , f ( g f z ) , f g ( f z ) ) , Ω ( f ( g f z ) , f ( g f z ) , g ( g f z ) ) , Ω ( f 2 ( f z ) , f 2 ( f z ) , f g ( f z ) ) } .

So, Ω(g f 2 z,g(gfz), g 2 fz)=0. Since X is Ω-bounded,Ω(g f 2 z,g(gfz), g 2 fz)=0<M. Similarly, Ω(g f 2 z,gfz, g 2 fz)kΩ( f 2 z, f 2 z, f 2 z)<M. By part (c) of Definition 3,G(g f 2 z,gfz, g 2 fz)=0. Then g 2 fz=gfz, which implies that gfz is a fixed point for g. Now,

f(gfz)=g f 2 z= g 2 fz=gfz.

Then u=gfz is a common fixed point of f andg.

Uniqueness. Assume that there exists vX such that fv=gv=v. Hence, we have

Ω(v,v,v)kΩ(v,v,v),

and so Ω(v,v,v)=Ω(u,u,u)=0. Also, Ω(v,u,v)=0. Then, by Part (c) of Definition 3,u=v and Ω(u,u,u)=0. □

The following corollary is a generalization of Theorem 2.1 [14].

Denote by Λ the set of all functions λ:[0,+)[0,+) satisfying the following hypotheses:

  1. (i)

    λ is a Lebesgue-integrable mapping on each compact subset of [0,+),

  2. (ii)

    for every ε>0, we have 0 ε λ(s)ds>0,

  3. (iii)

    λ<1, where λ denotes the norm of λ.

Now, we have the following corollary.

Corollary 18Let(X,G,)be a partially ordered completeG-metric space, let Ω be anΩ-distance onX, and letT:XXbe a non-decreasing self-mapping. Suppose thatψΨandϕΦsuch that

0 ψ ( Ω ( T x , T 2 x , T y ) ) λ(s)ds 0 ψ ( Ω ( x , T x , y ) ) λ(s)ds 0 ϕ ( Ω ( x , T x , y ) ) λ(s)ds,
(2.13)

for allxTx, yX, whereλΛ. Also, for everyxX,

inf { Ω ( x , y , x ) + Ω ( x , y , T x ) + Ω ( x , T x , y ) : x T x } >0

for everyyXwithyTy. If there exists x 0 Xwith x 0 T x 0 , thenThas a unique fixed point.

Proof Define γ:[0,+)[0,+) by γ(t)= 0 t λ(s)ds, then from inequality (2.13), we have

γ ( ψ ( Ω ( T x , T 2 x , T y ) ) ) γ ( ψ ( Ω ( x , T x , y ) ) ) γ ( ϕ ( Ω ( x , T x , y ) ) ) ,

which can be written as

ψ 1 ( Ω ( T x , T 2 x , T y ) ) ψ 1 ( Ω ( x , T x , y ) ) ϕ 1 ( Ω ( x , T x , y ) ) ,

where ψ 1 =γψ and ϕ 1 =γϕ. Since the functions ψ 1 and ϕ 1 satisfy the properties of ψ andϕ, by Theorem 10, T has a unique fixedpoint. □

Corollary 19Let(X,G,)be a partially ordered completeG-metric space, let Ω be anΩ-distance onX, and letT:XXbe a non-decreasing self-mapping. Suppose that thereexists0k<1such that

0 ψ ( Ω ( T x , T 2 x , T y ) ) kλ(s)ds 0 M ( x , x , y ) λ(s)ds
(2.14)

for allxTx, yX, where

M(x,x,y)=max { Ω ( x , T x , T x ) , Ω ( y , T y , T y ) , 1 2 Ω ( x , T y , T y ) }

andλΛ. Also, for everyxX,

inf { Ω ( x , y , x ) + Ω ( x , y , T x ) + Ω ( x , T x , y ) : x T x } >0

for everyyXwithyTy. If there exists x 0 Xwith x 0 T x 0 , thenThas a unique fixed point.

3 Application

In this section, we give an existence theorem for a solution of the followingintegral equations:

x(t)= 0 1 K ( t , s , x ( s ) ) ds+g(t),t[0,1].
(3.1)

Let X=C([0,1]) be the set of all continuous functions defined on[0,1]. Define G:X×X×XR by

G(x,y,z)=xy+yz+zx,

where x=sup{|x(t)|:t[0,1]}. Then (X,G) is a complete G-metric space. LetΩ=G. Then Ω is an Ω-distance on X.Define an ordered relation ≤ on X by

xyiffx(t)y(t),t[0,1].

Then (X,) is a partially ordered set. Now, we prove thefollowing result.

Theorem 20Suppose the following hypotheses hold:

  1. (1)

    K:[0,1]×[0,1]× R + R + andg:[0,1]Rare continuous mappings,

  2. (2)

    Kis non-decreasing in its first coordinate andgis non-decreasing,

  3. (3)

    There exists a continuous function G:[0,1]×[0,1][0,+) such that

    | K ( t , s , u ) K ( t , s , v ) | G(t,s)|uv|

for every comparableu,v R + ands,t[0,1]with sup t [ 0 , 1 ] 0 1 G(t,s)ds 1 2 ,

  1. (4)

    There exist continuous, non-decreasing functionsϕ,ψ:[0,)(0,)with ψ 1 ({0})= ϕ 1 ({0})={0}andψ(r)ψ(2r)ϕ(2r)for allr[0,).

Then the integral equation has a solution inC([0,1]).

Proof Define Tx(t)= 0 1 K(t,s,x(s))ds+g(t). By hypothesis (2), we have that T isnon-decreasing.

