Skip to main content

Solving a class of functional equations using fixed point theorems

Abstract

This paper is concerned with solvability of a class of functional equations arising in dynamic programming of multistage decision processes. Using the fixed point theorems due to Banach and Liu-Ume-Kang and iterative algorithms, some sufficient conditions which ensure the existence, uniqueness and iterative approximations of solutions for the functional equation in the Banach spaces BC(S) and B(S) and the complete metric space BB(S) are provided. Four examples are constructed to illustrate the results presented in this paper.

MSC:49L20, 90C39.

1 Introduction

It is well know that the existence problems of solutions for various functional equations arising in dynamic programming are both of theoretical and of practical interest; for example, see [119] and the references cited therein. Bellman [2], Bhakta and Choudhury [5], Liu [9] and Liu et al. [11, 12, 1416, 19] studied the existence, uniqueness and iterative approximations of solutions for the following functional equations arising in dynamic programming:

f(x)= inf y D max { u ( x , y ) , v ( x , y ) f ( a ( x , y ) ) } ,xS,
(1.1)
f(x)= inf y D max { u ( x , y ) , f ( a ( x , y ) ) } ,xS,
(1.2)
f(x)= sup y D max { u ( x , y ) , f ( a ( x , y ) ) } ,xS,
(1.3)
f(x)= opt y D opt { u ( x , y ) , f ( a ( x , y ) ) } ,xS,
(1.4)
f(x)= opt y D { u ( x , y ) max { p ( x , y ) , f ( a ( x , y ) ) } } ,xS,
(1.5)
f(x)= opt y D { u ( x , y ) min { p ( x , y ) , f ( a ( x , y ) ) } } ,xS
(1.6)

in the complete metric space BB(S), where opt stands for the sup or inf.

Motivated and inspired by the results in [119], in this paper we introduce and study a new functional equation arising in dynamic programming of multistage decision processes as follows:

f ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , f ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , f ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , f ( c ( x , y ) ) } } , x S ,
(1.7)

where λ[0,1] is a constant, x and y stand for the state and decision vectors, respectively, a, b and c denote the transformations of the processes, and f(x) is the optimal return function with initial state x. Obviously, functional equation (1.7) includes functional equations (1.1)-(1.6) as special cases. Utilizing the Banach fixed point theorem and Liu-Ume-Kang fixed point theorem, some techniques in nonlinear analysis and a few iterative algorithms, we get the existence, uniqueness and iterative approximations of continuous bounded solutions, bounded solutions and solutions for functional equation (1.7) in the Banach spaces BC(S) and B(S) and the complete metric space BB(S), respectively, and discuss some error estimates between the iterative sequences generated by the iterative algorithms and the solutions. Four nontrivial examples are given to show that the results presented in this paper are more general than those in [5, 6, 11, 12, 1416, 19].

2 Preliminaries

Throughout this paper, we assume that (X,) and (Y, ) are real Banach spaces, SX is the state space, DY is the decision space, denotes the set of all positive integers, N 0 ={0}N, R=(,+), R + =[0,+) and R =(,0]. Define

Φ 1 = { φ : φ : R + R +  is nondecreasing and  φ ( t ) < t Φ 1 =  for each  t > 0 } , Φ 2 = { ( φ , ψ ) : φ Φ 1 , ψ : R + R +  is nondecreasing and  n = 0 ψ ( φ n ( t ) ) < + Φ 2 =  for each  t > 0 } , B ( S ) = { g : g : S R  is bounded } , B C ( S ) = { g : g B ( S )  is continuous } , B B ( S ) = { g : g : S R  is bounded on each bounded subsets of  S } .

Clearly, (B(S), 1 ) and (BC(S), 1 ) are Banach spaces with the norm g 1 = sup x S |g(x)|. For each kN and h,gBB(S), put

d k ( h , g ) = sup { | h ( x ) g ( x ) | : x B ¯ ( 0 , k ) } , d ( h , g ) = k = 1 1 2 k d k ( h , g ) 1 + d k ( h , g ) ,

where

B ¯ (0,k)= { x : x S  and  x k } .

Obviously, { d k } k N is a countable family of pseudometrics in BB(S). A sequence { x k } k N in BB(S) is said to converge to a point xBB(S) if d k ( x n ,x)0 as n and { x n } n N is a Cauchy sequence if d k ( x n , x m )0 as n,m for each kN. It is clear that (BB(S),d) is a complete metric space.

Lemma 2.1 ([12])

Let E be a set, p and q:ER be mappings. If opt y E p(y) and opt y E q(y) are bounded, then

| opt y E p ( y ) opt y E q ( y ) | sup y E | p ( y ) q ( y ) | .

Lemma 2.2 ([14])

Let α, β, γ and δ be in . Then

| opt { α , β } opt { γ , δ } | max { | α γ | , | β δ | } .

Lemma 2.3 (Liu-Ume-Kang fixed point theorem [17])

Let (G,ρ) be a complete metric space, { ρ k } k N be a countable family of pseudometrics on G such that for any different points x,yG, ρ k (x,y)>0 for some kN, and ρ be defined by

ρ(x,y)= k = 1 1 2 k ρ k ( x , y ) 1 + ρ k ( x , y ) ,x,yG.

Assume that T:GG satisfies that

ρ k (Tx,Ty)φ ( ρ k ( x , y ) ) ,(x,y,k) G 2 ×N,

where φ: R + R + is upper semicontinuous from the right on R + and φ(t)<t for each t>0. Then T has a unique fixed point wG and lim n T n (x)=w for each xG.

3 Main results

Now we investigate the existence, uniqueness and iterative approximations of continuous bounded solutions and bounded solutions for functional equation (1.7) in the Banach spaces BC(S) and B(S), respectively, by using the Banach fixed point theorem and iterative algorithms.

Theorem 3.1 Let S be compact, λ[0,1] and α[0,1). Let p,q,r,u,v,t:S×DR and a,b,c:S×DS satisfy that

(C1) p, q and r are bounded in S×D;

(C2) sup ( x , y ) S × D max{|u(x,y)|,|v(x,y)|+|t(x,y)|}α;

(C3) for each ( x 0 ,g)S×{p,q,r,u,v,t,a,b,c},

lim x x 0 g(x,y)=g( x 0 ,y)uniformly foryD.

