Skip to main content

Multidimensional fixed points for generalized ψ-quasi-contractions in quasi-metric-like spaces

Abstract

In this paper, we introduce the concept of a quasi-metric-like space, and by defining the w-compatibility of two mappings, we obtain multidimensional coincidence point and multidimensional fixed point theorems for generalized ψ-quasi-contractions in quasi-metric-like spaces. Our results extend the fixed point theorems in Vetro and Radenović (Appl. Math. Comput. 219:1594-1600, 2012) and references therein.

MSC:47H10, 54H25.

1 Introduction and preliminaries

In 1987, Guo and Lakshmikantham [1] initiated the study of the coupled fixed point. In 2010, Samet and Vetro [2] presented the concept of a fixed point of N-order as an extension of the coupled fixed point.

Definition 1.1 ([2])

Let X be a non-empty set and let F: X N X (N2) be a given mapping. An element ( x 1 , x 2 ,, x N ) X N is called a fixed point of N-order of the mapping F if

F ( x 1 , x 2 , , x N 1 , x N ) = x 1 , F ( x 2 , x 3 , , x N , x 1 ) = x 2 , F ( x N , x 1 , x 2 , , x N 1 ) = x N .

Subsequently, a number of papers occurred on tripled fixed point and quadruple fixed point theory (see, e.g., [310]). Berzig and Samet [11] discussed the existence of the fixed point of N-order for m-mixed monotone mappings in complete ordered metric spaces. Very recently, Roldán et al. [12] extended the notion of the fixed point of N-order to the Φ-fixed point and obtained some Φ-fixed point theorems for a mixed monotone mapping in partially ordered complete metric spaces. Afterward, many results on multidimensional fixed points have been established (see, e.g., [1318]).

Matthews [19] introduced the notion of a partial metric space where the self-distance does not need to be zero. By generalizing the partial metric, Hitzler and Seda [20] presented the concept of a dislocated metric which was redefined as a metric-like by Amini-Harandi [21]. The existence of fixed points in dislocated metric (metric-like) spaces has been discussed by many authors (see, e.g., [2230]).

Definition 1.2 ([20, 21])

A mapping σ:X×X[0,+), where X is a nonempty set, is said to be a dislocated metric (metric-like) on X if, for any x,y,zX, the following three conditions hold true:

(σ 1) σ(x,y)=σ(y,x)=0x=y;

(σ 2) σ(x,y)=σ(y,x);

(σ 3) σ(x,z)σ(x,y)+σ(y,z).

The pair (X,σ) is then called a dislocated metric (metric-like) space.

Karapınar et al. [31] introduced the notion of quasi-partial metric spaces and studied some fixed point theorems on quasi-partial metric spaces.

Definition 1.3 ([31])

A quasi-partial metric on a nonempty set X is a function q:X×X R + which satisfies:

(QPM1) If 0q(x,x)=q(x,y)=q(y,y), then x=y,

(QPM2) q(x,x)q(x,y),

(QPM3) q(x,x)q(y,x), and

(QPM4) q(x,z)+q(y,y)q(x,y)+q(y,z),

for all x,y,zX. The pair (X,q) is called a quasi-partial metric space.

In this paper, similar to the notation of Amini-Harandi [21], we define a quasi-metric-like space generalizing the metric-like space and the quasi-partial metric space. Furthermore, we discuss the existence and uniqueness of a multidimensional fixed point for a generalized g-ψ-quasi-contractive mapping in quasi-metric-like spaces using the new w-compatibility of two mappings.

2 A quasi-metric-like space

Definition 2.1 A mapping ρ:X×X[0,+), where X is a nonempty set, is said to be a quasi-metric-like on X if, for any x,y,zX, the following conditions hold:

(ρ 1) ρ(x,y)=0x=y;

(ρ 2) ρ(x,z)ρ(x,y)+ρ(y,z).

The pair (X,ρ) is called a quasi-metric-like space.

Definition 2.2 Let (X,ρ) be a quasi-metric-like space. Then

  1. (1)

    A sequence { x n } converges to a point xX if and only if

    lim n + ρ( x n ,x)= lim n + ρ(x, x n )=ρ(x,x).

In this case, x is called a ρ-limit of { x n }.

  1. (2)

    A sequence { x n } is called a Cauchy sequence in (X,ρ) if lim m , n + ρ( x m , x n ) and lim m , n + ρ( x n , x m ) exist and are finite.

  2. (3)

    The quasi-metric-like-like space (X,ρ) is called complete if, for every Cauchy sequence { x n } in X, there is some xX such that

    lim n + ρ ( x n , x ) = lim n + ρ ( x , x n ) = ρ ( x , x ) = lim m , n + ρ ( x m , x n ) = lim m , n + ρ ( x n , x m ) .