Now, if

inf { Ω ( x , y , x ) + Ω ( x , y , T x ) + Ω ( x , T x , y ) : x T x } =0

for every yX with yTy, then for each nN, there exists x n C([0,1]) with x n T x n such that

Ω( x n ,y, x n )+Ω( x n ,y,T x n )+Ω( x n ,T x n ,y) 1 n .

Then we have

Ω( x n ,y,T x n )= sup t [ 0 , 1 ] | x n y|+ sup t [ 0 , 1 ] |yT x n |+ sup t [ 0 , 1 ] |T x n x n | 1 n .

Thus,

lim n x n (t)=y(t), lim n T x n (t)=y(t).

By the continuity of K, we have

y ( t ) = lim n T x n ( t ) = 0 1 K ( t , s , lim n x n ( s ) ) d s + g ( t ) = 0 1 K ( t , s , y ( s ) ) d s + g ( t ) = T y ( t ) ,

which is a contradiction. Therefore,

inf { Ω ( x , y , x ) + Ω ( x , y , T x ) + Ω ( x , T x , y ) : x T x } >0.

Now, for x,yX with xTx, we have

ψ ( Ω ( T x , T 2 x , T y ) ) = ψ ( sup t [ 0 , 1 ] | T x ( t ) T 2 x ( t ) | + sup t [ 0 , 1 ] | T 2 x ( t ) T y ( t ) | + sup t [ 0 , 1 ] | T y ( t ) T x ( t ) | ) ψ ( sup t [ 0 , 1 ] 0 1 | K ( t , s , x ( s ) ) K ( t , s , T x ( s ) ) | d s + sup t [ 0 , 1 ] 0 1 | K ( t , s , T x ( s ) ) K ( t , s , y ( s ) ) | d s + sup t [ 0 , 1 ] 0 1 | K ( t , s , y ( s ) ) K ( t , s , x ( s ) ) | d s ) ψ ( sup t [ 0 , 1 ] ( 0 1 G ( t , s ) | x ( s ) T x ( s ) | d s ) + sup t [ 0 , 1 ] ( 0 1 G ( t , s ) | T x ( s ) y ( s ) | d s ) + sup t [ 0 , 1 ] ( 0 1 G ( t , s ) | y ( s ) x ( s ) | d s ) ) ψ ( sup t [ 0 , 1 ] ( | x ( t ) T x ( t ) | ) sup t [ 0 , 1 ] 0 1 G ( t , s ) d s + sup t [ 0 , 1 ] ( | T x ( t ) y ( t ) | ) sup t [ 0 , 1 ] 0 1 G ( t , s ) d s + sup t [ 0 , 1 ] ( | y ( t ) x ( t ) | ) sup t [ 0 , 1 ] 0 1 G ( t , s ) d s ) ψ ( 1 2 sup t [ 0 , 1 ] ( | x ( t ) T x ( t ) | ) + 1 2 sup t [ 0 , 1 ] ( | T x ( t ) y ( t ) | ) + 1 2 sup t [ 0 , 1 ] ( | y ( t ) x ( t ) | ) ) ψ ( 1 2 Ω ( x , T x , y ) ) ψ ( Ω ( x , T x , y ) ) ϕ ( Ω ( x , T x , y ) ) .

Thus, by Theorem 10, there exists a solution uC[0,1] of integral equation (3.1). □

References

  1. Jleli M, Samet B: Remarks on G -metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012., 2012: Article ID 210

    Google Scholar 

  2. Samet B, Vetro C, Vetro F: Remarks on G -metric spaces. Int. J. Anal. 2013., 2013: Article ID 917158

    Google Scholar 

  3. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7: 289–297.

    MathSciNet  MATH  Google Scholar 

  4. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G-metricspaces.Math. Comput. 2010, 52: 797–801.

    MathSciNet  MATH  Google Scholar 

  5. Kada O, Suzuki T, Takahashi W: Nonconvex minimization theorems and fixed point theorems in complete metricspace.Math. Jpn. 1996, 44: 381–391.

    MathSciNet  MATH  Google Scholar 

  6. Gholizadeh L, Saadati R, Shatanawi W, Vaezpour SM: Contractive mapping in generalized, ordered metric spaces with application inintegral equations.Math. Probl. Eng. 2011., 2011: Article ID 380784

    Google Scholar 

  7. Gholizadeh L: A fixed point theorem in generalized ordered metric spaces withapplication.J. Nonlinear Sci. Appl. 2013, 6: 244–251.

    MathSciNet  MATH  Google Scholar 

  8. Abbas M, Rhoades B: Common fixed point results for non-commuting mappings without continuity ingeneralized metric spaces.Appl. Math. Comput. 2009, 215: 262–269. 10.1016/j.amc.2009.04.085

    Article  MathSciNet  MATH  Google Scholar 

  9. Karapinar E, Agarwal RP: Further fixed point results on G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 154

    Google Scholar 

  10. Asadi, M, Karapinar, E, Salimi, P: A new approach to G-metric andrelated fixed point theorems. J. Inequal. Appl. (2013)

    MATH  Google Scholar 

  11. Agarwal R, Karapınar E: Remarks on some coupled fixed point theorems in G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 2

    Google Scholar 

  12. Gnana Bhaskar T, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  MATH  Google Scholar 

  13. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications tomatrix equations.Proc. Am. Math. Soc. 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Manro S, Bhatia SS, Kumar S: Expansion mappings theorems in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5(51):2529–2535.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous reviewers for their remarkable comments, suggestionsand ideas that helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karapınar.

Additional information

Competing interests

The authors declare that there is no conflict of interests regarding the publicationof this article.

Authors’ contributions

All authors contributed equally and significantly in writing this article. Allauthors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gholizadeh, L., Karapınar, E. Remarks on contractive mappings via Ω-distance. J Inequal Appl 2013, 457 (2013). https://doi.org/10.1186/1029-242X-2013-457

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-457

Keywords