Then functional equation (1.7) possesses a unique solution wBC(S) such that

(C4) for each w 0 BC(S), the iterative sequence { w n } n N 0 defined by

w n ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , w n 1 ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , w n 1 ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , w n 1 ( c ( x , y ) ) } } , ( x , n ) S × N
(3.1)

converges to w and has the error estimate:

w n w 1 α n w 0 w 1 and w n w 1 α n 1 α w 0 w 1 1 , n N .
(3.2)

Proof Define a mapping H:BC(S)BC(S) by

H h ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } , ( x , h ) S × B C ( S ) .
(3.3)

Firstly, we show that H is a self-mapping in BC(S). Let ( x 0 ,h)S×BC(S) and ε>0. It follows from (C1), (C3) and the compactness of S that there exist constants M>0, δ>0 and δ 1 >0 such that

sup ( x , y ) S × D max { | h ( x ) | , | h ( a ( x , y ) ) | , | h ( b ( x , y ) ) | , | h ( c ( x , y ) ) | , | p ( x , y ) | , | q ( x , y ) | , | r ( x , y ) | } M ;
(3.4)
max { | u ( x , y ) u ( x 0 , y ) | , | v ( x , y ) v ( x 0 , y ) | + | t ( x , y ) t ( x 0 , y ) | } < ε 2 M , ( x , y ) S × D  with  x x 0 < δ ;
(3.5)
max { | p ( x , y ) p ( x 0 , y ) | , | q ( x , y ) q ( x 0 , y ) | , | r ( x , y ) r ( x 0 , y ) | } < ε 2 , ( x , y ) S × D  with  x x 0 < δ ;
(3.6)
| h ( x 1 ) h ( x 2 ) | < ε 2 , x 1 , x 2 S with  x 1 x 2 < δ 1 ;
(3.7)
max { a ( x , y ) a ( x 0 , y ) , b ( x , y ) b ( x 0 , y ) , c ( x , y ) c ( x 0 , y ) } < δ 1 , ( x , y ) S × D  with  x x 0 < δ .
(3.8)

On account of (C2), (3.3)-(3.8), Lemmas 2.1 and 2.2, we infer that

| H h ( x ) H h ( x 0 ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } λ opt y D { u ( x 0 , y ) opt { p ( x 0 , y ) , h ( a ( x 0 , y ) ) } } ( 1 λ ) opt y D { v ( x 0 , y ) opt { q ( x 0 , y ) , h ( b ( x 0 , y ) ) } + t ( x 0 , y ) opt { r ( x 0 , y ) , h ( c ( x 0 , y ) ) } } | λ | opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } opt y D { u ( x 0 , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } | + λ | opt y D { u ( x 0 , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } opt y D { u ( x 0 , y ) opt { p ( x 0 , y ) , h ( a ( x 0 , y ) ) } } | + ( 1 λ ) | opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } opt y D { v ( x 0 , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x 0 , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } | + ( 1 λ ) | opt y D { v ( x 0 , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x 0 , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } opt y D { v ( x 0 , y ) opt { q ( x 0 , y ) , h ( b ( x 0 , y ) ) } + t ( x 0 , y ) opt { r ( x 0 , y ) , h ( c ( x 0 , y ) ) } } | λ sup y D { | u ( x , y ) u ( x 0 , y ) | max { | p ( x , y ) | , | h ( a ( x , y ) ) | } } + λ sup y D { | u ( x 0 , y ) | | opt { p ( x , y ) , h ( a ( x , y ) ) } opt { p ( x 0 , y ) , h ( a ( x 0 , y ) ) } | } + ( 1 λ ) sup y D { | v ( x , y ) v ( x 0 , y ) | max { | q ( x , y ) | , | h ( b ( x , y ) ) | } + | t ( x , y ) t ( x 0 , y ) | max { | r ( x , y ) | , | h ( c ( x , y ) ) | } } + ( 1 λ ) sup y D { | v ( x 0 , y ) | | opt { q ( x , y ) , h ( b ( x , y ) ) } opt { q ( x 0 , y ) , h ( b ( x 0 , y ) ) } | + | t ( x 0 , y ) | | opt { r ( x , y ) , h ( c ( x , y ) ) } opt { r ( x 0 , y ) , h ( c ( x 0 , y ) ) } | } λ M sup y D | u ( x , y ) u ( x 0 , y ) | + λ α sup y D max { | p ( x , y ) p ( x 0 , y ) | , | h ( a ( x , y ) ) h ( a ( x 0 , y ) ) | } + ( 1 λ ) M sup y D { | v ( x , y ) v ( x 0 , y ) | + | t ( x , y ) t ( x 0 , y ) | } + ( 1 λ ) sup y D { ( | v ( x 0 , y ) | + | t ( x 0 , y ) | ) max { | q ( x , y ) q ( x 0 , y ) | , | h ( b ( x , y ) ) h ( b ( x 0 , y ) ) | , | r ( x , y ) r ( x 0 , y ) | , | h ( c ( x , y ) ) h ( c ( x 0 , y ) ) | } } < λ M ε 2 M + λ α ε 2 + ( 1 λ ) M ε 2 M + ( 1 λ ) α ε 2 < ε , x S  with  x x 0 < δ

and

| H h ( x ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } | λ sup y D { | u ( x , y ) | | opt { p ( x , y ) , h ( a ( x , y ) ) } | } + ( 1 λ ) sup y D { | v ( x , y ) | | opt { q ( x , y ) , h ( b ( x , y ) ) } | + | t ( x , y ) | | opt { r ( x , y ) , h ( c ( x , y ) ) } | } λ α sup y D max { | p ( x , y ) | , | h ( a ( x , y ) ) | } + ( 1 λ ) sup y D { [ | v ( x , y ) | + | t ( x , y ) | ] max { | q ( x , y ) | , | r ( x , y ) | , | h ( b ( x , y ) ) | , | h ( c ( x , y ) ) | } } λ α M + ( 1 λ ) α M = α M , x S ,

which yields that Hh is bounded and continuous in S. That is, H maps BC(S) into BC(S).

Secondly, we show that H is a contraction mapping in BC(S). Given ε>0. In view of (3.3), Lemmas 2.1 and 2.2, we get that

| H h ( x ) H g ( x ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } λ opt y D { u ( x , y ) opt { p ( x , y ) , g ( a ( x , y ) ) } } ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , g ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , g ( c ( x , y ) ) } } | λ sup y D { | u ( x , y ) | | opt { p ( x , y ) , h ( a ( x , y ) ) } opt { p ( x , y ) , g ( a ( x , y ) ) } | } + ( 1 λ ) sup y D { | v ( x , y ) | | opt { q ( x , y ) , h ( b ( x , y ) ) } opt { q ( x , y ) , g ( b ( x , y ) ) } | + | t ( x , y ) | | opt { r ( x , y ) , h ( c ( x , y ) ) } opt { r ( x , y ) , g ( c ( x , y ) ) } | } λ α sup y D { | h ( a ( x , y ) ) g ( a ( x , y ) ) | } + ( 1 λ ) sup y D { [ | v ( x , y ) | + | t ( x , y ) | ] × max { | h ( b ( x , y ) ) g ( b ( x , y ) ) | , | h ( c ( x , y ) ) g ( c ( x , y ) ) | } } α h g 1 , x S , h , g B C ( S ) ,

which gives that

H h H g 1 α h g 1 ,h,gBC(S),
(3.9)

that is, H is a contraction mapping in BC(S). Thus the Banach fixed point theorem yields that H has a unique fixed point wBC(S), which is a unique solution of functional equation (1.7) in BC(S).

