Skip to main content

Multilinear commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces

Abstract

In this paper, we will obtain the strong type and weak type estimates for vector-valued analogs of intrinsic square functions in the generalized weighted Morrey spaces M w p , φ ( l 2 ). We study the boundedness of intrinsic square functions including the Lusin area integral, the Littlewood-Paley g-function and g λ -function, and their multilinear commutators on vector-valued generalized weighted Morrey spaces M w p , φ ( l 2 ). In all the cases the conditions for the boundedness are given either in terms of Zygmund-type integral inequalities on φ(x,r) without assuming any monotonicity property of φ(x,r) on r.

MSC:42B25, 42B35.

1 Introduction

It is well known that the commutator is an important integral operator and it plays a key role in harmonic analysis. In 1965, Calderon [1, 2] studied a kind of commutators, appearing in Cauchy integral problems of Lip-line. Let K be a Calderón-Zygmund singular integral operator and bBMO( R n ). A well-known result of Coifman et al. [3] states that the commutator operator [b,K]f=K(bf)bKf is bounded on L p ( R n ) for 1<p<. The commutator of Calderón-Zygmund operators plays an important role in studying the regularity of solutions of elliptic partial differential equations of second order (see, for example, [48]).

The classical Morrey spaces were originally introduced by Morrey in [9] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [710]. Recently, Komori and Shirai [11] first defined the weighted Morrey spaces L p , κ (w) and studied the boundedness of some classical operators such as the Hardy-Littlewood maximal operator, the Calderón-Zygmund operator on these spaces. Also, Guliyev [12, 13] introduced the generalized weighted Morrey spaces M w p , φ and studied the boundedness of the sublinear operators and their higher order commutators generated by Calderón-Zygmund operators and Riesz potentials in these spaces (see, also [1416]).

The intrinsic square functions were first introduced by Wilson in [17, 18]. They are defined as follows. For 0<α1, let C α be the family of functions ϕ: R n R such that ϕ’s support is contained in {x:|x|1}, R n ϕ(x)dx=0, and for x, x R n ,

| ϕ ( x ) ϕ ( x ) | | x x | α .

For (y,t) R + n + 1 and f L 1 , loc ( R n ), set

A α f(t,y) sup ϕ C α | f ϕ t ( y ) | ,

where ϕ t (y)= t n ϕ( y t ). Then we define the varying-aperture intrinsic square (intrinsic Lusin) function of f by the formula

G α , β (f)(x)= ( Γ β ( x ) ( A α f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 ,

where Γ β (x)={(y,t) R + n + 1 :|xy|<βt}. Denote G α , 1 (f)= G α (f).

This function is independent of any particular kernel, such as Poisson kernel. It dominates pointwise the classical square function (Lusin area integral) and its real-variable generalizations. Although the function G α , β (f) depends on kernels with uniform compact support, there is pointwise relation between G α , β (f) with different β:

G α , β (f)(x) β 3 n 2 + α G α (f)(x).

We can see details in [17].

The intrinsic Littlewood-Paley g-function and the intrinsic g λ function are defined, respectively, by

g α f ( x ) = ( 0 ( A α f ( y , t ) ) 2 d t t ) 1 2 , g λ , α f ( x ) = ( R + n + 1 ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) 1 2 .

When we say that f maps into l 2 , we mean that f (x)= ( f j ) j = 1 , where each f j is Lebesgue measurable and, for almost every x R n

f ( x ) l 2 = ( j = 1 | f j ( x ) | 2 ) 1 / 2 .

Let f =( f 1 , f 2 ,) be a sequence of locally integrable functions on R n . For any x R n , Wilson [18] also defined the vector-valued intrinsic square functions of f by G α f ( x ) l 2 and proved the following result.

Theorem A Let 1p<, 0<α1, and w A p . Then the operators G α and g λ , α are bounded from L w p ( l 2 ) into itself for p>1 and from L w 1 ( l 2 ) to W L w 1 ( l 2 ).

Moreover, in [19], Lerner showed sharp L w p norm inequalities for the intrinsic square functions in terms of the A p characteristic constant of w for all 1<p<. Also Huang and Liu [20] studied the boundedness of intrinsic square functions on weighted Hardy spaces. Moreover, they characterized the weighted Hardy spaces by intrinsic square functions. In [21] and [22], Wang and Liu obtained some weak type estimates on weighted Hardy spaces. In [23], Wang considered intrinsic functions and the commutators generated with BMO functions on weighted Morrey spaces. Let b =( b 1 ,, b m ) and b j , j=1,,m be locally integrable function on R n . Setting

A α , b f(t,y) sup ϕ C α | R n j = 1 m [ b j ( x ) b j ( z ) ] ϕ t (yz)f(z)dz|,

the multilinear commutators are defined by

[ b , G α ]f(x)= ( Γ ( x ) ( A α , b f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 ,
[ b , g α ]f(x)= ( 0 ( A α , b f ( t , y ) ) 2 d t t ) 1 2 ,

and

[ b , g λ , α ] f(x)= ( R + n + 1 ( t t + | x y | ) λ n ( A α , b f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 .

In [23], Wang proved the following result.

Theorem B Let 1<p<, 0<α1, w A p , and bBMO( R n ). Then the commutator operators [b, G α ] and [b, g λ , α ] are bounded from L w p ( l 2 ) into itself.

Analogously the following result may be proved.

Theorem B′ Let 1<p<, 0<α1, w A p . Let also b =( b 1 ,, b m ) and b j BMO( R n ), j=1,,m. Then the multilinear commutator operators [ b , G α ] and [ b , g λ , α ] are bounded from L w p ( l 2 ) into itself.

In this paper, we will consider the boundedness of the operators G α , g α , g λ , α and their multilinear commutators on vector-valued generalized weighted Morrey spaces. Let φ(x,r) be a positive measurable function on R n × R + and w be non-negative measurable function on R n . For any f L w p , loc ( l 2 ), we denote by M w p , φ ( l 2 ) the vector-valued generalized weighted Morrey spaces, if

f M w p , φ ( l 2 ) = sup x R n , r > 0 φ ( x , r ) 1 w ( B ( x , r ) ) 1 p f ( ) l 2 L w p ( B ( x , r ) ) <.