Every quasi-partial metric space is a quasi-metric-like space. Below we give an example of a quasi-metric-like space.

Example 2.3 Let X={0,1}, and let

ρ(x,y)= { 2 , if  x = y = 0 ; 1 , if  x = 0 , y = 1 ; 3 2 , if  x = 1 , y = 0 ; 0 , if  x = y = 1 .

Then (X,ρ) is a quasi-metric-like space, but ρ(0,0)ρ(1,0), so (X,ρ) is not a quasi-partial metric space.

Remark 2.4 Every metric-like space is a quasi-metric-like space. Because the limit of a convergent sequence in metric-like space is not necessarily unique [25], the ρ-limit of a convergent sequence in quasi-metric-like spaces is not necessarily unique.

3 Main results

In this section, we establish the coincidence point and fixed point of r-order theorems, and an illustrative example is employed to show the validity of our results.

Definition 3.1 Let X be a nonempty set, and let g:XX and let F: X r X (r2) be two given mappings. An element ( x 1 , x 2 ,, x r ) X r is called a coincidence point of r-order of F: X r X and g:XX if

g ( x 1 ) = F ( x 1 , x 2 , , x r 1 , x r ) , g ( x 2 ) = F ( x 2 , x 3 , , x r , x 1 ) , g ( x r ) = F ( x r , x 1 , x 2 , , x r 1 ) .

If g is the identity mapping on X, then ( x 1 , x 2 ,, x r ) X r is a fixed point of r-order of the mapping F.

Throughout this paper, we denote all of the coincidence points of r-order of F: X r X and g:XX by C(F,g,r).

By Ψ we denote the set of real functions ψ:[0,+)[0,+) which have the following properties:

  1. (i)

    ψ is nondecreasing;

  2. (ii)

    ψ(0)=0;

  3. (iii)

    lim t + (tψ(t))=+;

  4. (iv)

    lim s t + ψ(s)<t for all t>0.

From (iv) and ψ(t) lim s t + ψ(s)<t, we deduce that ψ(t)<t for all t>0 [32].

Vetro and Radenović [32] introduced the concept of a g-ψ-quasi-contraction. We present the following definition as a generalization of the g-ψ-quasi-contraction.

Definition 3.2 Let (X,ρ) be a quasi-metric-like space, g:XX and let F: X r X (r2). F is called a generalized g-ψ-quasi-contraction if there exists ψ:[0,+)[0,+) such that

ρ ( F ( x 1 , x 2 , , x r ) , F ( y 1 , y 2 , , y r ) ) ψ ( M ( x 1 , x 2 , , x r ; y 1 , y 2 , , y r ) ) ,
(1)

where

M ( x 1 , x 2 , , x r ; y 1 , y 2 , , y r ) = max { ρ ( g x 1 , g y 1 ) , ρ ( g x 2 , g y 2 ) , , ρ ( g x r , g y r ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , ρ ( g x 2 , F ( x 2 , x 3 , , x r , x 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g y 1 , F ( y 1 , y 2 , , y r ) ) , ρ ( g y 2 , F ( y 2 , y 3 , , y r , y 1 ) ) , , ρ ( g y r , F ( y r , y 1 , , y r 1 ) ) , ρ ( g x 1 , F ( y 1 , y 2 , , y r ) ) , ρ ( g x 2 , F ( y 2 , y 3 , , y r , y 1 ) ) , , ρ ( g x r , F ( y r , y 1 , , y r 1 ) ) , ρ ( g y 1 , F ( x 1 , x 2 , , x r ) ) , ρ ( g y 2 , F ( x 2 , x 3 , , x r , x 1 ) ) , , ρ ( g y r , F ( x r , x 1 , , x r 1 ) ) } ,
(2)

for any ( x 1 , x 2 ,, x r ),( y 1 , y 2 ,, y r ) X r .

If g is the identity mapping, then F is a generalized ψ-quasi-contraction.

Definition 3.3 Let X be a nonempty set. The mappings g:XX and F: X r X (r2) are called w-compatible if

F ( g ( x 1 ) , g ( x 2 ) , , g ( x r ) ) =g ( F ( x 1 , x 2 , , x r ) ) ,

whenever ( x 1 , x 2 ,, x r )C(F,g,r).

Theorem 3.4 Let (X,ρ) be a quasi-metric-like space, g:XX and F: X r X (r2). Suppose that F is a generalized g-ψ-quasi-contraction with ψΨ. If F( X r )g(X) and g(X) is a complete subspace of X, then C(F,g,r) is nonempty.