Thirdly, we show (C4). Note that

w ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , w ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , w ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , w ( c ( x , y ) ) } } , x S ,

which together with (3.1), (3.3) and (3.9) yields that

w n w 1 = sup x S | w n ( x ) w ( x ) | = sup x S | H w n 1 ( x ) H w ( x ) | = H w n 1 H w α w n 1 w 1 α n w 0 w 1 , n N ,
(3.10)

which guarantees that the sequence { w n } n N 0 converges to w. Similarly, we conclude that

w n w n + m 1 i = n n + m 1 w i w i + 1 1 = i = n n + m 1 H w i 1 H w i 1 i = n n + m 1 α w i 1 w i 1 i = n n + m 1 α i w 0 w 1 1 α n 1 α w 0 w 1 1 , ( n , m ) N × N .

Letting m in the above inequalities, we infer that (3.2) holds. This completes the proof. □

Using the proof of Theorem 3.1, we have the following.

Theorem 3.2 Let α(0,1) and λ[0,1]. Let p,q,r,u,v,t:S×DR and a,b,c:S×DS satisfy (C1) and (C2). Then functional equation (1.7) possesses a unique solution wB(S) and for each w 0 B(S), the sequence { w n } n N 0 defined by (3.1) converges to w and satisfies (C4).

Example 3.3 Consider the functional equation

f ( x ) = λ opt y R + { cos ( x 9 + y 18 ) y 2 + 2 opt { x 56 x 31 + y 5 + 1 , f ( sin 8 ( x 2 y 35 ) ) } } + ( 1 λ ) opt y R + { x 2 sin ( y 14 ) 2 ( x + 1 ) 2 + y 3 opt { x 25 ln ( 1 + x 2 ) x 2 + y 3 + 1 , f ( x 6 x 2 + y 2 + 1 ) } + x + 1 3 x + 2 + y 2 opt { x 10 cos 6 ( y 7 y ) y 3 + y 2 + 1 , f ( x 7 y x 3 + y 2 + 1 ) } } , x [ 0 , 40 ] .
(3.11)

Put X=Y=R, S=[0,40], D= R + , λ[0,1], α= 5 6 . Let p,q,r,u,v,t:S×DR and a,b,c:S×DS be defined by

p ( x , y ) = x 56 x 31 + y 5 + 1 , q ( x , y ) = x 25 ln ( 1 + x 2 ) x 2 + y 3 + 1 , r ( x , y ) = x 10 cos 6 ( y 7 y ) y 3 + y 2 + 1 , u ( x , y ) = cos ( x 9 + y 18 ) y 2 + 2 , v ( x , y ) = x 2 sin ( y 14 ) 2 ( x + 1 ) 2 + y 3 , t ( x , y ) = x + 1 3 x + 2 + y 2 , a ( x , y ) = sin 8 ( x 2 y 35 ) , b ( x , y ) = x 6 x 2 + y 2 + 1 , c ( x , y ) = x 7 y x 3 + y 2 + 1 , ( x , y ) S × D .

It is easy to see that the conditions of Theorem 3.1 are satisfied. It follows from Theorem 3.1 that functional equation (3.11) possesses a unique solution wBC(S) and (C4) holds.

Example 3.4 Consider the functional equation

f ( x ) = λ opt y R { x y 2 sin 45 ( x 9 y 7 ) x 2 + y 4 + 1 opt { sin 3 ( x y 5 ) , f ( x 59 x 4 + y 24 ) } } + ( 1 λ ) opt y R { x 3 arctan ( x 15 y 21 ) 2 π x 3 + y 2 + 1 opt { cos 9 ( x 6 y 3 ( x + y ) ) , f ( x 2 y 6 ) } + 2 x 4 sin 2 ( x y ) 3 x 4 + cos 4 ( x 8 y 6 ) opt { x 3 y 2 ( x + 1 ) 4 + y 2 , f ( x 35 y 47 x y ) } } , x R + .
(3.12)

Set X=Y=R, S= R + , D= R , λ[0,1], α= 11 12 . Let p,q,r,u,v,t:S×DR and a,b,c:S×DS be defined by

p ( x , y ) = sin 3 ( x y 5 ) , q ( x , y ) = cos 9 ( x 6 y 3 ( x + y ) ) , r ( x , y ) = x 3 y 2 ( x + 1 ) 4 + y 2 , u ( x , y ) = x y 2 sin 45 ( x 9 y 7 ) x 2 + y 4 + 1 , v ( x , y ) = x 3 arctan ( x 15 y 21 ) 2 π x 3 + y 2 + 1 , t ( x , y ) = 2 x 4 sin 2 ( x y ) 3 x 4 + cos 4 ( x 8 y 6 ) , a ( x , y ) = x 59 x 4 + y 24 , b ( x , y ) = x 2 y 6 , c ( x , y ) = x 35 y 47 x y , ( x , y ) S × D .

It is clear that the conditions of Theorem 3.2 are fulfilled. Thus Theorem 3.2 guarantees that functional equation (3.12) possesses a unique solution wB(S), which satisfies (C4).

Next we prove the existence, uniqueness and iterative approximation of solutions for functional equation (1.7) in the complete metric space BB(S) by using Liu-Ume-Kang fixed point theorem.

Theorem 3.5 Let α(0,1), λ[0,1], p,q,r,u,v,t:S×DR and a,b,c:S×DS satisfy that

(C5) p, q and r are bounded on B ¯ (0,k)×D, kN;

(C6) sup ( x , y ) B ¯ ( 0 , k ) × D max{|u(x,y)|,|v(x,y)|+|t(x,y)|}α, kN;

(C7) sup ( x , y ) B ¯ ( 0 , k ) × D max{a(x,y),b(x,y),c(x,y)}k, kN.

Then functional equation (1.7) possesses a unique solution wBB(S) such that

(C8) for each w 0 BB(S), the sequence { w n } n N 0 defined by

w n ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , w n 1 ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , w n 1 ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , w n 1 ( c ( x , y ) ) } } , ( x , k , n ) B ¯ ( 0 , k ) × N × N
(3.13)

converges to w and has the following error estimates:

d k ( w n , w ) α n d k ( w 0 , w ) and d k ( w n , w ) α n 1 α d k ( w 0 , w 1 ) , ( k , n ) N × N .
(3.14)

Proof Define a mapping H:BB(S)BB(S) by

H h ( x ) = λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } , ( x , k , h ) B ¯ ( 0 , k ) × N × B B ( S ) .
(3.15)

