Skip to main content

On a fractional differential inclusion via a new integral boundary condition

Abstract

In this paper, we investigate the existence of solution for two systems of fractional differential inclusions via some integral boundary value conditions. For this purpose, we use an endpoint result for multifunctions which has been proved in 2010 by Amini-Harandi (Nonlinear Anal. 72:132-134, 2010). Finally, we give an example for illustrating one of our results.

1 Introduction

As we know, diverse classes of fractional differential equations have been studied by researchers (see for example, [115] and the references therein). Much attention has been devoted to the fractional differential inclusions (see for example, [1632] and the references therein). Also, there have been provided many applications of this field (see for example, [33, 34] and [35]).

It is the aim of this paper to investigate the existence of solutions for two systems of fractional differential inclusions, subject to some integral boundary value conditions. In this respect, we use an endpoint result for multifunctions due to Amini-Harandi, [36]. We provide an example for illustrating one of our results.

2 Preliminaries

As is well known, the Riemann-Liouville fractional integral of order α>0 of a function f:(0,)R is given by I α f(t)= 1 Γ ( α ) 0 t ( t s ) α 1 f(s)ds, provided the right side is pointwise defined on (0,) (see [10, 13] and [14]). The Caputo fractional derivative of order α for a continuous function f is defined by D α c f(t)= 1 Γ ( n α ) 0 t f ( n ) ( s ) ( t s ) α n + 1 ds, where n=[α]+1 (see [10, 13] and [14]).

Recall that a multifunction G:J P c l (R) is said to be measurable whenever the function td(y,G(t)) is measurable for all yR, where J=[0,1] [37].

Let (X,d) be a metric space. We have the well-known Pompeiu-Hausdorff metric (see [38])

H d : 2 X × 2 X [0,), H d (A,B)=max { sup a A d ( a , B ) , sup b B d ( A , b ) } ,

where d(A,b)= inf a A d(a,b). Then (CB(X), H d ) is a metric space and (C(X), H d ) is a generalized metric space, where CB(X) is the set of closed and bounded subsets of X and C(X) is the set of closed subsets of X (see [27]).

Let T:X 2 X be a multifunction. An element xX is called an endpoint of T whenever Tx={x} [36]. Also, we say that T has the approximate endpoint property whenever inf x X sup y T x d(x,y)=0 [36]. A function g:RR is called upper semi-continuous whenever lim sup n g( λ n )g(λ) for all sequences { λ n } n 1 with λ n λ [36].

In 2010, Amini-Harandi proved the next result [36].

Lemma 2.1 Let ψ:[0,)[0,) be an upper semi-continuous function such that ψ(t)<t and lim inf t (tψ(t))>0, for all t>0, (X,d) a complete metric space and T:XCB(X) a multifunction such that H d (Tx,Ty)ψ(d(x,y)) for all x,yX. Then T has a unique endpoint if and only if T has approximate end point property.

In 2011, Ahmad et al. investigated the fractional inclusion problem D α c x(t)F(t,x(t)), via the integral boundary conditions x j (0) λ j x j (T)= μ j 0 1 g j (s,x(s))ds for j=0,1,2, where F is a multifunction (see for more details [20]).

In this paper, we are going to extend the problem in a sense. In this respect, we first investigate the existence of solution for the fractional differential inclusion problem

D α c x(t)F ( t , x ( t ) , x ( t ) , x ( t ) ) ,
(1)

via integral boundary value conditions

{ x ( 0 ) + x ( η ) + x ( 1 ) = 0 1 g 0 ( s , x ( s ) ) d s , D β c x ( 0 ) + c D β x ( η ) + c D β x ( 1 ) = 0 1 g 1 ( s , x ( s ) ) d s , D γ c x ( 0 ) + c D γ x ( η ) + c D γ x ( 1 ) = 0 1 g 2 ( s , x ( s ) ) d s ,
(2)

where tJ, 2<α3, 0<η,β<1, 1<γ<2, and F:J×R×R×R P c p (R) is a multifunction, g 1 , g 2 , g 3 :J×RR are continuous functions and D q c is the standard Caputo differentiation. Here, P c p (R) is the set of all compact subsets of .