Proof Let ( x 1 0 , x 2 0 ,, x r 0 ) X r . Since F( X r )g(X), we can construct a sequence {( x 1 n , x 2 n ,, x r n )} such that

g ( x i n ) =F ( x i n 1 , x i + 1 n 1 , , x r n 1 , x 1 n 1 , , x i 1 n 1 ) for i=1,2,,r.

Define

O n ( x 1 0 , x 2 0 , , x r 0 ) = { g x 1 0 , g x 2 0 , , g x r 0 , g x 1 1 , g x 2 1 , , g x r 1 , , g x 1 n , g x 2 n , , g x r n } , O ( x 1 0 , x 2 0 , , x r 0 ) = { g x 1 0 , g x 2 0 , , g x r 0 , g x 1 1 , g x 2 1 , , g x r 1 , , g x 1 n , g x 2 n , , g x r n , } , δ n ( x 1 0 , x 2 0 , , x r 0 ) = diam ( O n ( x 1 0 , x 2 0 , , x r 0 ) ) = sup { ρ ( x , y ) : x , y O n ( x 1 0 , x 2 0 , , x r 0 ) } .

If there exists n 0 N such that δ n 0 ( x 1 0 , x 2 0 ,, x r 0 )=0, then for any 0k n 0 1, ( x 1 k , x 2 k ,, x r k )C(F,g,r).

We suppose that δ n ( x 1 0 , x 2 0 ,, x r 0 )>0, for all nN.

Step 1. We shall prove that for each nN,

δ n ( x 1 0 , x 2 0 , , x r 0 ) =max { sup 1 i , l r , 0 s n ρ ( g x i 0 , g x l s ) , sup 1 i , l r , 0 s n ρ ( g x l s , g x i 0 ) } .
(3)

In fact, for any 1i,lr, 1j,sn, we have

ρ ( g x i j , g x l s ) = ρ ( F ( x i j 1 , x i + 1 j 1 , , x r j 1 , x 1 j 1 , , x i 1 j 1 ) , F ( x l s 1 , x l + 1 s 1 , , x r s 1 , x 1 s 1 , , x l 1 s 1 ) ) ψ ( M ( x i j 1 , , x r j 1 , x 1 j 1 , , x i 1 j 1 ; x l s 1 , , x r s 1 , x 1 s 1 , , x l 1 s 1 ) ) ,
(4)

where

M ( x i j 1 , , x r j 1 , x 1 j 1 , , x i 1 j 1 ; x l s 1 , , x r s 1 , x 1 s 1 , , x l 1 s 1 ) = max { ρ ( g x i j 1 , g x l s 1 ) , ρ ( g x i + 1 j 1 , g x l + 1 s 1 ) , , ρ ( g x i 1 j 1 , g x l 1 s 1 ) , ρ ( g x i j 1 , F ( x i j 1 , x i + 1 j 1 , , x r j 1 , x 1 j 1 , , x i 1 j 1 ) ) , ρ ( g x l s 1 , F ( x l s 1 , x l + 1 s 1 , , x r s 1 , x 1 s 1 , , x l 1 s 1 ) ) , ρ ( g x i + 1 j 1 , F ( x i + 1 j 1 , x i + 2 j 1 , , x r j 1 , x 1 j 1 , , x i j 1 ) ) , ρ ( g x l + 1 s 1 , F ( x l + 1 s 1 , x l + 2 s 1 , , x r s 1 , x 1 s 1 , , x l s 1 ) ) , , ρ ( g x i 1 j 1 , F ( x i 1 j 1 , x i j 1 , , x r j 1 , x 1 j 1 , , x i 2 j 1 ) ) , ρ ( g x l 1 s 1 , F ( x l 1 s 1 , x l s 1 , , x r s 1 , x 1 s 1 , , x l 2 s 1 ) ) , ρ ( g x l s 1 , F ( x i j 1 , x i + 1 j 1 , , x r j 1 , x 1 j 1 , , x i 1 j 1 ) ) , ρ ( g x i j 1 , F ( x l s 1 , x l + 1 s 1 , , x r s 1 , x 1 s 1 , , x l 1 s 1 ) ) , ρ ( g x l + 1 s 1 , F ( x i + 1 j 1 , x i + 2 j 1 , , x r j 1 , x 1 j 1 , , x i j 1 ) ) , ρ ( g x i + 1 j 1 , F ( x l + 1 s 1 , x l + 2 s 1 , , x r s 1 , x 1 s 1 , , x l s 1 ) ) , , ρ ( g x l 1 s 1 , F ( x i 1 j 1 , x i j 1 , , x r j 1 , x 1 j 1 , , x i 2 j 1 ) ) , ρ ( g x i 1 j 1 , F ( x l 1 s 1 , x l s 1 , , x r s 1 , x 1 s 1 , , x l 2 s 1 ) ) } = max { ρ ( g x i j 1 , g x l s 1 ) , ρ ( g x i + 1 j 1 , g x l + 1 s 1 ) , , ρ ( g x i 1 j 1 , g x l 1 s 1 ) , ρ ( g x i j 1 , g x i j ) , ρ ( g x l s 1 , g x l s ) , ρ ( g x i + 1 j 1 , g x i + 1 j ) , ρ ( g x l + 1 s 1 , g x l + 1 s ) , , ρ ( g x i 1 j 1 , g x i 1 j ) , ρ ( g x l 1 s 1 , g x l 1 s ) , ρ ( g x l s 1 , g x i j ) , ρ ( g x i j 1 , g x l s ) , ρ ( g x l + 1 s 1 , g x i + 1 j ) , ρ ( g x i + 1 j 1 , g x l + 1 s ) , , ρ ( g x l 1 s 1 , g x i 1 j ) , ρ ( g x i 1 j 1 , g x l 1 s ) } .