It follows from (C5) and (C7) that for each (k,h)N×BB(S), there exist γ(k)>0 and β(k,h)>0 such that

sup ( x , y ) B ¯ ( 0 , k ) × D max { | p ( x , y ) | , | q ( x , y ) | , | r ( x , y ) | } γ ( k ) ; sup ( x , y ) B ¯ ( 0 , k ) × D max { | h ( a ( x , y ) ) | , | h ( b ( x , y ) ) | , | h ( c ( x , y ) ) | } β ( k , h ) ,

which together with (C6), (3.15) and Lemma 2.1 gives that

| H h ( x ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } | λ sup y D { | u ( x , y ) | max { | p ( x , y ) | , | h ( a ( x , y ) ) | } } + ( 1 λ ) sup y D { | v ( x , y ) | max { | q ( x , y ) | , | h ( b ( x , y ) ) | } + | t ( x , y ) | max { | r ( x , y ) | , | h ( c ( x , y ) ) | } } λ α max { γ ( k ) , β ( k , h ) } + ( 1 λ ) max { γ ( k ) , β ( k , h ) } sup y D ( | v ( x , y ) | + | t ( x , y ) | ) λ α max { γ ( k ) , β ( k , h ) } + ( 1 λ ) α max { γ ( k ) , β ( k , h ) } = α max { γ ( k ) , β ( k , h ) } , ( x , k , h ) B ¯ ( 0 , k ) × N × B B ( S ) ,

which means that H is a self-mapping in BB(S). By virtue of (3.15), (C6), (C7), Lemmas 2.1 and 2.2, we get that

| H h ( x ) H g ( x ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } λ opt y D { u ( x , y ) opt { p ( x , y ) , g ( a ( x , y ) ) } } ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , g ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , g ( c ( x , y ) ) } } | λ sup y D { | u ( x , y ) | | opt { p ( x , y ) , h ( a ( x , y ) ) } opt { p ( x , y ) , g ( a ( x , y ) ) } | } + ( 1 λ ) sup y D { | v ( x , y ) | | opt { q ( x , y ) , h ( b ( x , y ) ) } opt { q ( x , y ) , g ( b ( x , y ) ) } | + | t ( x , y ) | | opt { r ( x , y ) , h ( c ( x , y ) ) } opt { r ( x , y ) , g ( c ( x , y ) ) } | } λ α d k ( h , g ) + ( 1 λ ) sup y D { | v ( x , y ) | + | t ( x , y ) ] } d k ( h , g ) α d k ( h , g ) , ( x , k , h , g ) B ¯ ( 0 , k ) × N × B B ( S ) × B B ( S ) ,

which yields that

d k (Hh,Hg)α d k (h,g),(k,h,g)N×BB(S)×BB(S).
(3.16)

Put φ(t)=αt for all t R + . It follows from (3.16) and Lemma 2.3 that H has a unique fixed point wBB(S), which is also a unique solution of functional equation (1.7). In light of (3.13), (3.15) and (3.16), we obtain that

d k ( w n , w ) = d k ( H w n 1 , H w ) α d k ( w n 1 , w ) α n d k ( w 0 , w ) , ( k , n ) N × N
(3.17)

and

d k ( w n , w n + m ) i = n n + m 1 d k ( w i , w i + 1 ) = i = n n + m 1 d k ( H w i 1 , H w i ) i = n n + m 1 α d k ( w i 1 , w i ) i = n n + m 1 α i d k ( w 0 , w 1 ) α n 1 α d k ( w 0 , w 1 ) , ( k , n , m ) N × N × N .
(3.18)

Clearly (3.17) means that { w n } n N 0 converges to w. Thus (3.14) follows from (3.17) and (3.18) by letting m. This completes the proof. □

Remark 3.6 Theorem 3.5 extends Theorem 3.4 in [5] and Corollaries 2.2 and 2.3 in [11]. The example below shows that Theorem 3.5 extends substantially the corresponding results in [5, 11].

Example 3.7 Consider the functional equation

f ( x ) = λ opt y R + { x 3 cos 75 ( x 6 y 98 ) 3 ( x + 1 ) 3 + y 5 opt { x 69 ( x 5 y 6 ) 4 + 1 , f ( x 7 sin 4 ( x y ) x 6 + x y 3 + 1 ) } } + ( 1 λ ) opt y R + { sin 9 ( x 8 y 3 ) x y 2 + 5 opt { x 120 y 7 x 9 y 7 + 1 , f ( x 6 y 4 cos 8 ( x 3 y 9 ) x 5 y 4 + 1 ) } + x 2 y x 4 + ( y + 1 ) 2 opt { x 57 y 2 x 10 + y 4 + 1 , f ( ln ( 1 + x 15 y 23 ) ( x + 1 ) 14 ( y 23 + 1 ) ) } } , x R + .
(3.19)

Put X=Y=R, S=D= R + , λ[0,1] and α= 7 10 . Let p,q,r,u,v,t:S×DR and a,b,c:S×DS be defined by

p ( x , y ) = x 69 ( x 5 y 6 ) 4 + 1 , q ( x , y ) = x 120 y 7 x 9 y 7 + 1 , r ( x , y ) = x 57 y 2 x 10 + y 4 + 1 , u ( x , y ) = x 3 cos 75 ( x 6 y 98 ) 3 ( x + 1 ) 3 + y 5 , v ( x , y ) = sin 9 ( x 8 y 3 ) x y 2 + 5 , t ( x , y ) = x 2 y x 4 + ( y + 1 ) 2 , a ( x , y ) = x 7 sin 4 ( x y ) x 6 + x y 3 + 1 , b ( x , y ) = x 6 y 4 cos 8 ( x 3 y 9 ) x 5 y 4 + 1 , c ( x , y ) = ln ( 1 + x 15 y 23 ) ( x + 1 ) 14 ( y 23 + 1 ) , ( x , y ) S × D .

It is clear that the conditions of Theorem 3.5 are satisfied. It follows from Theorem 3.5 that functional equation (3.19) possesses a unique solution wBB(S), which satisfies (C8). But Theorem 3.4 in [5] and Corollaries 2.2 and 2.3 in [11] are unapplicable to functional equation (3.19).

Next we discuss the behaviors of solutions and iterative algorithms for functional equation (1.7) in the complete metric space BB(S).

Theorem 3.8 Let λ[0,1], (φ,ψ) Φ 2 , p,q,r,u,v,t:S×DR and a,b,c:S×DS satisfy that

(C9) sup ( x , y ) B ¯ ( 0 , k ) × D max{|p(x,y)|,|q(x,y)|,|r(x,y)|}ψ(x), kN;

(C10) sup ( x , y ) B ¯ ( 0 , k ) × D max{|u(x,y)|,|v(x,y)|+|t(x,y)|}1, kN;

(C11) sup ( x , y ) B ¯ ( 0 , k ) × D max{a(x,y),b(x,y),c(x,y)}φ(x), kN.

Then functional equation (1.7) possesses a solution wBB(S) such that

(C12) for each w 0 BB(S) with | w 0 (x)|ψ(x), (x,k) B ¯ (0,k)×N, the sequence { w n } n N 0 defined by (3.13) converges to w and d k ( w n ,w) j = n 1 ψ( φ j (k)), (k,n)N×N;

(C13) |w(x)| n = 0 ψ( φ n (x)), (x,k) B ¯ (0,k)×N;

(C14) lim n w( x n )=0 for any ( x 0 ,k) B ¯ (0,k)×N, { y n } n N D and x n {a( x n 1 , y n ),b( x n 1 , y n ),c( x n 1 , y n )}, nN;

(C15) w is a unique solution of functional equation (1.7) relative to (C14).