Also, we investigate the existence of solution for the fractional differential inclusion problem

D α c x(t)F ( t , x ( t ) , c D γ 1 x ( t ) , , c D γ n x ( t ) ) ,
(3)

via integral boundary value conditions

{ x ( 0 ) + b x ( 1 ) = i = 1 n c D γ i x ( η ) , x ( 0 ) + a x ( 1 ) = i = 1 n I γ i x ( η ) ,
(4)

where tJ=[0,1], 1<α2, 0<η, γ i <1, α γ i 1 for all 1in, a> i = 1 n η γ i + 1 Γ ( γ i + 2 ) , b> i = 1 n η 1 γ i Γ ( 2 γ i ) , n1, and F:J× R n + 1 P(R) is a multifunction.

3 Main results

Now, we are ready to state and prove our main results. First, we give the following one.

Lemma 3.1 Let vC(J,R), α(2,3], β(0,1), γ(1,2) and g 0 , g 1 , g 2 :J×RR be continuous functions. The unique solution of the fractional differential problem

D α c x(t)=v(t)
(5)

via the boundary value conditions (2) is given by

x ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v ( s ) d s + 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s 0 η ( η s ) α γ 1 v ( s ) d s ] .

Proof It is known that the general solution of (5) is

x(t)= I α v(t)+ c 0 + c 1 t+ c 2 t 2 ,

that is

x(t)= 1 Γ ( α ) 0 t ( t s ) α 1 v(s)ds+ c 0 + c 1 t+ c 2 t 2 ,
(6)

where c 0 , c 1 , c 2 are real arbitrary constants (see [10, 13] and [14]). Thus,

D β c x(t)= 1 Γ ( α β ) 0 t ( t s ) α β 1 v(s)ds+ c 1 t 1 β Γ ( 2 β ) + 2 c 2 t 2 β Γ ( 3 β )

and D γ c x(t)= 1 Γ ( α γ ) 0 t ( t s ) α γ 1 v(s)ds+ 2 c 2 t 2 γ Γ ( 3 γ ) . Hence,

x ( 0 ) + x ( η ) + x ( 1 ) = 3 c 0 + ( 1 + η ) c 1 + ( 1 + η 2 ) c 2 + 1 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] , D β c x ( 0 ) + c D β x ( η ) + c D β x ( 1 ) = c 1 η 1 β + 1 Γ ( 2 β ) + c 2 2 ( η 2 β + 1 ) Γ ( 3 β ) + 1 Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ]

and

D γ c x ( 0 ) + c D γ x ( η ) + c D γ x ( 1 ) = c 2 2 ( η 2 γ + 1 ) Γ ( 3 γ ) + 1 Γ ( α γ ) [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ] .

By using the boundary conditions, we obtain

3 c 0 + ( 1 + η ) c 1 + ( 1 + η 2 ) c 2 = 0 1 g 0 ( s , x ( s ) ) d s 1 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] , c 1 η 1 β + 1 Γ ( 2 β ) + c 2 2 ( η 2 β + 1 ) Γ ( 3 β ) = 0 1 g 1 ( s , x ( s ) ) d s 1 Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ]

and

c 2 2 ( η 2 γ + 1 ) Γ ( 3 γ ) = 0 1 g 2 ( s , x ( s ) ) d s 1 Γ ( α γ ) [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] .

This is a linear system of equations of triangular form, having c 0 , c 1 , and c 2 as unknowns. We solve by back substitution and find

c 0 = 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] Γ ( 2 β ) ( η + 1 ) 3 ( η 1 β + 1 ) × 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] + 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ] , c 1 = Γ ( 2 β ) ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s Γ ( 2 β ) ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) 0 1 g 2 ( s , x ( s ) ) d s + ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ] ,

and

c 2 = Γ ( 3 γ ) 2 ( η 2 γ + 1 ) 0 1 g 2 ( s , x ( s ) ) d s Γ ( 3 γ ) 2 ( η 2 γ + 1 ) Γ ( α γ ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ] .

Now, we replace c 0 , c 1 , and c 2 in (6) and find the solution x(t) as we stated. This completes the proof. □

Let X= C 2 ([0,1]) endowed with the norm x= sup t J |x(t)|+ sup t J | x (t)|+ sup t J | x (t)|. Then (X,) is a Banach space. For xX, define

S F , x = { v L 1 [ 0 , 1 ] : v ( t ) F ( t , x ( t ) , x ( t ) , x ( t ) )  for almost all  t [ 0 , 1 ] } .