So, for 1i,lr, 1j,sn, we have

ρ ( g x i j , g x l s ) ψ ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ) < δ n ( x 1 0 , x 2 0 , , x r 0 ) .
(5)

Hence, equation (3) is true.

Step 2. Now, we claim that for each nN, lim n + δ n ( x 1 0 , x 2 0 ,, x r 0 )<+. For this, we distinguish three cases.

Since the sequence { δ n ( x 1 0 , x 2 0 ,, x r 0 )} is nondecreasing, there exists lim n + δ n ( x 1 0 , x 2 0 ,, x r 0 ).

Case 1. If, for all nN, δ n ( x 1 0 , x 2 0 ,, x r 0 )=diam{g x 1 0 ,g x 2 0 ,,g x r 0 }, then the claim holds.

Case 2. Suppose that there exist n 0 N, 1 i 0 , l 0 r, and 1 s 0 n 0 such that

δ n 0 ( x 1 0 , x 2 0 , , x r 0 ) =ρ ( g x i 0 0 , g x l 0 s 0 ) ,

then, for any n n 0 , there exist 1i,lr, and 1sn such that

δ n ( x 1 0 , x 2 0 , , x r 0 ) ρ ( g x i 0 , g x l s ) .

By equation (5), we obtain

δ n ( x 1 0 , x 2 0 , , x r 0 ) ρ ( g x i 0 , g x l 1 ) + ρ ( g x l 1 , g x l s ) ρ ( g x i 0 , g x l 1 ) + ψ ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ) ,

which implies that

δ n ( x 1 0 , x 2 0 , , x r 0 ) ψ ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ) ρ ( g x i 0 , g x l 1 ) .
(6)

Suppose that lim n + δ n ( x 1 0 , x 2 0 ,, x r 0 )=+, from the property (iii) of ψ, we have

lim n + ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ψ ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ) ) =+.

Nevertheless, by equation (6), we get

lim n + ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ψ ( δ n ( x 1 0 , x 2 0 , , x r 0 ) ) ) ρ ( g x i 0 , g x l 1 ) ,

which is a contradiction. Thus, lim n + δ n ( x 1 0 , x 2 0 ,, x r 0 )<+.

Case 3. If there exist n 1 N, 1 i 1 , l 1 r, and 1 s 1 n 1 such that

δ n 1 ( x 1 0 , x 2 0 , , x r 0 ) =ρ ( g x l 1 s 1 , g x i 1 0 ) ,

the proof is similar to Case 2.

Step 3. Next, we prove that, for every 1ir, {g x i n } is a Cauchy sequence in (X,ρ).

Let

O ( g x 1 p , g x 2 p , , g x r p ) = { g x 1 p , g x 2 p , , g x r p , g x 1 p + 1 , g x 2 p + 1 , , g x r p + 1 , } ,

and let

δ ( x 1 p , x 2 p , , x r p ) =diam ( O ( g x 1 p , g x 2 p , , g x r p ) ) ,p=0,1,2,.

Then,

δ ( x 1 p , x 2 p , , x r p ) δ ( x 1 0 , x 2 0 , , x r 0 ) = lim n + δ n ( x 1 0 , x 2 0 , , x r 0 ) < + , p = 0 , 1 , 2 , .

Since

0δ ( x 1 p + 1 , x 2 p + 1 , , x r p + 1 ) δ ( x 1 p , x 2 p , , x r p ) ,p=0,1,2,,

there exists δ0 such that

lim p + δ ( x 1 p , x 2 p , , x r p ) =δ.