Proof Define a mapping H:BB(S)BB(S) by

Hh(x)=λAh(x)+(1λ)Bh(x),(x,k,h) B ¯ (0,k)×N×BB(S),
(3.20)

where

A h ( x ) = opt y D { u ( x , y ) opt { p ( x , y ) , h ( a ( x , y ) ) } } , B h ( x ) = opt y D { v ( x , y ) opt { q ( x , y ) , h ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , h ( c ( x , y ) ) } } , ( x , k , h ) B ¯ ( 0 , k ) × N × B B ( S ) .
(3.21)

Note that (C9) and (C11) imply (C5) and (C7) by (φ,ψ) Φ 2 , respectively. Similar to the proof of Theorem 3.5, by (C10) we conclude that the mapping H maps BB(S) into BB(S) and satisfies that

d k (Hh,Hg) d k (h,g),(h,g,k)BB(S)×BB(S)×N,

which yields that

d ( H h , H g ) = k = 1 1 2 k d k ( H h , H g ) 1 + d k ( H h , H g ) k = 1 1 2 k d k ( h , g ) 1 + d k ( h , g ) = d ( h , g ) , ( h , g ) B B ( S ) × B B ( S ) ,
(3.22)

that is, the mapping H is nonexpansive in BB(S).

Now we show that for each n N 0 ,

| w n ( x ) | j = 0 n ψ ( φ j ( x ) ) ,(x,k) B ¯ (0,k)×N.
(3.23)

It is easy to see that (3.23) holds for n=0. Assume that (3.23) holds for some n N 0 . In terms of (C9), (C11), (C12), (3.13), (φ,ψ) Φ 2 and Lemma 2.1, we gain that

| w n + 1 ( x ) | = | λ opt y D { u ( x , y ) opt { p ( x , y ) , w n ( a ( x , y ) ) } } + ( 1 λ ) opt y D { v ( x , y ) opt { q ( x , y ) , w n ( b ( x , y ) ) } + t ( x , y ) opt { r ( x , y ) , w n ( c ( x , y ) ) } } | λ sup y D { | u ( x , y ) | max { | p ( x , y ) | , | w n ( a ( x , y ) ) | } } + ( 1 λ ) sup y D { | v ( x , y ) | max { | q ( x , y ) | , | w n ( b ( x , y ) ) | + | t ( x , y ) | max { | r ( x , y ) | , | w n ( c ( x , y ) ) | } } λ sup y D { max { ψ ( x ) , j = 0 n ψ ( φ j ( a ( x , y ) ) ) } } + ( 1 λ ) sup y D { | v ( x , y ) | max { ψ ( x ) , j = 0 n ψ ( φ j ( b ( x , y ) ) ) } + | t ( x , y ) | max { ψ ( x ) , j = 0 n ψ ( φ j ( c ( x , y ) ) ) } } λ max { ψ ( x ) , j = 0 n ψ ( φ j + 1 ( x ) ) } + ( 1 λ ) sup y D { | v ( x , y ) | + | t ( x , y ) | } max { ψ ( x ) , j = 0 n ψ ( φ j + 1 ( x ) ) } } λ ( ψ ( x ) + j = 0 n ψ ( φ j + 1 ( x ) ) ) + ( 1 λ ) ( ψ ( x ) + j = 0 n ψ ( φ j + 1 ( x ) ) ) = j = 0 n + 1 ψ ( φ j ( x ) ) , ( x , k ) B ¯ ( 0 , k ) × N ,

that is, (3.23) is true for n+1. Hence (3.23) holds for each n N 0 .

Let ε>0 and k,n,mN. Assume that opt y D = sup y D . It follows from (3.21) that for each x 0 B ¯ (0,k) there exist y, y 0 ,z, z 0 D satisfying

A w n + m 1 ( x 0 ) 2 1 ε < u ( x 0 , y ) opt { p ( x 0 , y ) , w n + m 1 ( a ( x 0 , y ) ) } , A w n 1 ( x 0 ) 2 1 ε < u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , w n 1 ( a ( x 0 , y 0 ) ) } , A w n + m 1 ( x 0 ) u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , w n + m 1 ( a ( x 0 , y 0 ) ) } , A w n 1 ( x 0 ) u ( x 0 , y ) opt { p ( x 0 , y ) , w n 1 ( a ( x 0 , y ) ) }
(3.24)

and

B w n + m 1 ( x 0 ) 2 1 ε < v ( x 0 , z ) opt { q ( x 0 , z ) , w n + m 1 ( b ( x 0 , z ) ) } B w n + m 1 ( x 0 ) 2 1 ε < + t ( x 0 , z ) opt { r ( x 0 , z ) , w n + m 1 ( c ( x 0 , z ) ) } , B w n 1 ( x 0 ) 2 1 ε < v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w n 1 ( b ( x 0 , z 0 ) ) } B w n 1 ( x 0 ) 2 1 ε < + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w n 1 ( c ( x 0 , z 0 ) ) } , B w n + m 1 ( x 0 ) v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w n + m 1 ( b ( x 0 , z 0 ) ) } B w n + m 1 ( x 0 ) + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w n + m 1 ( c ( x 0 , z 0 ) ) } , B w n 1 ( x 0 ) v ( x 0 , z ) opt { q ( x 0 , z ) , w n 1 ( b ( x 0 , z ) ) } B w n 1 ( x 0 ) + t ( x 0 , z ) opt { r ( x 0 , z ) , w n 1 ( c ( x 0 , z ) ) } .
(3.25)

On account of (3.24), (3.25) and Lemma 2.2, we obtain that

A w n + m 1 ( x 0 ) A w n 1 ( x 0 ) < u ( x 0 , y ) opt { p ( x 0 , y ) , w n + m 1 ( a ( x 0 , y ) ) } u ( x 0 , y ) opt { p ( x 0 , y ) , w n 1 ( a ( x 0 , y ) ) } + 2 1 ε | u ( x 0 , y ) | | w n + m 1 ( a ( x 0 , y ) ) w n 1 ( a ( x 0 , y ) ) | + 2 1 ε ; A w n + m 1 ( x 0 ) A w n 1 ( x 0 ) > u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , w n + m 1 ( a ( x 0 , y 0 ) ) } u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , w n 1 ( a ( x 0 , y 0 ) ) } 2 1 ε | u ( x 0 , y 0 ) | | w n + p 1 ( a ( x 0 , y 0 ) ) w n 1 ( a ( x 0 , y 0 ) ) | 2 1 ε ; B w n + m 1 ( x 0 ) B w n 1 ( x 0 ) < v ( x 0 , z ) opt { q ( x 0 , z ) , w n + m 1 ( b ( x 0 , z ) ) } + t ( x 0 , z ) opt { r ( x 0 , z ) , w n + m 1 ( c ( x 0 , z ) ) } v ( x 0 , z ) opt { q ( x 0 , z ) , w n 1 ( b ( x 0 , z ) ) } t ( x 0 , z ) opt { r ( x 0 , z ) , w n 1 ( c ( x 0 , z ) ) } + 2 1 ε | v ( x 0 , z ) | | w n + p 1 ( b ( x 0 , z ) ) w n 1 ( b ( x 0 , z ) ) | + | t ( x 0 , z ) | | w n + m 1 ( c ( x 0 , z ) ) w n 1 ( c ( x 0 , z ) ) | + 2 1 ε