For the study of problem (1) and (2), we shall consider the following conditions.

(H1) F:J×R×R×R P c p (R) is an integrable bounded multifunction such that F(,x,y,z):[0,1] P c p (R) is measurable for all x,y,zR;

(H2) g 0 , g 1 , g 2 :J×RR be continuous functions, ψ:[0,)[0,) a nondecreasing upper semi-continuous map such that lim inf t (tψ(t))>0 and ψ(t)<t for all t>0;

(H3) There exist m, m 0 , m 1 , m 2 C(J,[0,)) such that

H d ( F ( t , x 1 , x 2 , x 3 ) , F ( t , y 1 , y 2 , y 3 ) ) 1 Λ 1 + Λ 2 + Λ 3 m(t)ψ ( | x 1 y 1 | + | x 2 y 2 | + | x 3 y 3 | )

and | g j (t,x) g j (t,y)| 1 Λ 1 + Λ 2 + Λ 3 m j (t)ψ(|xy|) for all tJ, x,y, x 1 , x 2 , x 3 , y 1 , y 2 , y 3 R and j=0,1,2, where

Λ 1 = [ m Γ ( α + 1 ) + m 0 3 + 2 m 3 Γ ( α + 1 ) + 5 Γ ( 2 β ) m 1 3 + 10 Γ ( 2 β ) m 3 Γ ( α β + 1 ) + 10 ( 2 Γ ( 2 β ) + Γ ( 3 β ) ) Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) 3 Γ ( 3 β ) Γ ( α γ + 1 ) ] , Λ 2 = [ m Γ ( α ) + 2 Γ ( 2 β ) m Γ ( α β + 1 ) + ( 2 Γ ( 2 β ) + Γ ( 3 β ) ) Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) Γ ( 3 β ) Γ ( α γ + 1 ) ] ,

and Λ 3 =[ m Γ ( α 1 ) + Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) Γ ( α γ + 1 ) ], and finally

(H4) N:X 2 X is given by

N(x)= { h X :  there exist  v S F , x  such that  h ( t ) = w ( t )  for all  t J } ,

where

w ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v ( s ) d s + 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ] .

Theorem 3.1 Assume that (H1)-(H4) are satisfied. If the multifunction N has the approximate endpoint property, then the boundary value inclusion problem (1) and (2) has a solution.

Proof We show that the multifunction N:XP(X) has a endpoint which is a solution of the problem (1) and (2).

Note that the multivalued map tF(t,x(t), x (t), x (t)) is measurable and has closed values for all xX. Hence, it has measurable selection and so S F , x is nonempty for all xX. First, we show that N(x) is closed subset of X for all xX.

Let xX and { u n } n 1 be a sequence in N(x) with u n u. For each nN, choose v n S F , x such that

u n ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v n ( s ) d s + 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v n ( s ) d s + 0 η ( η s ) α 1 v n ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v n ( s ) d s + 0 η ( η s ) α β 1 v n ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v n ( s ) d s + 0 η ( η s ) α γ 1 v n ( s ) d s ]

for all tJ.

Since F has compact values, { v n } n 1 has a subsequence which converges to some v L 1 [0,1]. We denote this subsequence again by { v n } n 1 .

It is easy to check that v S F , x and

u n ( t ) u ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v ( s ) d s + 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v ( s ) d s + 0 η ( η s ) α 1 v ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v ( s ) d s + 0 η ( η s ) α β 1 v ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v ( s ) d s + 0 η ( η s ) α γ 1 v ( s ) d s ]

for all tJ. This implies that uN(x) and so N has closed values.

Since F is a compact multivalued map, it is easy to check that N(x) is a bounded set for all xX.

Now, we show that H d (N(x),N(y))ψ(xy).

Let x,yX and h 1 N(y). Choose v 1 S F , y such that

h 1 ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v 1 ( s ) d s + 1 3 0 1 g 0 ( s , y ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v 1 ( s ) d s + 0 η ( η s ) α 1 v 1 ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , y ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v 1 ( s ) d s + 0 η ( η s ) α β 1 v 1 ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , y ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v 1 ( s ) d s + 0 η ( η s ) α γ 1 v 1 ( s ) d s ]

for almost all tJ.