If δ>0, using the monotonicity of {δ( x 1 p , x 2 p ,, x r p )} and the property (iv) of ψ, we conclude that

lim p + ψ ( δ ( x 1 p , x 2 p , , x r p ) ) = lim δ ( x 1 p , x 2 p , , x r p ) δ + ψ ( δ ( x 1 p , x 2 p , , x r p ) ) <δ.
(7)

However, by equation (4), we have, for any p0,

δ ( x 1 p + 1 , x 2 p + 1 , , x r p + 1 ) ψ ( δ ( x 1 p , x 2 p , , x r p ) ) ,

which implies that

δ= lim p + δ ( x 1 p + 1 , x 2 p + 1 , , x r p + 1 ) lim p + ψ ( δ ( x 1 p , x 2 p , , x r p ) ) ,

which contradicts equation (7). Therefore, lim p + δ( x 1 p , x 2 p ,, x r p )=δ=0, that is, for every 1ir, {g x i n } is a Cauchy sequence in (X,ρ).

Step 4. Finally, we prove that C(F,g,r) is nonempty.

Since g(X) is a complete subspace of X, there exist u i =g x i , i=1,2,,r, such that

lim n + ρ ( g x i , g x i n ) = lim n + ρ ( g x i n , g x i ) = lim m , n + ρ ( g x i n , g x i m ) = lim m , n + ρ ( g x i m , g x i n ) = ρ ( g x i , g x i ) = ρ ( u i , u i ) = 0 .
(8)

For 1ir, nN, from

ρ ( g x i n + 1 , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) ρ ( g x i n + 1 , g x i ) + ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) )

and

ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) ρ ( g x i , g i n + 1 ) ρ ( g x i n + 1 , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) )

we get

lim n + ρ ( g x i n + 1 , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) = ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) .
(9)

For any 1ir, nN, we have

ρ ( g x i n + 1 , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) = ρ ( F ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ) , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) ψ ( M ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ; x i , x i + 1 , , x r , x 1 , , x i 1 ) ) ,
(10)

where

M ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ; x i , x i + 1 , , x r , x 1 , , x i 1 ) = max { ρ ( g x i n , g x i ) , ρ ( g x i + 1 n , g x i + 1 ) , , ρ ( g x i 1 n , g x i 1 ) , ρ ( g x i n , F ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ) ) , ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , ρ ( g x i + 1 n , F ( x i + 1 n , x i + 2 n , , x r n , x 1 n , , x i n ) ) , ρ ( g x i + 1 , F ( x i + 1 , x i + 2 , , x r , x 1 , , x i ) ) , , ρ ( g x r n , F ( x r n , x 1 n , , x r 1 n ) ) , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 n , F ( x 1 n , x 2 n , , x r n ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 n , F ( x i 1 n , x i n , , x r n , x 1 n , , x i 2 n ) ) , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) , ρ ( g x i , F ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ) ) , ρ ( g x i n , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , ρ ( g x i + 1 , F ( x i + 1 n , x i + 2 n , , x r n , x 1 n , , x i n ) ) , ρ ( g x i + 1 n , F ( x i + 1 , x i + 2 , , x r , x 1 , , x i ) ) , , ρ ( g x r , F ( x r n , x 1 n , , x r 1 n ) ) , ρ ( g x r n , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 n , x 2 n , , x r n ) ) , ρ ( g x 1 n , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 n , x i n , , x r n , x 1 n , , x i 2 n ) ) , ρ ( g x i 1 n , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } .

By equations (8) and (9), for any ε>0, there exists n 0 N, and, for every n> n 0 and 1ir, we have

max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } M ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ; x i , x i + 1 , , x r , x 1 , , x i 1 ) max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } + ε .
(11)

Thus, for each 1ir,

lim n + M ( x i n , x i + 1 n , , x r n , x 1 n , , x i 1 n ; x i , x i + 1 , , x r , x 1 , , x i 1 ) = max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } .
(12)

If

max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } > 0 ,

using equations (9), (10), (11), and (12) and the property (iv) of ψ, we obtain, for every 1ir,

ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) = lim n + ρ ( g x i n + 1 , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) lim n + ψ ( M ( x i n , , x r n , x 1 n , , x i 1 n ; x i , , x r , x 1 , , x i 1 ) ) < max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } .
(13)

By the arbitrariness of i in equation (13), we deduce that

max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } < max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } ,

which is a contradiction. Therefore,

max { ρ ( g x i , F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) , , ρ ( g x r , F ( x r , x 1 , , x r 1 ) ) , ρ ( g x 1 , F ( x 1 , x 2 , , x r ) ) , , ρ ( g x i 1 , F ( x i 1 , x i , , x r , x 1 , , x i 2 ) ) } = 0 ,

which implies that ρ(g x i ,F( x i , x i + 1 ,, x r , x 1 ,, x i 1 ))=0, i=1,2,,r.