and

B w n + m 1 ( x 0 ) B w n 1 ( x 0 ) > v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w n + m 1 ( b ( x 0 , z 0 ) ) } + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w n + m 1 ( c ( x 0 , z 0 ) ) } v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w n 1 ( b ( x 0 , z 0 ) ) } t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w n 1 ( c ( x 0 , z 0 ) ) } 2 1 ε | v ( x 0 , z 0 ) | | w n + m 1 ( b ( x 0 , z 0 ) ) w n 1 ( b ( x 0 , z 0 ) ) | | t ( x 0 , z 0 ) | | w n + m 1 ( c ( x 0 , z 0 ) ) w n 1 ( c ( x 0 , z 0 ) ) | 2 1 ε ,

which together with (C10), (3.13), (3.20), (3.21) imply that

| w n + m ( x 0 ) w n ( x 0 ) | = | λ A w n + m 1 ( x 0 ) + ( 1 λ ) B w n + m 1 ( x 0 ) λ A w n 1 ( x 0 ) ( 1 λ ) B w n 1 ( x 0 ) | λ | A w n + m 1 ( x 0 ) A w n 1 ( x 0 ) | + ( 1 λ ) | B w n + m 1 ( x 0 ) B w n 1 ( x 0 ) | max { | A w n + m 1 ( x 0 ) A w n 1 ( x 0 ) | , | B w n + m 1 ( x 0 ) B w n 1 ( x 0 ) | } max { | u ( x 0 , y ) | | w n + m 1 ( a ( x 0 , y ) ) w n 1 ( a ( x 0 , y ) ) | , | u ( x 0 , y 0 ) | | w n + m 1 ( a ( x 0 , y 0 ) ) w n 1 ( a ( x 0 , y 0 ) ) | , | v ( x 0 , z ) | | w n + m 1 ( b ( x 0 , z ) ) w n 1 ( b ( x 0 , z ) ) | + | t ( x 0 , z ) | | w n + m 1 ( c ( x 0 , z ) ) w n 1 ( c ( x 0 , z ) ) | , | v ( x 0 , z 0 ) | | w n + m 1 ( b ( x 0 , z 0 ) ) w n 1 ( b ( x 0 , z 0 ) ) | + | t ( x 0 , z 0 ) | | w n + m 1 ( c ( x 0 , z 0 ) ) w n 1 ( c ( x 0 , z 0 ) ) | } + 2 1 ε max { | u ( x 0 , y ) | , | u ( x 0 , y 0 ) | , | v ( x 0 , z ) | + | t ( x 0 , z ) | , | v ( x 0 , z 0 ) | + | t ( x 0 , z 0 ) | } × max { | w n + m 1 ( a ( x 0 , y ) ) w n 1 ( a ( x 0 , y ) ) | , | w n + m 1 ( a ( x 0 , y 0 ) ) w n 1 ( a ( x 0 , y 0 ) ) | , | w n + m 1 ( b ( x 0 , z ) ) w n 1 ( b ( x 0 , z ) ) | , | w n + m 1 ( c ( x 0 , z ) ) w n 1 ( c ( x 0 , z ) ) | , | w n + m 1 ( b ( x 0 , z 0 ) ) w n 1 ( b ( x 0 , z 0 ) ) | , | w n + m 1 ( c ( x 0 , z 0 ) ) w n 1 ( c ( x 0 , z 0 ) ) | } + 2 1 ε max { | w n + m 1 ( a ( x 0 , y ) ) w n 1 ( a ( x 0 , y ) ) | , | w n + m 1 ( a ( x 0 , y 0 ) ) w n 1 ( a ( x 0 , y 0 ) ) | , | w n + m 1 ( b ( x 0 , z ) ) w n 1 ( b ( x 0 , z ) ) | , | w n + m 1 ( c ( x 0 , z ) ) w n 1 ( c ( x 0 , z ) ) | , | w n + m 1 ( b ( x 0 , z 0 ) ) w n 1 ( b ( x 0 , z 0 ) ) | , | w n + m 1 ( c ( x 0 , z 0 ) ) w n 1 ( c ( x 0 , z 0 ) ) | } + 2 1 ε = | w n + m 1 ( x 1 ) w n 1 ( x 1 ) | + 2 1 ε

for some x 1 {a( x 0 , y 1 ),b( x 0 , y 1 ),c( x 0 , y 1 )} and y 1 {y, y 0 ,z, z 0 }, that is,

| w n + m ( x 0 ) w n ( x 0 ) | <| w n + m 1 ( x 1 ) w n 1 ( x 1 )|+ 2 1 ε.
(3.26)

Similarly, we infer that (3.26) holds for opt y D = inf y D . Proceeding in this way, we conclude that for each nN, there exist y i D and x i {a( x i 1 , y i ),b( x i 1 , y i ),c( x i 1 , y i )} for i{1,2,,n} such that

| w n + m 1 ( x 1 ) w n 1 ( x 1 ) | | w n + m 2 ( x 2 ) w n 2 ( x 2 ) | + 2 2 ε , | w n + m 2 ( x 2 ) w n 2 ( x 2 ) | | w n + m 3 ( x 3 ) w n 3 ( x 3 ) | + 2 3 ε , | w m + 1 ( x n 1 ) w 1 ( x n 1 ) | | w m ( x n ) w 0 ( x n ) | + 2 n ε .
(3.27)

In terms of (φ,ψ) Φ 2 , (C11), (3.23) and (3.27), we deduce that

| w n + m ( x 0 ) w n ( x 0 ) | < | w m ( x n ) w 0 ( x n ) | + ε j = 0 m ψ ( φ j ( x n ) ) + ψ ( x n ) + ε j = 0 m ψ ( φ j + n ( k ) ) + ψ ( φ n ( k ) ) + ε j = n 1 m + n ψ ( φ j ( k ) ) + ε ,

which means that

d k ( w n + m , w n ) j = n 1 n + m ψ ( φ j ( k ) ) +ε.
(3.28)

Letting ε 0 + in the above inequality, we deduce that

d k ( w n + m , w n ) j = n 1 n + m ψ ( φ j ( k ) ) .
(3.29)

Notice that n = 0 ψ( φ n (t))<+ for each t>0. Thus (3.29) means that { w n } n N 0 is a Cauchy sequence in (BB(S),d) and it converges to some wBB(S). Letting m in (3.29), we conclude immediately that

d k ( w n ,w) j = n 1 ψ ( φ j ( k ) ) ,(k,n)N×N.