Since

H d ( F ( t , x ( t ) , x ( t ) , x ( t ) ) , F ( t , y ( t ) , y ( t ) , y ( t ) ) ) 1 Λ 1 + Λ 2 + Λ 3 m ( t ) ψ ( | x ( t ) y ( t ) | + | x ( t ) y ( t ) | + | x ( t ) y ( t ) | )

for all tJ, there exists wF(t,x(t), x (t), x (t)) such that

| v 1 ( t ) w | 1 Λ 1 + Λ 2 + Λ 3 m(t)ψ ( | x ( t ) y ( t ) | + | x ( t ) y ( t ) | + | x ( t ) y ( t ) | )

for all tJ.

Consider the multivalued map U:JP(R) defined by

U ( t ) = { w R : | v 1 ( t ) w | 1 Λ 1 + Λ 2 + Λ 3 m ( t ) ψ ( | x ( t ) y ( t ) | + | x ( t ) y ( t ) | + | x ( t ) y ( t ) | ) } .

Since v 1 and φ=mψ(|xy|+| x y |+| x y |)( 1 Λ 1 + Λ 2 + Λ 3 ) are measurable, the multifunction U()F(,x(), x (), x ()) is measurable.

Choose v 2 (t)F(t,x(t), x (t), x (t)) such that

| v 1 ( t ) v 2 ( t ) | 1 Λ 1 + Λ 2 + Λ 3 m ( t ) ψ ( | x ( t ) y ( t ) | + | x ( t ) y ( t ) | + | x ( t ) y ( t ) | )

for all tJ.

Now, consider the element h 2 N(x), which is defined by

h 2 ( t ) = 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v 2 ( s ) d s + 1 3 0 1 g 0 ( s , x ( s ) ) d s 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 v 2 ( s ) d s + 0 η ( η s ) α 1 v 2 ( s ) d s ] + 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) 0 1 g 1 ( s , x ( s ) ) d s + ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 v 2 ( s ) d s + 0 η ( η s ) α β 1 v 2 ( s ) d s ] + ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) × 0 1 g 2 ( s , x ( s ) ) d s + ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) × [ 0 1 ( 1 s ) α γ 1 v 2 ( s ) d s + 0 η ( η s ) α γ 1 v 2 ( s ) d s ]

for all tJ. Thus,

| h 1 ( t ) h 2 ( t ) | 1 Γ ( α ) 0 t ( t s ) ( α 1 ) | v 1 ( s ) v 2 ( s ) | d s + 1 3 0 1 | g 0 ( s , y ( s ) ) g 0 ( s , x ( s ) ) | d s + 1 3 Γ ( α ) [ 0 1 ( 1 s ) α 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α 1 | v 1 ( s ) v 2 ( s ) | d s ] + | 3 Γ ( 2 β ) t ( η + 1 ) Γ ( 2 β ) 3 ( η 1 β + 1 ) | × 0 1 | g 1 ( s , y ( s ) ) g 1 ( s , x ( s ) ) | d s + | ( η + 1 ) Γ ( 2 β ) 3 Γ ( 2 β ) t 3 ( η 1 β + 1 ) Γ ( α β ) | × [ 0 1 ( 1 s ) α β 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α β 1 | v 1 ( s ) v 2 ( s ) | d s ] + | ( 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t + 3 ( η 1 β + 1 ) Γ ( 3 γ ) Γ ( 3 β ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) ) | × 0 1 | g 2 ( s , y ( s ) ) g 2 ( s , x ( s ) ) | d s + | ( ( η 2 + 1 ) Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) 2 ( η + 1 ) ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) + 6 ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) t 3 Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t 2 6 ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) | × [ 0 1 ( 1 s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s ] 1 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) [ m Γ ( α + 1 ) + m 0 3 + 2 m 3 Γ ( α + 1 ) + 5 Γ ( 2 β ) m 1 3 + 10 Γ ( 2 β ) m 3 Γ ( α β + 1 ) + 10 ( 2 Γ ( 2 β ) + Γ ( 3 β ) ) Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) 3 Γ ( 3 β ) Γ ( α γ + 1 ) ] = Λ 1 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) , | h 1 ( t ) h 2 ( t ) | 1 Γ ( α 1 ) 0 t ( t s ) ( α 2 ) | v 1 ( s ) v 2 ( s ) | d s + Γ ( 2 β ) ( η 1 β + 1 ) Γ ( α β ) [ 0 1 ( 1 s ) α β 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α β 1 | v 1 ( s ) v 2 ( s ) | d s ] + | ( ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) + Γ ( 3 γ ) ( η 1 β + 1 ) Γ ( 3 β ) t ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) | × 0 1 | g 2 ( s , y ( s ) ) g 2 ( s , x ( s ) ) | d s + | ( η 2 β + 1 ) Γ ( 3 γ ) Γ ( 2 β ) Γ ( 3 γ ) Γ ( 3 β ) ( η 1 β + 1 ) t ( η 1 β + 1 ) ( η 2 γ + 1 ) Γ ( 3 β ) Γ ( α γ ) ) | × [ 0 1 ( 1 s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s ] 1 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) [ m Γ ( α ) + 2 Γ ( 2 β ) m Γ ( α β + 1 ) + ( 2 Γ ( 2 β ) + Γ ( 3 β ) ) Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) Γ ( 3 β ) Γ ( α γ + 1 ) ] = Λ 2 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) ,