Thus,

g x i =F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ,i=1,2,,r,

that is, ( x 1 , x 2 ,, x r )C(F,g,r). □

Theorem 3.5 Let (X,ρ) be a quasi-metric-like space. Let g:XX and let F: X r X (r2) be mappings satisfying all the conditions of Theorem  3.4. If F and g are w-compatible, then F and g have a unique coincidence point of r-order, which is a fixed point of g and a fixed point of r-order of F. Moreover, the coincidence point of r-order is of the form ( u , u ,, u ) for some u X.

Proof Suppose that there exist ( x 1 , x 2 ,, x r ),( x 1 , x 2 ,, x r )C(F,g,r), that is, for each 1ir,

g x i =F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ,
(14)
g x i =F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) .
(15)

First, we prove that, for any 1i,j,kr,

g x i =g x j =g x k .
(16)

By equations (1), (14), and (15), for 1ir1, we have

ρ ( g x i , g x i + 1 ) = ρ ( F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) , F ( x i + 1 , x i + 2 , , x r , x 1 , , x i ) ) ψ ( M ( x i , x i + 1 , , x r , x 1 , , x i 1 ; x i + 1 , x i + 2 , , x r , x 1 , , x i ) ) ,
(17)

where

M ( x i , x i + 1 , , x r , x 1 , , x i 1 ; x i + 1 , x i + 2 , , x r , x 1 , , x i ) = max { ρ ( g x 1 , g x 2 ) , , ρ ( g x r 1 , g x r ) , ρ ( g x r , g x 1 ) , ρ ( g x 2 , g x 1 ) , ρ ( g x 3 , g x 2 ) , , ρ ( g x r , g x r 1 ) , ρ ( g x 1 , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) } .
(18)

Set

ζ = max { ρ ( g x 1 , g x 2 ) , , ρ ( g x r 1 , g x r ) , ρ ( g x r , g x 1 ) , ρ ( g x 2 , g x 1 ) , ρ ( g x 3 , g x 2 ) , , ρ ( g x r , g x r 1 ) , ρ ( g x 1 , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) } .
(19)

Similarly, we have

ρ ( g x r , g x 1 ) ψ(ζ),ρ ( g x 1 , g r ) ψ(ζ)
(20)

and

ρ ( g x i + 1 , g x i ) ψ(ζ),i=1,2,,r1.
(21)

By equations (1), (14), (15), and the monotonicity of ψ, for 1ir, we also have

ρ ( g x i , g x i ) ψ ( max { ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) } ) ψ(ζ)
(22)

and

ρ ( g x i , g x i ) ψ ( max { ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) } ) ψ(ζ).
(23)

From equations (17) to (23), we can conclude that

ζψ(ζ),

which is a contradiction, unless ζ=0. So

max { ρ ( g x 1 , g x 2 ) , , ρ ( g x r 1 , g x r ) , ρ ( g x r , g x 1 ) , ρ ( g x 2 , g x 1 ) , ρ ( g x 3 , g x 2 ) , , ρ ( g x r , g x r 1 ) , ρ ( g x 1 , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) } = 0 ,

that is,

g x i =g x i + 1 ,i=1,2,,r1,
(24)
g x r =g x 1 .
(25)

On the other hand, for any 1ir, we obtain

ρ ( g x i , g x i ) ψ ( M ( x i , , x r , x 1 , , x i 1 ; x i , , x r , x 1 , , x i 1 ) ) = ψ ( max { ρ ( g x i , g x i ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x i 1 , g x i 1 ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x i , g x i ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x i 1 , g x i 1 ) } ) .
(26)

Set

λ = max { ρ ( g x i , g x i ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x i 1 , g x i 1 ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x i , g x i ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x i 1 , g x i 1 ) } .
(27)

Similarly, for any

ξ { ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x r , g x r ) ρ ( g x i , g x i ) , , ρ ( g x r , g x r ) , ρ ( g x 1 , g x 1 ) , , ρ ( g x i 1 , g x i 1 ) } ,

we have

ξψ(λ).
(28)

By equations (26), (27), and (28), we get

λψ(λ),

which is a contradiction, unless λ=0. That is,

g x i =g x i ,i=1,2,,r.
(29)

Therefore, equations (24), (25), and (29) imply that equation (16) is true.

Next, we prove that the coincidence point of r-order is unique.

In view of equation (16), let g x i = u , i=1,2,,r.

Using the w-compatibility of F and g, we conclude that

g u = g ( g x i ) = g ( F ( x i , x i + 1 , , x r , x 1 , , x i 1 ) ) = F ( g x i , g x i + 1 , , g x r , g x 1 , , g x i 1 ) = F ( u , u , , u ) .

So, u C(F,g,r). By equation (16), we can deduce that g u =g x i , i=1,2,,r.