By virtue of (3.22), we infer that

d(Hw,w)d(Hw,H w n )+d( w n + 1 ,w)d(w, w n )+d( w n + 1 ,w)0as n,

which yields that Hw=w, that is, functional equation (1.7) possesses a solution wBB(S).

Next we show (C13). Let (x,k) B ¯ (0,k)×N. According to (C11), (3.23) and (φ,ψ) Φ 2 , we know that

| w ( x ) | | w ( x ) w n ( x ) | + | w n ( x ) | d k ( w , w n ) + j = 0 n ψ ( φ j ( x ) ) j = 0 ψ ( φ j ( x ) ) as  n ,

that is, (C13) holds.

Next we show (C14). Given ( x 0 ,k) B ¯ (0,k)×N, { y n } n N D and x n {a( x n 1 , y n ),b( x n 1 , y n ),c( x n 1 , y n )}, nN. It follows from (C11) and (φ,ψ) Φ 2 that

x n max { a ( x n 1 , y n ) , b ( x n 1 , y n ) , c ( x n 1 , y n ) } φ ( x n 1 ) φ n ( x 0 ) φ n ( k ) < k , n N ,

which together with (C11), (3.23) and (φ,ψ) Φ 2 implies that

| w ( x n ) | | w ( x n ) w n ( x n ) | + | w n ( x n ) | d k ( w , w n ) + j = 0 n ψ ( φ j ( x n ) ) d k ( w , w n ) + j = n 2 n ψ ( φ j ( k ) ) 0 as  n ,

which yields that lim n w( x n )=0.

Finally we show (C15). Suppose that functional equation (1.7) has another solution hBB(S) that satisfies (C14). Let ε>0 and x 0 S. It follows from (3.21) that there exist y, y 0 ,z, z 0 D with

A w ( x 0 ) 2 1 ε < u ( x 0 , y ) opt { p ( x 0 , y ) , w ( a ( x 0 , y ) ) } , A h ( x 0 ) 2 1 ε < u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , h ( a ( x 0 , y 0 ) ) } , A w ( x 0 ) > u ( x 0 , y 0 ) opt { p ( x 0 , y 0 ) , w ( a ( x 0 , y 0 ) ) } 2 1 ε , A h ( x 0 ) > u ( x 0 , y ) opt { p ( x 0 , y ) , h ( a ( x 0 , y ) ) } 2 1 ε

and

B w ( x 0 ) 2 1 ε < v ( x 0 , z ) opt { q ( x 0 , z ) , w ( b ( x 0 , z ) ) } B w ( x 0 ) 2 1 ε < + t ( x 0 , z ) opt { r ( x 0 , z ) , w ( c ( x 0 , z ) ) } , B h ( x 0 ) 2 1 ε < v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , h ( b ( x 0 , z 0 ) ) } B h ( x 0 ) 2 1 ε < + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , h ( c ( x 0 , z 0 ) ) } , B w ( x 0 ) > v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w ( b ( x 0 , z 0 ) ) } B w ( x 0 ) > + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w ( c ( x 0 , z 0 ) ) } 2 1 ε , B h ( x 0 ) > v ( x 0 , z ) opt { q ( x 0 , z ) , h ( b ( x 0 , z ) ) } B h ( x 0 ) > + t ( x 0 , z ) opt { r ( x 0 , z ) , h ( c ( x 0 , z ) ) } 2 1 ε ,

which together with (C11), (3.20) and (3.21) yield that there exist x 1 {a( x 0 , y 1 ),b( x 0 , y 1 ),c( x 0 , y 1 )} and y 1 {y, y 0 ,z, z 0 } satisfying

| w ( x 0 ) h ( x 0 ) | = | λ A w ( x 0 ) + ( 1 λ ) B w ( x 0 ) λ A h ( x 0 ) ( 1 λ ) B h ( x 0 ) | λ | A w ( x 0 ) A h ( x 0 ) | + ( 1 λ ) | B w ( x 0 ) B h ( x 0 ) | max { | A w ( x 0 ) A h ( x 0 ) | , | B w ( x 0 ) B h ( x 0 ) | } < max { | u ( x 0 , y ) | | opt { p ( x 0 , y ) , w ( a ( x 0 , y ) ) } opt { p ( x 0 , y ) , h ( a ( x 0 , y ) ) } | , | u ( x 0 , y 0 ) | | opt { p ( x 0 , y 0 ) , w ( a ( x 0 , y 0 ) ) } opt { p ( x 0 , y 0 ) , h ( a ( x 0 , y 0 ) ) } | , | v ( x 0 , z ) opt { q ( x 0 , z ) , w ( b ( x 0 , z ) ) } + t ( x 0 , z ) opt { r ( x 0 , z ) , w ( c ( x 0 , z ) ) } v ( x 0 , z ) opt { q ( x 0 , z ) , h ( b ( x 0 , z ) ) } t ( x 0 , z ) opt { r ( x 0 , z ) , h ( c ( x 0 , z ) ) } | , | v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , w ( b ( x 0 , z 0 ) ) } + t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , w ( c ( x 0 , z 0 ) ) } v ( x 0 , z 0 ) opt { q ( x 0 , z 0 ) , h ( b ( x 0 , z 0 ) ) } t ( x 0 , z 0 ) opt { r ( x 0 , z 0 ) , h ( c ( x 0 , z 0 ) ) } | } + ε max { | u ( x 0 , y ) | , | u ( x 0 , y 0 ) | , | v ( x 0 , z ) | + | t ( x 0 , z ) | , | v ( x 0 , z 0 ) | + | t ( x 0 , z 0 ) | } × max { | w ( a ( x 0 , y ) ) h ( a ( x 0 , y ) ) | , | w ( a ( x 0 , y 0 ) ) h ( a ( x 0 , y 0 ) ) | , | w ( b ( x 0 , z ) ) h ( b ( x 0 , z ) ) | , | w ( c ( x 0 , z ) ) h ( c ( x 0 , z ) ) | , | w ( b ( x 0 , z 0 ) ) h ( b ( x 0 , z 0 ) ) | , | w ( c ( x 0 , z 0 ) ) h ( c ( x 0 , z 0 ) ) | } + ε | w ( x 1 ) h ( x 1 ) | + ε ,

that is,

| w ( x 0 ) h ( x 0 ) | < | w ( x 1 ) h ( x 1 ) | +ε.
(3.30)

Similarly, we infer that for each nN{1}, there exist x i {a( x i 1 , y i ),b( x i 1 , y i ),c( x i 1 , y i )} and y i D, i{2,3,,n}, such that

| w ( x 1 ) h ( x 1 ) | < | w ( x 2 ) h ( x 2 ) | + 2 1 ε , | w ( x 2 ) h ( x 2 ) | < | w ( x 3 ) h ( x 3 ) | + 2 2 ε , | w ( x n 1 ) h ( x n 1 ) | < | w ( x n ) h ( x n ) | + 2 n + 1 ε .
(3.31)

Using (3.30) and (3.31), we deduce that

| w ( x 0 ) h ( x 0 ) | < | w ( x n ) h ( x n ) | +2ε2εas n.