When w1, then M w p , φ ( l 2 ) coincide the vector-valued generalized Morrey spaces M p , φ ( l 2 ). There are many papers discussed the conditions on φ(x,r) to obtain the boundedness of operators on the generalized Morrey spaces. For example, in [24] (see, also [10]), by Guliyev the following condition was imposed on the pair ( φ 1 , φ 2 ):

r φ 1 (x,t) d t t C φ 2 (x,r),
(1.1)

where C>0 does not depend on x and r. Under the above condition, they obtained the boundedness of Calderón-Zygmund singular integral operators from M p , φ 1 ( R n ) to M p , φ 2 ( R n ). Also, in [25] and [26], Guliyev et al. introduced a weaker condition: If 1p<, there exists a constant C>0, such that, for any x R n and r>0,

r ess inf t < s < φ 1 ( x , s ) s n p t n p + 1 dtC φ 2 (x,r).
(1.2)

If the pair ( φ 1 , φ 2 ) satisfies condition (1.1), then ( φ 1 , φ 2 ) satisfied condition (1.2). But the opposite is not true. We can see Remark 4.7 in [26] for details.

Recently, in [12, 13] (see, also [1416]), Guliyev introduced a weighted condition: If 1p<, there exists a constant C>0, such that, for any x R n and t>0,

r ess inf t < s < φ 1 ( x , s ) w ( B ( x , s ) ) 1 p w ( B ( x , t ) ) 1 p d t t C φ 2 (x,r).
(1.3)

In this paper, we will obtain the boundedness of the vector-valued intrinsic function, the intrinsic Littlewood-Paley g function, the intrinsic g λ function and their multilinear commutators on vector-valued generalized weighted Morrey spaces when w A p and the pair ( φ 1 , φ 2 ) satisfies condition (1.3) or the following inequalities:

r ln m ( e + t r ) ess inf t < s < φ 1 ( x , s ) w ( B ( x , s ) ) 1 p w ( B ( x , t ) ) 1 p d t t C φ 2 (x,r),
(1.4)

where C does not depend on x and r. Our main results in this paper are stated as follows.

Theorem 1.1 Let 1p<, 0<α1, w A p , and ( φ 1 , φ 2 ) satisfy condition (1.3). Then the operator G α is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ) for p>1 and from M w 1 , φ 1 ( l 2 ) to W M w 1 , φ 2 ( l 2 ).

Theorem 1.2 Let 1p<, 0<α1, w A p , λ>3+ α n , and ( φ 1 , φ 2 ) satisfy condition (1.3). Then the operator g λ , α is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ) for p>1 and from M w 1 , φ 1 ( l 2 ) to W M w 1 , φ 2 ( l 2 ).

Theorem 1.3 Let 1<p<, 0<α1, w A p , and ( φ 1 , φ 2 ) satisfy condition (1.4). Let also b =( b 1 ,, b m ) and b j BMO( R n ), j=1,,m. Then [ b , G α ] is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ).

Theorem 1.4 Let 1<p<, 0<α1, w A p , and ( φ 1 , φ 2 ) satisfy condition (1.4). Let also b =( b 1 ,, b m ) and b j BMO( R n ), j=1,,m. Then for λ>3+ α n , [ b , g λ , α ] is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ).

In [17], the author proved that the functions G α f and g α f are pointwise comparable. Thus, as a consequence of Theorem 1.1 and Theorem 1.3, we have the following results.

Corollary 1.5 Let 1p<, 0<α1, w A p , and ( φ 1 , φ 2 ) satisfy condition (1.3), then g α is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ) for p>1 and from M w 1 , φ 1 ( l 2 ) to W M w 1 , φ 2 ( l 2 ).

Corollary 1.6 Let 1<p<, 0<α1, w A p , and ( φ 1 , φ 2 ) satisfy condition (1.4). Let also b =( b 1 ,, b m ) and b j BMO( R n ), j=1,,m. Then [ b , g α ] is bounded from M w p , φ 1 ( l 2 ) to M w p , φ 2 ( l 2 ).

Remark 1.7 Note that, in the scalar valued case and for m=1, w1 Theorems 1.1-1.4 and Corollaries 1.5-1.6 was proved in [27]. Also, in the scalar valued case and m=1, w A p , and φ 1 (x,r)= φ 2 (x,r)w ( B ( x , r ) ) κ 1 p , 0<κ<1 Theorems 1.1-1.4 and Corollaries 1.5-1.6 were proved by Wang in [23, 28]. If φ(x,r)w ( B ( x , r ) ) κ 1 p , then the vector-valued generalized weighed Morrey space M w p , φ ( l 2 ) coincides with the vector-valued weighed Morrey space L w p , κ ( l 2 ) and the pair (w ( B ( x , r ) ) κ 1 p ,w ( B ( x , r ) ) κ 1 p ) satisfies the two conditions (1.3) and (1.4). Indeed, by Lemma 3.1 there exist C>0 and δ>0 such that for all x R n and t>r:

w ( B ( x , t ) ) C ( t r ) n δ w ( B ( x , r ) ) .

Then

r ess inf t < s < w ( B ( x , s ) ) κ p w ( B ( x , t ) ) 1 / p d t t r ln m ( e + t r ) ess inf t < s < w ( B ( x , s ) ) κ p w ( B ( x , t ) ) 1 / p d t t = r ln m ( e + t r ) w ( B ( x , t ) ) κ 1 p d t t r ln m ( e + t r ) ( ( t r ) n δ w ( B ( x , r ) ) ) κ 1 p d t t = w ( B ( x , r ) ) κ 1 p r ln m ( e + t r ) ( t r ) n δ κ 1 p d t t = w ( B ( x , r ) ) κ 1 p 1 ln m ( e + τ ) τ n δ κ 1 p d τ τ w ( B ( x , r ) ) κ 1 p .

Throughout this paper, we use the notation AB to express that there is a positive constant C independent of all essential variables such that ACB. Moreover, C may be different from place to place.

2 Vector-valued generalized weighted Morrey spaces

The classical Morrey spaces M p , λ were originally introduced by Morrey in [9] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [29, 30].

We denote by M p , λ ( l 2 ) M p , λ ( R n , l 2 ) the vector-valued Morrey space, the space of all vector-valued functions f L p , loc ( l 2 ) with finite quasinorm

f M p , λ ( l 2 ) = sup x R n , r > 0 r λ p f L p ( B ( x , r ) , l 2 ) ,

where 1p< and 0λn.

Note that M p , 0 ( l 2 )= L p ( l 2 ) and M p , n ( l 2 )= L ( l 2 ). If λ<0 or λ>n, then M p , λ ( l 2 )=Θ, where Θ is the set of all vector-valued functions equivalent to 0 on R n .

We define the vector-valued generalized weighed Morrey spaces as follows.