Thus,

u =g x i =g u =F ( u , u , , u ) .
(30)

Moreover, equations (16) and (30) imply that ( u , u ,, u ) is the unique coincidence point of r-order of F and g, u is a fixed point of g, and ( u , u ,, u ) is a fixed point of r-order of F. □

For each a(0,1), setting ψ(t)=at in Theorem 3.4 and Theorem 3.5, we obtain the following results.

Corollary 3.6 Let (X,ρ) be a quasi-metric-like space, let g:XX and let F: X r X (r2). Suppose there exists a(0,1) such that F is a generalized g-ψ-quasi-contraction with ψ(t)=at. If F( X r )g(X) and g(X) is a complete subspace of X, then C(F,g,r) is nonempty.

Corollary 3.7 Let (X,ρ) be a quasi-metric-like space. Let g:XX and let F: X r X (r2) be mappings satisfying all the conditions of Corollary  3.6. If F and g are w-compatible, then F and g have a unique coincidence point of r-order, which is a fixed point of g and a fixed point of r-order of F. Moreover, the coincidence point of r-order is of the form ( u , u ,, u ) for some u X.

Example 3.8 Let X={0,1,2}, Define ρ:X×X[0,+) as follows:

ρ ( 0 , 0 ) = 0 , ρ ( 1 , 1 ) = 3 , ρ ( 2 , 2 ) = 1 2 , ρ ( 0 , 1 ) = 3 , ρ ( 0 , 2 ) = 3 2 , ρ ( 1 , 0 ) = 5 2 , ρ ( 2 , 0 ) = 3 , ρ ( 1 , 2 ) = 4 5 , ρ ( 2 , 1 ) = 4 .

Then (X,ρ) is a complete quasi-metric-like space.

Define g:X×XX by

g0=1,g1=2,g2=0,

and F: X r X (r2) by

F( x 1 , x 2 ,, x r )= { 0 , if  x 1 = x 2 = = x r ; min { x 1 , x 2 , , x r } , otherwise .

It is easy to prove that g and F satisfy all conditions of Theorem 3.4 by taking ψ(t)= 5 6 t, and the proof would be lengthy.

Here, (2,2,,2)C(F,g,r).

References

  1. Guo DJ, Lakshmikantham V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 1987, 11: 623-632. 10.1016/0362-546X(87)90077-0

    Article  MATH  MathSciNet  Google Scholar 

  2. Samet B, Vetro C: Coupled fixed point, f -invariant set and fixed point of N -order. Ann. Funct. Anal. 2010, 1: 46-56.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aydi H, Karapınar E, Shatanawi W: Tripled coincidence point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 101 10.1186/1687-1812-2012-101

    Google Scholar 

  4. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 4889-4897. 10.1016/j.na.2011.03.032

    Article  MATH  MathSciNet  Google Scholar 

  5. Borcut M, Berinde V: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 5929-5936. 10.1016/j.amc.2011.11.049

    Article  MATH  MathSciNet  Google Scholar 

  6. Borcut M: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 7339-7346. 10.1016/j.amc.2012.01.030

    Article  MATH  MathSciNet  Google Scholar 

  7. Karapınar E, Luong NV: Quadruple fixed point theorems for nonlinear contractions. Comput. Math. Appl. 2012, 64: 1839-1848. 10.1016/j.camwa.2012.02.061

    Article  MATH  MathSciNet  Google Scholar 

  8. Karapınar E, Shatanawi W, Mustafa Z: Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces. J. Appl. Math. 2012. 10.1155/2012/951912

    Google Scholar 

  9. Mustafa Z: Mixed g -monotone property and quadruple fixed point theorems in partially ordered G -metric spaces using(ϕψ)contractions. Fixed Point Theory Appl. 2012., 2012: Article ID 199 10.1186/1687-1812-2012-199

    Google Scholar 

  10. Roldán A, Martínez-Moreno J, Roldán C: Tripled fixed point theorem in fuzzy metric spaces and applications. Fixed Point Theory Appl. 2013., 2013: Article ID 29 10.1186/1687-1812-2013-29

    Google Scholar 

  11. Berzig M, Samet B: An extension of coupled fixed point’s concept in higher dimension and applications. Comput. Math. Appl. 2012, 63: 1319-1334. 10.1016/j.camwa.2012.01.018

    Article  MATH  MathSciNet  Google Scholar 

  12. Roldán A, Martínez-Moreno J, Roldán C: Multidimensional fixed point theorems in partially ordered complete metric spaces. J. Math. Anal. Appl. 2012, 396: 536-545. 10.1016/j.jmaa.2012.06.049

    Article  MATH  MathSciNet  Google Scholar 

  13. Karapınar E, Roldán A: A note on ‘ n -tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces’. J. Inequal. Appl. 2013., 2013: Article ID 567 10.1186/1029-242X-2013-567