Letting ε 0 + in the above inequality, we infer that w( x 0 )=h( x 0 ). This completes the proof. □

Remark 3.9 Theorem 3.8 generalizes Theorem 3.5 in [5, 6, 12], Corollaries 2.2 and 2.3 in [11], Corollaries 3.1, 3.3 and 3.4 in [14], Theorems 2.3 and 2.4 in [15], Theorem 2.6 in [16] and Theorem 3.4 in [19]. The example below shows that Theorem 3.8 extends properly the corresponding results in [5, 6, 11, 12, 1416, 19].

Example 3.10 Consider the functional equation

f ( x ) = λ opt y R { sin 49 ( x 35 y 27 ) ( x y 2 ) 4 + 1 opt { x 8 y 6 x 2 y 6 + 1 , f ( x 8 y 2 ( 2 x 7 + 1 ) ( y 2 + 1 ) ) } } + ( 1 λ ) opt y R { ( x 3 + 1 ) cos 2 ( x y ) x 3 y x 5 + 1 opt { x 21 y 5 x 13 y 5 1 , f ( x 7 y 4 4 x 12 y 8 + 1 ) } + ( x 3 + 1 ) sin 2 ( x y ) x 3 y x 5 + 1 opt { x 32 y 4 x 26 y 4 + cos 2 ( x 3 y ) , f ( x sin 2 ( 1 2 + x y 2 ) ) } } , x R + .
(3.32)

Let λ[0,1], X=Y=R, S= R + , D= R . Let p,q,r,u,v,t:S×DR, a,b,c:S×DS, φ and ψ: R + R + be defined by

p ( x , y ) = x 8 y 6 x 2 y 6 + 1 , q ( x , y ) = x 21 y 5 x 13 y 5 1 , r ( x , y ) = x 32 y 4 x 26 y 4 + cos 2 ( x 3 y ) , u ( x , y ) = sin 49 ( x 35 y 27 ) ( x y 2 ) 4 + 1 , v ( x , y ) = ( x 3 + 1 ) cos 2 ( x y ) x 3 y x 5 + 1 , t ( x , y ) = ( x 3 + 1 ) sin 2 ( x y ) x 3 y x 5 + 1 , a ( x , y ) = x 8 y 2 ( 2 x 7 + 1 ) ( y 2 + 1 ) , b ( x , y ) = x 7 y 4 4 x 12 y 8 + 1 , c ( x , y ) = x sin 2 ( 1 2 + x y 2 ) , ( x , y ) S × D , φ ( t ) = t 2 , ψ ( t ) = max { t 6 , t 8 } , t R + .

Obviously, the conditions of Theorem 3.8 are satisfied. It follows from Theorem 3.8 that functional equation (3.32) possesses a unique solution wBB(S) satisfying (C11)-(C14). However, Theorem 3.5 in [5, 6, 12], Corollaries 2.2 and 2.3 in [11], Corollaries 3.1, 3.3 and 3.4 in [14], Theorems 2.3 and 2.4 in [15], Theorem 2.6 in [16] and Theorem 3.4 in [19] are not applicable to functional equation (3.32).

References

  1. Bellman R: Some functional equations in the theory of dynamic programming I. Functions of points and point transformations. Trans. Am. Math. Soc. 1955, 80: 51–71. 10.2307/1993005

    Article  MATH  Google Scholar 

  2. Bellman R: Dynamic Programming. Princeton University Press, Princeton; 1957.

    MATH  Google Scholar 

  3. Bellman R, Lee ES: Functional equations arising in dynamic programming. Aequ. Math. 1978, 17: 1–18. 10.1007/BF01818535

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellman R, Roosta M: A technique for the reduction of dimensionality in dynamic programming. J. Math. Anal. Appl. 1982, 88: 543–546. 10.1016/0022-247X(82)90212-8

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhakta PC, Choudhury SR: Some existence theorems for functional equations arising in dynamic programming II. J. Math. Anal. Appl. 1988, 131: 217–231. 10.1016/0022-247X(88)90201-6

    Article  MATH  MathSciNet  Google Scholar 

  6. Bhakta PC, Mitra S: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 1984, 98: 348–362. 10.1016/0022-247X(84)90254-3

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu Z: Coincidence theorems for expansion mappings with applications to the solutions of functional equations arising in dynamic programming. Acta Sci. Math. 1999, 65: 359–369.

    MATH  Google Scholar 

  8. Liu Z: Compatible mappings and fixed points. Acta Sci. Math. 1999, 65: 371–383.

    MATH  Google Scholar 

  9. Liu Z: Existence theorems of solutions for certain classes of functional equations arising in dynamic programming. J. Math. Anal. Appl. 2001, 262: 529–553. 10.1006/jmaa.2001.7551

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu Z, Agarwal RP, Kang SM: On solvability of functional equations and system of functional equations arising in dynamic programming. J. Math. Anal. Appl. 2004, 297: 111–130. 10.1016/j.jmaa.2004.04.049

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu Z, Kang SM: Properties of solutions for certain functional equations arising in dynamic programming. J. Glob. Optim. 2006, 34: 273–292. 10.1007/s10898-005-2605-6

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu Z, Kang SM: Existence and uniqueness of solutions for two classes of functional equations arising in dynamic programming. Acta Math. Appl. Sin. 2007, 23: 195–208. 10.1007/s10255-007-0363-6

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu Z, Kang SM, Ume JS: Solvability and convergence of iterative algorithms for certain functional equations arising in dynamic programming. Optimization 2010, 59: 887–916. 10.1080/02331930902884182

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu Z, Ume JS: On properties of solutions for a class of functional equations arising in dynamic programming. J. Optim. Theory Appl. 2003, 117: 533–551. 10.1023/A:1023945621360

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu Z, Ume JS, Kang SM: Some existence theorems for functional equations arising in dynamic programming. J. Korean Math. Soc. 2006, 43: 11–28.

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu Z, Ume JS, Kang SM: Some existence theorems for functional equations and system of functional equations arising in dynamic programming. Taiwan. J. Math. 2010, 14: 1517–1536.

    MATH  MathSciNet  Google Scholar 

  17. Liu Z, Ume JS, Kang SM: On properties of solutions for two functional equations arising in dynamic programming. Fixed Point Theory Appl. 2010., 2010: Article ID 905858 10.1155/2010/905858

    Google Scholar 

  18. Liu Z, Xu YG, Ume JS, Kang SM: Solutions to two functional equations arising in dynamic programming. J. Comput. Appl. Math. 2006, 192: 251–269. 10.1016/j.cam.2005.04.033

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu Z, Zhao L, Kang SM, Ume JS: On the solvability of a functional equation. Optimization 2011, 60: 365–375. 10.1080/02331930903121311

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Min Kang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Liu, Z., Dong, H. & Kang, S.M. Solving a class of functional equations using fixed point theorems. J Inequal Appl 2013, 516 (2013). https://doi.org/10.1186/1029-242X-2013-516

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-516

Keywords