Definition 2.1 Let 1p<, φ be a positive measurable vector-valued function on R n ×(0,) and w be non-negative measurable function on R n . We denote by M w p , φ ( l 2 ) the vector-valued generalized weighted Morrey space, the space of all vector-valued functions f L w p , loc ( l 2 ) with finite norm

f M w p , φ ( l 2 ) = sup x R n , r > 0 φ ( x , r ) 1 w ( B ( x , r ) ) 1 p f L w p ( B ( x , r ) , l 2 ) ,

where L w p (B(x,r), l 2 ) denotes the vector-valued weighted L p -space of measurable functions f for which

f L w p ( B ( x , r ) ) f χ B ( x , r ) L w p ( R n ) = ( B ( x , r ) f ( y ) l 2 p w ( y ) d y ) 1 p .

Furthermore, by W M w p , φ ( l 2 ) we denote the vector-valued weak generalized weighted Morrey space of all functions fW L w p , loc ( l 2 ) for which

f W M w p , φ ( l 2 ) = sup x R n , r > 0 φ ( x , r ) 1 w ( B ( x , r ) ) 1 p f W L w p ( B ( x , r ) , l 2 ) <,

where W L w p (B(x,r), l 2 ) denotes the weak L w p -space of measurable functions f for which

f W L w p ( B ( x , r ) , l 2 ) f χ B ( x , r ) W L w p ( l 2 ) = sup t > 0 t ( { y B ( x , r ) : f ( y ) l 2 > t } w ( y ) d y ) 1 p .

Remark 2.2

  1. (1)

    If w1, then M 1 p , φ ( l 2 )= M p , φ ( l 2 ) is the vector-valued generalized Morrey space.

  2. (2)

    If φ(x,r)w ( B ( x , r ) ) κ 1 p , then M w p , φ ( l 2 )= L w p , κ ( l 2 ) is the vector-valued weighted Morrey space.

  3. (3)

    If φ(x,r)v ( B ( x , r ) ) κ p w ( B ( x , r ) ) 1 p , then M w p , φ ( l 2 )= L v , w p , κ ( l 2 ) is the vector-valued two weighted Morrey space.

  4. (4)

    If w1 and φ(x,r)= r λ n p with 0<λ<n, then M w p , φ ( l 2 )= L p , λ ( l 2 ) is the vector-valued Morrey space and W M w p , φ ( l 2 )=W L p , λ ( l 2 ) is the vector-valued weak Morrey space.

  5. (5)

    If φ(x,r)w ( B ( x , r ) ) 1 p , then M w p , φ ( l 2 )= L w p ( l 2 ) is the vector-valued weighted Lebesgue space.

3 Preliminaries and some lemmas

By a weight function, briefly weight, we mean a locally integrable function on R n which takes values in (0,) almost everywhere. For a weight w and a measurable set E, we define w(E)= E w(x)dx, and denote the Lebesgue measure of E by |E| and the characteristic function of E by χ E . Given a weight w, we say that w satisfies the doubling condition if there exists a constant D>0 such that for any ball B, we have w(2B)Dw(B). When w satisfies this condition, we write for brevity w Δ 2 .

If w is a weight function, we denote by L w p ( l 2 ) L w p ( R n , l 2 ) the vector-valued weighted Lebesgue space defined by finiteness of the norm

f L w p ( l 2 ) = ( R n f ( x ) l 2 p w ( x ) d x ) 1 p <,if 1p<

and by f L w ( l 2 ) = ess sup x R n f ( x ) l 2 w(x) if p=.

We recall that a weight function w is in the Muckenhoupt class A p [31], 1<p<, if

[ w ] A p : = sup B [ w ] A p ( B ) = sup B ( 1 | B | B w ( x ) d x ) ( 1 | B | B w ( x ) 1 p d x ) p 1 < ,

where the sup is taken with respect to all the balls B and 1 p + 1 p =1. Note that, for all balls B, by Hölder’s inequality

[ w ] A p ( B ) 1 / p = | B | 1 w L 1 ( B ) 1 / p w 1 / p L p ( B ) 1.

For p=1, the class A 1 is defined by the condition Mw(x)Cw(x) with [ w ] A 1 = sup x R n M w ( x ) w ( x ) , and for p=, A = 1 p < A p and [ w ] A = inf 1 p < [ w ] A p .

Lemma 3.1 ([32])

  1. (1)

    If w A p for some 1p<, then w Δ 2 . Moreover, for all λ>1

    w(λB) λ n p [ w ] A p w(B).
  2. (2)

    If w A , then w Δ 2 . Moreover, for all λ>1

    w(λB) 2 λ n [ w ] A w(B).
  3. (3)

    If w A p for some 1p, then there exist C>0 and δ>0 such that for any ball B and a measurable set SB,

    w ( S ) w ( B ) C ( | S | | B | ) δ .

We are going to use the following result on the boundedness of the Hardy operator:

(Hg)(t):= 1 t 0 t g(r)dμ(r),0<t<,

where μ is a non-negative Borel measure on (0,).

Theorem 3.2 ([33])

The inequality

ess sup t > 0 ω(t)Hg(t)c ess sup t > 0 v(t)g(t)

holds for all functions g non-negative and non-increasing on (0,) if and only if

A:= sup t > 0 ω ( t ) t 0 t d μ ( r ) ess sup 0 < s < r v ( s ) <,

and cA.

We also need the following statement on the boundedness of the Hardy type operator:

( H 1 g)(t):= 1 t 0 t ln m ( e + t r ) g(r)dμ(r),0<t<,

where μ is a non-negative Borel measure on (0,).

Theorem 3.3 The inequality

ess sup t > 0 ω(t) H 1 g(t)c ess sup t > 0 v(t)g(t)

holds for all functions g non-negative and non-increasing on (0,) if and only if

A 1 := sup t > 0 ω ( t ) t 0 t ln m ( e + t r ) d μ ( r ) ess sup 0 < s < r v ( s ) <,

and c A 1 .

Note that Theorem 3.3 can be proved analogously to Theorem 4.3 in [34].

Definition 3.4 BMO( R n ) is the Banach space modulo constants with the norm defined by

b = sup x R n , r > 0 1 | B ( x , r ) | B ( x , r ) | b ( y ) b B ( x , r ) | dy<,

where b L 1 loc ( R n ) and

b B ( x , r ) = 1 | B ( x , r ) | B ( x , r ) b(y)dy.

Lemma 3.5 ([35], Theorem 5, p.236)

Let w A . Then the norm is equivalent to the norm

b , w = sup x R n , r > 0 1 w ( B ( x , r ) ) B ( x , r ) | b ( y ) b B ( x , r ) , w | w(y)dy,

where

b B ( x , r ) , w = 1 w ( B ( x , r ) ) B ( x , r ) b(y)w(y)dy.