    Google Scholar 

  14. Karapınar E, Roldán A, Martínez-Moreno J, Roldán C: Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces. Abstr. Appl. Anal. 2013. 10.1155/2013/406026

    Google Scholar 

  15. Karapınar E, Roldán A, Roldán C, Martínez-Moreno J: A note on ‘ N -fixed point theorems for nonlinear contractions in partially ordered metric spaces’. Fixed Point Theory Appl. 2013., 2013: Article ID 310 10.1186/1687-1812-2013-310

    Google Scholar 

  16. Roldán A, Karapınar E:Some multidimensional fixed point theorems on partially preordered G -metric spaces under (ψ,φ)-contractivity conditions. Fixed Point Theory Appl. 2013., 2013: Article ID 158 10.1186/1687-1812-2013-158

    Google Scholar 

  17. Roldán A, Martínez-Moreno J, Roldán C, Cho YJ: Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets Syst. 2013. 10.1016/j.fss.2013.10.009

    Google Scholar 

  18. Roldán A, Martínez-Moreno J, Roldán C, Karapınar E:Multidimensional fixed point theorems in partially ordered complete partial metric spaces under(ψ,φ)-contractivity conditions. Abstr. Appl. Anal. 2013. 10.1155/2013/634371

    Google Scholar 

  19. Matthews SG: Partial metric topology. Ann. N. Y. Acad. Sci. 728. General Topology and Its Applications 1994, 183-197. Pro. 8th Summer Conf. Queen’s College, 1992

    Google Scholar 

  20. Hitzler P, Seda AK: Dislocated topologies. J. Electr. Eng. 2000, 51: 3-7.

    MATH  Google Scholar 

  21. Amini-Harandi A: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012., 2012: Article ID 204 10.1186/1687-1812-2012-204

    Google Scholar 

  22. Alghamdi MA, Hussain N, Salimiand P: Fixed point and coupled fixed point theorems on b -metric-like spaces. J. Inequal. Appl. 2013., 2013: Article ID 402 10.1186/1029-242X-2013-402

    Google Scholar 

  23. Arshad M, Shoaib A, Beg I: Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space. Fixed Point Theory Appl. 2013., 2013: Article ID 115 10.1186/1687-1812-2013-115

    Google Scholar 

  24. Hussain N, Roshan JR, Parvaneh V, Abbas M: Common fixed point results for weak contractive mappings in ordered b -dislocated metric spaces with applications. J. Inequal. Appl. 2013., 2013: Article ID 486 10.1186/1029-242X-2013-486

    Google Scholar 

  25. Isik H, Türkoğlu D: Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 51 10.1186/1687-1812-2013-51

    Google Scholar 

  26. Karapınar E, Salimi P: Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory Appl. 2013., 2013: Article ID 222 10.1186/1687-1812-2013-222

    Google Scholar 

  27. Kumari PS, Kumar VV, Sarma IR: Common fixed point theorems on weakly compatible maps on dislocated metric spaces. Math. Sci. 2012., 6: Article ID 71 10.1186/2251-7456-6-71

    Google Scholar 

  28. Malhotra SK, Radenović S, Shukla S: Some fixed point results without monotone property in partially ordered metric-like spaces. J. Egypt. Math. Soc. 2013. 10.1016/j.joems.2013.06.010

    Google Scholar 

  29. Sarma IR, Kumari PS: On dislocated metric spaces. Int. J. Math. Arch. 2012, 3: 72-77.

    Google Scholar 

  30. Shukla S, Radenović S, Rajić VĆ: Some common fixed point theorems in 0- σ -complete metric-like spaces. Vietnam J. Math. 2013. 10.1007/s10013-013-0028-0

    Google Scholar 

  31. Karapınar E, Erhan IM, Öztürk A: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 2013, 57: 2442-2448. 10.1016/j.mcm.2012.06.036

    Article  MATH  Google Scholar 

  32. Vetro F, Radenović S: Nonlinear ψ -quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 2012, 219: 1594-1600. 10.1016/j.amc.2012.07.061

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the referees for their valuable comments and suggestions. The research was supported by the National Natural Science Foundation of China (11071108, 11361042) and the Provincial Natural Science Foundation of Jiangxi, China (2010GZS0147, 20114BAB201007), and it was supported partly by the Provincial Graduate Innovation Foundation of Jiangxi, China (YC2012-B004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Xi Zhu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhu, L., Zhu, CX., Chen, CF. et al. Multidimensional fixed points for generalized ψ-quasi-contractions in quasi-metric-like spaces. J Inequal Appl 2014, 27 (2014). https://doi.org/10.1186/1029-242X-2014-27

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-27

Keywords