Remark 3.6 (1) The John-Nirenberg inequality: there are constants C 1 , C 2 >0, such that for all bBMO( R n ) and β>0

| { x B : | b ( x ) b B | > β } | C 1 |B| e C 2 β / b ,B R n .

(2) For 1p< the John-Nirenberg inequality implies that

b sup B ( 1 | B | B | b ( y ) b B | p d y ) 1 p
(3.1)

and for 1p< and w A

b sup B ( 1 w ( B ) B | b ( y ) b B | p w ( y ) d y ) 1 p .
(3.2)

Note that by the John-Nirenberg inequality and Lemma 3.1 (part 3) it follows that

w ( { x B : | b ( x ) b B | > β } ) C 1 δ w(B) e C 2 β δ / b

for some δ>0. Hence

B | b ( y ) b B | p w ( y ) d y = p 0 β p 1 w ( { x B : | b ( x ) b B | > β } ) d β p C 1 δ w ( B ) 0 β p 1 e C 2 β δ / b d β = C 3 w ( B ) b p ,

where C 3 >0 depends only on C 1 δ , C 2 , p, and δ, which implies (3.2).

Also (3.1) is a particular case of (3.2) with w1.

The following lemma was proved in [13].

Lemma 3.7 (i) Let w A and bBMO( R n ). Let also 1p<, x R n , k>0, and r 1 , r 2 >0. Then

( 1 w ( B ( x , r 1 ) ) B ( x , r 1 ) | b ( y ) b B ( x , r 2 ) , w | k p w ( y ) d y ) 1 p C ( 1 + | ln r 1 r 2 | ) k b k ,

where C>0 is independent of f, w, x, r 1 , and r 2 .

(ii) Let w A p and bBMO( R n ). Let also 1<p<, x R n , k>0, and r 1 , r 2 >0. Then

( 1 w 1 p ( B ( x , r 1 ) ) B ( x , r 1 ) | b ( y ) b B ( x , r 2 ) , w | k p w ( y ) 1 p d y ) 1 p C ( 1 + | ln r 1 r 2 | ) k b k ,

where C>0 is independent of f, w, x, r 1 , and r 2 .

4 Proofs of main theorems

Before proving the main theorems, we need the following lemmas.

Lemma 4.1 [23]

For j Z + , denote

G α , 2 j (f)(x)= ( 0 | x y | 2 j t ( A α f ( y , t ) ) 2 d y d t t n + 1 ) 1 2 .

Let 0<α1, 1<p<, and w A p . Then any j Z + , we have

G α , 2 j ( f ) L w p 2 j ( 3 n 2 + α ) G α ( f ) L w p .

This lemma is easy by the following inequality, which is proved in [17]:

G α , β (f)(x) β 3 n 2 + α G α (f)(x).

By a similar argument to [2], we can get the following lemma.

Lemma 4.2 Let 1<p<, 0<α1, and w A p , then the multilinear commutator [ b , G α ] is bounded from L w p ( l 2 ) to itself whenever b =( b 1 ,, b m ) and b j BMO( R n ), j=1,,m.

Now we are in a position to prove the theorems.

Lemma 4.3 Let 1p<, 0<α1, and w A p .

Then, for p>1, the inequality

G α f L w p ( B , l 2 ) ( w ( B ) ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t

holds for any ball B=B( x 0 ,r) and for all f L w p , loc ( l 2 ).

Moreover, for p=1 the inequality

G α f W L w 1 ( B , l 2 ) w(B) 2 r f L w 1 ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 d t t

holds for any ball B=B( x 0 ,r) and for all f L w 1 , loc ( l 2 ).

Proof The main ideas of these proofs come from [13]. For arbitrary x R n , set B=B( x 0 ,r), 2BB( x 0 ,2r). We decompose f = f 0 + f , where f 0 (y)= f (y) χ 2 B (y), f (y)= f (y) f 0 (y). Then

G α f L w p ( B ( x 0 , r ) , l 2 ) G α f 0 L w p ( B ( x 0 , r ) , l 2 ) + G α f L p ( B ( x 0 , r ) , l 2 ) :=I+II.

First, let us estimate I. By Theorem A, we obtain

I G α f 0 L w p ( l 2 ) f 0 L w p ( l 2 ) = f L w p ( 2 B , l 2 ) .
(4.1)

On the other hand,

f L w p ( 2 B , l 2 ) | B | f L w p ( 2 B , l 2 ) 2 r d t t n + 1 | B | 2 r f L w p ( B ( x 0 , t ) , l 2 ) d t t n + 1 w ( B ) 1 p w 1 / p L p ( B ) 2 r f L w p ( B ( x 0 , t ) , l 2 ) d t t n + 1 w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) w 1 / p L p ( B ( x 0 , t ) ) d t t n + 1 [ ω ] A p 1 / p w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.2)

Therefore from (4.1) and (4.2) we get

Iw ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.3)

Then let us estimate II:

f ϕ t ( y ) l 2 = t n | y z | t ϕ ( y z t ) f ( z ) d z l 2 t n | y z | t f ( z ) l 2 dz.

Since xB( x 0 ,r), (y,t)Γ(x), we have |zx||zy|+|yx|2t, and

r|z x 0 || x 0 x||xz||xy|+|yz|2t.

So, we obtain

G α f ( x ) l 2 ( Γ ( x ) ( t n | y z | t f ( z ) l 2 d z ) 2 d y d t t n + 1 ) 1 2 ( t > r / 2 | x y | < t ( | x z | 2 t f ( z ) l 2 d z ) 2 d y d t t 3 n + 1 ) 1 2 ( t > r / 2 ( | z x | 2 t f ( z ) l 2 d z ) 2 d t t 2 n + 1 ) 1 2 .

By Minkowski’s and Hölder’s inequalities and |zx||z x 0 || x 0 x| 1 2 |z x 0 |, we have

G α f ( x ) l 2 R n ( t > | z x | 2 d t t 2 n + 1 ) 1 2 f ( z ) l 2 d z | z x 0 | > 2 r f ( z ) l 2 | z x | n d z | z x 0 | > 2 r f ( z ) l 2 | z x 0 | n d z = | z x 0 | > 2 r f ( z ) l 2 | z x 0 | + d t t n + 1 d z = 2 r + 2 r < | z x 0 | < t f ( z ) l 2 d z d t t n + 1 2 r f ( z ) l 2 L w p ( B ( x 0 , t ) ) w 1 L p ( B ( x 0 , t ) ) d t t n + 1 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .

Thus,

G α f L w p ( B , l 2 ) w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.4)

By combining (4.3) and (4.4), we have

G α f L w p ( B , l 2 ) w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .

 □

Proof of Theorem 1.1 By Lemma 4.3 and Theorem 3.2 we have for p>1

G α f M w p , φ 2 ( l 2 ) sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t = sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 0 r 1 f L w p ( B ( x 0 , t 1 ) , l 2 ) ( w ( B ( x 0 , t 1 ) ) ) 1 p d t t = sup x 0 R n , r > 0 φ 2 ( x 0 , r 1 ) 1 r 1 r 0 r f L w p ( B ( x 0 , t 1 ) , l 2 ) ( w ( B ( x 0 , t 1 ) ) ) 1 p d t t sup x 0 R n , r > 0 φ 1 ( x 0 , r 1 ) 1 ( w ( B ( x 0 , r 1 ) ) ) 1 p f L w p ( B ( x 0 , r 1 ) , l 2 ) = sup x 0 R n , r > 0 φ 1 ( x 0 , r ) 1 ( w ( B ( x 0 , r ) ) ) 1 p f L w p ( B ( x 0 , r ) , l 2 ) = f M w p , φ 1 ( l 2 )

and for p=1

G α f W M w 1 , φ 2 ( l 2 ) sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 r f L w 1 ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 d t t = sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 0 r 1 f L w 1 ( B ( x 0 , t 1 ) , l 2 ) ( w ( B ( x 0 , t 1 ) ) ) 1 d t t = sup x 0 R n , r > 0 φ 2 ( x 0 , r 1 ) 1 r 1 r 0 r f L w 1 ( B ( x 0 , t 1 ) , l 2 ) ( w ( B ( x 0 , t 1 ) ) ) 1 d t t sup x 0 R n , r > 0 φ 1 ( x 0 , r 1 ) 1 ( w ( B ( x 0 , r 1 ) ) ) 1 f L w 1 ( B ( x 0 , r 1 ) , l 2 ) = sup x 0 R n , r > 0 φ 1 ( x 0 , r ) 1 ( w ( B ( x 0 , r ) ) ) 1 f L w 1 ( B ( x 0 , r ) , l 2 ) = f M w 1 , φ 1 ( l 2 ) .

 □

Lemma 4.4 Let 1p<, 0<α1, λ>3+ α n , and w A p . Then, for p>1, the inequality

g λ , α ( f ) L w p ( B , l 2 ) ( w ( B ) ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t

holds for any ball B=B( x 0 ,r) and for all f L w p , loc ( l 2 ).

Moreover, for p=1 the inequality

g λ , α ( f ) W L w 1 ( B , l 2 ) w(B) 2 r f L w 1 ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 d t t

holds for any ball B=B( x 0 ,r) and for all f L w 1 , loc ( l 2 ).

Proof From the definition of g λ , α (f), we readily see that

g λ , α ( f ) ( x ) l 2 = ( 0 R n ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 ( 0 | x y | < t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 + ( 0 | x y | t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 : = I I I + I V .

First, let us estimate III:

III ( 0 | x y | < t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 G α f ( x ) l 2 .

Now, let us estimate IV:

I V ( j = 1 0 2 j 1 t | x y | 2 j t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 ( j = 1 0 2 j 1 t | x y | 2 j t 2 j n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 j = 1 2 j n λ ( 0 | x y | 2 j t ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 : = j = 1 2 j n λ G α , 2 j ( f ) ( x ) l 2 .

Thus,

g λ , α ( f ) L w p ( B , l 2 ) G α f L w p ( B , l 2 ) + j = 1 2 j n λ 2 G α , 2 j ( f ) L w p ( B , l 2 ) .
(4.5)

By Lemma 4.3, we have

G α f L w p ( B , l 2 ) ( w ( B ) ) 1 p 2 r f L w p ( B ( x 0 , t ) ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.6)

In the following, we will estimate G α , 2 j ( f ) L w p ( B , l 2 ) . We divide G α , 2 j ( f ) L w p ( B , l 2 ) into two parts,

G α , 2 j ( f ) L w p ( B , l 2 ) G α , 2 j ( f 0 ) L w p ( B , l 2 ) + G α , 2 j ( f ) L w p ( B , l 2 ) ,
(4.7)

where f 0 (y)= f (y) χ 2 B (y), f (y)= f (y) f (y). For the first part, by Lemma 4.1,

G α , 2 j ( f 0 ) L w p ( B , l 2 ) 2 j ( 3 n 2 + α ) G α ( f 0 ) L w p ( l 2 ) 2 j ( 3 n 2 + α ) f L w p ( B , l 2 ) 2 j ( 3 n 2 + α ) w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.8)

For the second part,

G α , 2 j ( f ) ( x ) l 2 = ( 0 | x y | 2 j t ( A α f ( y , t ) ) 2 d y d t t n + 1 ) l / 2 l 2 = ( 0 | x y | 2 j t ( sup ϕ C α | f ϕ t ( y ) | ) 2 d y d t t n + 1 ) 1 2 l 2 ( 0 | x y | 2 j t ( | z y | t f ( z ) l 2 d z ) 2 d y d t t 3 n + 1 ) 1 2 .

Since |xz||yz|+|xy| 2 j + 1 t, we get

G α , 2 j ( f ) ( x ) l 2 ( 0 | x y | 2 j t ( | x z | 2 j + 1 t f ( z ) l 2 d z ) 2 d y d t t 3 n + 1 ) 1 2 ( 0 ( | z x | 2 j + 1 t f ( z ) l 2 d z ) 2 2 j n d t t 2 n + 1 ) 1 2 2 j n 2 R n ( t | x z | 2 j + 1 f ( z ) l 2 2 d t t 2 n + 1 ) 1 2 d z 2 3 j n 2 | x 0 z | > 2 r f ( z ) l 2 | x z | n d z .

For |zx|| x 0 z||x x 0 || x 0 z| 1 2 | x 0 z|= 1 2 | x 0 z|, so by Fubini’s theorem and Hölder’s inequality, we obtain

G α , 2 j ( f ) ( x ) l 2 2 3 j n 2 | x 0 z | > 2 r f ( z ) l 2 | x 0 z | n d z = 2 3 j n 2 | x 0 z | > 2 r f ( z ) l 2 | x 0 z | d t t n + 1 d z 2 3 j n 2 2 r | x 0 z | < t f ( z ) l 2 d z d t t n + 1 2 3 j n 2 2 r f ( ) l 2 L 1 ( B ( x 0 , t ) ) d t t n + 1 2 3 j n 2 2 r f ( ) l 2 L w p ( B ( x 0 , t ) ) w 1 L p ( B ( x 0 , t ) ) d t t n + 1 2 3 j n 2 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .

So,

G α , 2 j ( f ) L w p ( B , l 2 ) 2 3 j n 2 w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.9)

Combining (4.7), (4.8), and (4.9), we have

G α , 2 j ( f ) L w p ( B , l 2 ) 2 j ( 3 n 2 + α ) w ( B ) 1 p 2 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t .
(4.10)

Thus,

g λ , α ( f ) L w p ( B , l 2 ) G α f L w p ( B , l 2 ) + j = 1 2 j n λ 2 G α , 2 j ( f ) L w p ( B , l 2 ) .
(4.11)

Since λ>3+ α n , by (4.6), (4.10), and (4.11), we have the desired lemma. □

Proof of Theorem 1.2 From inequality (4.5) we have

g λ , α ( f ) M w p , φ 2 ( l 2 ) G α f M w p , φ 2 ( l 2 ) + j = 1 2 j n λ 2 G α , 2 j ( f ) M w p , φ 2 ( l 2 ) .
(4.12)

By Theorem 1.1, we have

G α f M w p , φ 2 ( l 2 ) f M w p , φ 1 ( l 2 ) .
(4.13)

In the following, we will estimate G α , 2 j ( f ) M w p , φ 2 ( l 2 ) . Thus, by substitution of variables and Theorem 3.2, we get

G α , 2 j ( f ) M w p , φ 2 ( l 2 ) 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 r f L w p ( B ( x 0 , t ) , l 2 ) ( w ( B ( x 0 , t ) ) ) 1 p d t t = 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 φ 2 ( x 0 , r 1 ) 1 r 1 r 0 r f L w p ( B ( x 0 , t 1 ) , l 2 ) ( w ( B ( x 0 , t 1 ) ) ) 1 p d t t 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 φ 1 ( x 0 , r 1 ) 1 ( w ( B ( x 0 , r 1 ) ) ) 1 p f L w p ( B ( x 0 , r 1 ) , l 2 ) = 2 j ( 3 n 2 + α ) f M w p , φ 1 ( l 2 ) .
(4.14)

Since λ>3+ α n , by (4.12), (4.13), and (4.14), we have the desired theorem. □

Lemma 4.5 Let 1<p<, 0<α1, w A p , b =( b 1 ,, b m ), and b i BMO( R n ), i=1,,m. Then the inequality

[ b , G α ] f L w p ( B , l 2 ) ( w ( B ) ) 1 p 2 r ln m ( e + t r ) f L w p ( B ( x 0 , τ ) , l 2 ) ( w ( B ( x 0 , τ ) ) ) 1 p d τ τ

holds for any ball B=B( x 0 ,r) and for all f L w p , loc ( l 2 ).

Proof We decompose f = f 0 + f , where f 0 = f χ 2 B and f = f f 0 . Then

[ b , G α ] f L w p ( B , l 2 ) [ b , G α ] f 0 L w p ( B , l 2 ) + [ b , G α ] f L w p ( B , l 2 ) .

Denote by b = i = 1 m b j . By Lemma 4.2, we have

[ b , G α ] f 0 L w p ( B , l 2 ) b f 0 L w p ( l 2 ) = b f L w p ( 2 B , l 2 ) b w ( B ) 1 p 2 r f L w p ( B ( x 0 , τ ) , l 2 ) ( w ( B ( x 0 , τ ) ) ) 1 p d τ τ .
(4.15)

For the term [ b , G α ] f L w p ( B , l 2 ) , without loss of generality, we can assume m=2. Thus, the operator [ b , G α ] f can be divided into four parts:

| [ b , G α ] f ( x ) | ( Γ ( x ) sup ϕ C α | R n ϕ t ( y z ) ( b 1 ( z ) ( b 1 ) B , ω ) ( b 2 ( z ) ( b 2 ) B , ω ) f ( z ) d z | 2 d y d t t n + 1 ) 1 / 2 + | b 1 ( x ) ( b 1 ) B , ω | ( Γ ( x ) sup ϕ C α | R n ϕ t ( y z ) ( b 2 ( z ) ( b 2 ) B , ω ) f ( z ) d z | 2 d y d t t n + 1 ) 1 / 2 + | b 2 ( x ) ( b 2 ) B , ω | ( Γ ( x ) sup ϕ C α | R n ϕ t ( y z ) ( b 1 ( z ) ( b 1 ) B , ω ) f ( z ) d z | 2 d y d t t n + 1 ) 1 / 2 | ( b 1 ( x ) ( b 1 ) B , ω ) ( b 2 ( x ) ( b 2 ) B , ω ) | ( Γ ( x ) sup ϕ C α | R n ϕ t ( y z ) f ( z ) d z | 2 d y d t t n + 1 ) 1 / 2 I 1 ( x ) + I 2 ( x ) + I 3 ( x ) + I 4 ( x ) .

For xB we have

[ b , G α ] f ( x ) l 2 I 1 ( x ) l 2 + I 2 ( x ) l 2 + I 3 ( x ) l 2 + I 4 ( x ) l 2 ( C 2 B ) | b 1 ( z ) ( b 1 ) B , ω | | b 2 ( z ) ( b 2 ) B , ω | f ( z ) l 2 | x 0 z | n d z + | b 1 ( x ) ( b 1 ) B , ω | ( C 2 B ) | b 2 ( z ) ( b 2 ) B , ω | f ( z ) l 2 | x 0 z | n d z + | b 2 ( x ) ( b 2 ) B , ω | ( C 2 B ) | b 1 ( z ) ( b 1 ) B , ω | f ( z ) l 2 | x 0 z | n d z + | ( b 1 ( x ) ( b 1 ) B , ω ) | | ( b 2 ( x ) ( b 2 ) B , ω ) | ( C 2 B ) f ( z ) l 2 | x 0 z | n d z .

Then

[ b , G α ] f L w p ( B , l 2 ) ( B ( ( C 2 B ) i = 1 2 | b i ( z ) ( b i ) B , ω | | x 0 z | n f ( z ) l 2 d z ) p ω ( x ) d x ) 1 / p + ( B | b 1 ( x ) ( b 1 ) B , ω | ( ( C 2 B ) | b 2 ( z ) ( b 2 ) B , ω | | x 0 z | n f ( z ) l 2 d z ) p ω ( x ) d x ) 1 / p + ( B | b 2 ( x ) ( b 2 ) B , ω | ( ( C 2 B ) | b 1 ( z ) ( b 1 ) B , ω | | x 0 z | n f ( z ) l 2 d z ) p ω ( x ) d x ) 1 / p + ( B ( ( C 2 B ) i = 1 2 | b i ( x ) ( b i ) B , ω | | x 0 z | n f ( z ) l 2 d z ) p ω ( x ) d x ) 1 / p I 1 + I 2 + I 3 + I 4 .

Let us estimate I 1 :

I 1 = ω ( B ) 1 / p ( C 2 B ) i = 1 2 | b i ( z ) ( b i ) B , ω | | x 0 z | n f ( z ) l 2 d z ω ( B ) 1 / p ( C 2 B ) i = 1 2 | b i ( z ) ( b i ) B , ω | f ( z ) l 2 | x 0 z | d τ τ n + 1 d z ω ( B ) 1 / p 2 r 2 r | x 0 z | < τ i = 1 2 | b i ( z ) ( b i ) B , ω | f ( z ) l 2 d z d τ τ n + 1 ω ( B ) 1 / p 2 r B ( x 0 , τ ) i = 1 2 | b i ( z ) ( b i ) B , ω | f ( z ) l 2 d z d τ τ n + 1 .

Applying Hölder’s inequality and by Lemma 3.7, we get

I 1 ω ( B ) 1 p 2 r i = 1 2 ( B ( x 0 , τ ) | b i ( z ) ( b i ) B , ω | 2 p ω ( z ) 1 2 p d z ) 1 2 p f L w p ( B ( x 0 , τ ) , l 2 ) d τ τ n + 1 i = 1 2 b j ω ( B ) 1 / p 2 r ( 1 + ln τ r ) 2 ω 1 / p L w p ( B ( x 0 , τ ) , l 2 ) f L w p ( B ( x 0 , τ ) , l 2 ) d τ τ n + 1 b ω ( B ) 1 / p 2 r ln 2 ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .

Let us estimate I 2 :

I 2 = ( B | b 1 ( x ) ( b 1 ) B , ω | p ω ( x ) d x ) 1 / p ( C 2 B ) | b 2 ( z ) ( b 2 ) B , ω | | x 0 z | n f ( z ) l 2 d z b 1 ω ( B ) 1 / p [ ( C 2 B ) | b 2 ( z ) ( b 2 ) B , ω | f ( z ) l 2 | x 0 z | d τ τ n + 1 d z ] b 1 ω ( B ) 1 / p 2 r 2 r | x 0 z | τ | b 2 ( z ) ( b 2 ) B , ω | f ( z ) l 2 d z d τ τ n + 1 b 1 ω ( B ) 1 / p 2 r B ( x 0 , τ ) | b 2 ( z ) ( b 2 ) B , ω | f ( z ) l 2 d z d τ τ n + 1 .

Applying Hölder’s inequality and by Lemma 3.7, we get

I 2 b 1 ω ( B ) 1 p 2 r ( B ( x 0 , τ ) | b 2 ( z ) ( b 2 ) B , ω | p ω ( z ) 1 p d z ) 1 p f L w p ( B ( x 0 , τ ) , l 2 ) d τ τ n + 1 i = 1 2 b j ω ( B ) 1 / p 2 r ( 1 + ln τ r ) ω 1 / p L w p ( B ( x 0 , τ ) , l 2 ) f L w p ( B ( x 0 , τ ) , l 2 ) d τ τ n + 1 b ω ( B ) 1 / p 2 r ln 2 ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .

In the same way, we shall get the result of I 3 :

I 3 b ω ( B ) 1 / p 2 r ln 2 ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .

In order to estimate I 4 note that

I 4 = ( B i = 1 2 | b i ( x ) ( b i ) B , ω | p ω ( x ) d x ) 1 / p ( C 2 B ) f ( z ) l 2 | x 0 z | n d z i = 1 2 ( B | b i ( x ) ( b i ) B , ω | 2 p ω ( x ) d x ) 1 / 2 p ( C 2 B ) f ( z ) l 2 | x 0 z | n d z .

By Lemma 3.7, we get

I 4 b ω ( B ) 1 / p ( C 2 B ) f ( z ) l 2 | x 0 z | n dz.

Applying Hölder’s inequality, we get

( C 2 B ) f ( z ) l 2 | x 0 z | n d z 2 r f L w p ( B ( x 0 , τ ) , l 2 ) ω 1 / p L w p ( B ( x 0 , τ ) , l 2 ) d τ τ n + 1 [ ω ] A p 1 / p 2 r f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .
(4.16)

Thus by (4.16)

I 4 b ω ( B ) 1 / p 2 r f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .

Summing up I 1 and I 4 , for all p[1,) we get

[ b , G α ] f L w p ( B ( x 0 , τ ) , l 2 ) b ω ( B ) 1 / p 2 r ln 2 ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) × ω ( B ( x 0 , τ ) ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .
(4.17)

Finally, from (4.2), (4.15), and (4.17) we get

[ b , G α ] f L w p ( B ( x 0 , τ ) , l 2 ) b ω ( B ) 1 / p 2 r ln 2 ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) ω ( B ( x 0 , τ ) ) 1 / p d τ τ .

 □

Proof of Theorem 1.3 By substitution of variables, we obtain

[ b , G α ] f M ω p , φ 2 ( l 2 ) b sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 2 r ln m ( e + τ r ) f L w p ( B ( x 0 , τ ) , l 2 ) w ( B ( x 0 , τ ) ) 1 / p d τ τ b sup x 0 R n , r > 0 φ 2 ( x 0 , r ) 1 0 r 1 ln m ( e + 1 τ r ) f L w p ( B ( x 0 , τ 1 ) , l 2 ) w ( B ( x 0 , τ 1 ) ) 1 p d τ τ = b sup x R n , r > 0 φ 2 ( x 0 , r 1 ) 1 r 1 r 0 r ln m ( e + r τ ) f L w p ( B ( x 0 , τ 1 ) , l 2 ) w ( B ( x 0 , τ 1 ) ) 1 p d τ τ b sup x 0 R n , r > 0 φ 1 ( x 0 , r 1 ) 1 w ( B ( x 0 , r 1 ) ) 1 p f L w p ( B ( x 0 , r 1 ) , l 2 ) = b sup x 0 R n , r > 0 φ 1 ( x 0 , r ) 1 w ( B ( x 0 , r ) ) 1 p f L w p ( B ( x 0 , r ) , l 2 ) = b f M w p , φ 1 ( l 2 ) .

By using an argument similar to the above proofs and that of Theorem 1.2, we can also show the boundedness of [ b , g λ , α ]. □

References

  1. Calderon AP: Commutators of singular integral operators. Proc. Natl. Acad. Sci. USA 1965, 53: 1092-1099. 10.1073/pnas.53.5.1092

    Article  MathSciNet  Google Scholar 

  2. Calderon AP: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 1977,74(4):1324-1327. 10.1073/pnas.74.4.1324

    Article  MathSciNet  Google Scholar 

  3. Coifman R, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976,103(2):611-635.

    Article  MathSciNet  Google Scholar 

  4. Chiarenza F, Frasca M: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 1987, 7: 273-279.

    MathSciNet  Google Scholar 

  5. Chiarenza F, Frasca M, Longo P: W 2 , p -solvability of Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 1993, 336: 841-853.

    MathSciNet  Google Scholar 

  6. Chen Y: Regularity of solutions to elliptic equations with VMO coefficients. Acta Math. Sin. Engl. Ser. 2004, 20: 1103-1118. 10.1007/s10114-004-0348-9

    Article  MathSciNet  Google Scholar 

  7. Fazio G, Di Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241-256. 10.1006/jfan.1993.1032

    Article  MathSciNet  Google Scholar 

  8. Fan D, Lu S, Yang D: Boundedness of operators in Morrey spaces on homogeneous spaces and its applications. Acta Math. Sin. 1998 suppl,, 14: 625-634. suppl,

    MathSciNet  Google Scholar 

  9. Morrey CB: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43: 126-166. 10.1090/S0002-9947-1938-1501936-8

    Article  MathSciNet  Google Scholar 

  10. Guliyev VS: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009. Article ID 503948, 2009: Article ID 503948

    Google Scholar 

  11. Komori Y, Shirai S: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 2009, 282: 219-231. 10.1002/mana.200610733

    Article  MathSciNet  Google Scholar 

  12. Guliyev VS: Boundedness of classical operators and commutators of real analysis in generalized weighted Morrey spaces. Some Applications 2011.

    Google Scholar 

  13. Guliyev VS: Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J. 2012,3(3):33-61.

    MathSciNet  Google Scholar 

  14. Guliyev VS, Alizadeh FC: Multilinear commutators of Calderon-Zygmund operator on generalized weighted Morrey spaces. J. Funct. Spaces 2014. Article ID 710542, 2014: Article ID 710542 10.1155/2014/710542

    Google Scholar 

  15. Karaman T, Guliyev VS, Serbetci A: Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces. Sci. Ann. “Al.I. Cuza” Univ. Iasi 2014,60(1):1-18. 10.2478/aicu-2013-0009

    MathSciNet  Google Scholar 

  16. Mustafayev RC: On boundedness of sublinear operators in weighted Morrey spaces. Azerb. J. Math. 2012,2(1):66-79.

    MathSciNet  Google Scholar 

  17. Wilson M: The intrinsic square function. Rev. Mat. Iberoam. 2007, 23: 771-791.

    Article  MathSciNet  Google Scholar 

  18. Wilson M Lecture Notes in Math. 1924. In Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Springer, Berlin; 2007.

    Google Scholar 

  19. Lerner AK: Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 2011, 226: 3912-3926. 10.1016/j.aim.2010.11.009

    Article  MathSciNet  Google Scholar 

  20. Huang JZ, Liu Y: Some characterizations of weighted Hardy spaces. J. Math. Anal. Appl. 2010, 363: 121-127. 10.1016/j.jmaa.2009.07.054

    Article  MathSciNet  Google Scholar 

  21. Wang H: Boundedness of intrinsic square functions on the weighted weak Hardy spaces. Integral Equ. Oper. Theory 2013, 75: 135-149. 10.1007/s00020-012-2011-7

    Article  Google Scholar 

  22. Wang H, Liu HP: Weak type estimates of intrinsic square functions on the weighted Hardy spaces. Arch. Math. 2011, 97: 49-59. 10.1007/s00013-011-0264-z

    Article  Google Scholar 

  23. Wang H: Intrinsic square functions on the weighted Morrey spaces. J. Math. Anal. Appl. 2012, 396: 302-314. 10.1016/j.jmaa.2012.06.021

    Article  MathSciNet  Google Scholar 

  24. Guliyev, VS: Integral operators on function spaces on the homogeneous groups and on domains in R n . Doctor’s degree dissertation. Mat. Inst. Steklov, Moscow (1994) 329 pp. (in Russian)

    Google Scholar 

  25. Akbulut A, Guliyev VS, Mustafayev R: On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces. Math. Bohem. 2012,137(1):27-43.

    MathSciNet  Google Scholar 

  26. Guliyev VS, Aliyev SS, Karaman T, Shukurov PS: Boundedness of sublinear operators and commutators on generalized Morrey space. Integral Equ. Oper. Theory 2011,71(3):327-355. 10.1007/s00020-011-1904-1

    Article  MathSciNet  Google Scholar 

  27. Guliyev VS, Shukurov PS: Commutators of intrinsic square functions on generalized Morrey spaces. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2013, 39: 33-46.

    Google Scholar 

  28. Wang H: Weak type estimates for intrinsic square functions on weighted Morrey spaces. Anal. Theory Appl. 2013,29(2):104-119.

    MathSciNet  Google Scholar 

  29. Giaquinta M: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton; 1983.

    Google Scholar 

  30. Kufner A, John O, Fuçik S: Function Spaces. Noordhoff International Publishing, Leyden; 1977.

    Google Scholar 

  31. Muckenhoupt B: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 1972, 165: 207-226.

    Article  MathSciNet  Google Scholar 

  32. Grafakos L: Classical and Modern Fourier Analysis. Pearson Education, Upper Saddle River; 2004.

    Google Scholar 

  33. Carro M, Pick L, Soria J, Stepanov VD: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 2001, 4: 397-428.

    MathSciNet  Google Scholar 

  34. Guliyev VS, Aliyev SS, Karaman T: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Abstr. Appl. Anal. 2011. Article ID 356041, 2011: Article ID 356041

    Google Scholar 

  35. Muckenhoupt B, Wheeden R: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 1974, 192: 261-274.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of V Guliyev was partially supported by the grant of Ahi Evran University Scientific Research Projects (PYO.FEN.4003.13.003) and (PYO.FEN.4003-2.13.007). We thank both referees for some good suggestions, which helped to improve the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vagif S Guliyev.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

This work was carried out in collaboration between all authors. VSG raised these interesting problems in the research. VSG and MNO proved the theorems, interpreted the results and wrote the article. All authors defined the research theme, and read and approved the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliyev, V.S., Omarova, M. Multilinear commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces. J Inequal Appl 2014, 258 (2014). https://doi.org/10.1186/1029-242X-2014-258

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-258

Keywords