and

| h 1 ′′ ( t ) h 2 ′′ ( t ) | 1 Γ ( α 2 ) 0 t ( t s ) ( α 3 ) | v 1 ( s ) v 2 ( s ) | d s + Γ ( 3 γ ) ( η 2 γ + 1 ) 0 1 | g 2 ( s , y ( s ) ) g 2 ( s , x ( s ) ) | d s + Γ ( 3 γ ) ( η 2 γ + 1 ) Γ ( α γ ) [ 0 1 ( 1 s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s + 0 η ( η s ) α γ 1 | v 1 ( s ) v 2 ( s ) | d s ] 1 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) [ m Γ ( α 1 ) + Γ ( 3 γ ) ( m 2 Γ ( α γ + 1 ) + 2 m ) Γ ( α γ + 1 ) ] = Λ 3 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) .

Hence,

h 1 h 2 = sup t J | h 1 ( t ) h 2 ( t ) | + sup t J | h 1 ( t ) h 2 ( t ) | + sup t J | h 1 ′′ ( t ) h 2 ′′ ( t ) | 1 Λ 1 + Λ 2 + Λ 3 ψ ( x y ) ( Λ 1 + Λ 2 + Λ 3 ) = ψ ( x y ) .

Thus, it is easy to get H d (N(x),N(y))ψ(xy) for all x,yX.

Since the multifunction N has approximate endpoint property, by using Lemma 2.1 there exists x X such that N( x )={ x }. Hence by using Lemma 3.1, x is a solution of the problem (1) and (2). □

Now, we investigate the existence of solution for the fractional differential inclusion problem

D α c x(t)F ( t , x ( t ) , c D γ 1 x ( t ) , , c D γ n x ( t ) ) ,

via integral boundary value conditions

x (0)+b x (1)= i = 1 n c D γ i x(η),x(0)+ax(1)= i = 1 n I γ i x(η),

where tJ=[0,1], 1<α2, n2, 0<η, γ i <1, α γ i 1 for all 1in, a> i = 1 n η γ i + 1 Γ ( γ i + 2 ) , b> i = 1 n η 1 γ i Γ ( 2 γ i ) and F:J× R n + 1 P(R) is a multifunction.

Lemma 3.2 Let vC(J,R), α(1,2], η(0,1), n2 and β i (0,1) for i=1,,n. The unique solution of the fractional differential problem D α c x(t)=v(t) via the boundary value conditions

x(0)+ax(1)= i = 1 n I β i x(η), x (0)+b x (1)= i = 1 n c D β i x(η),

with a> i = 1 n η β i + 1 Γ ( β i + 2 ) , b> i = 1 n η 1 β i Γ ( 2 β i ) is

x(t)= 0 1 G(t,s)v(s)ds,

where G(t,s) is the Green function given by

G ( t , s ) = ( t s ) α 1 Γ ( α ) + 1 A i = 1 n ( η s ) α + β i 1 Γ ( α + β i ) a A Γ ( α ) ( 1 s ) α 1 1 A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) × i = 1 n ( η s ) α β i 1 Γ ( α β i ) b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) + t B i = 1 n ( η s ) α β i 1 Γ ( α β i ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0sηt1,

G ( t , s ) = ( t s ) α 1 Γ ( α ) a A Γ ( α ) ( 1 s ) α 1 b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0ηst1,

G(t,s)= a A Γ ( α ) ( 1 s ) α 1 b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0ηst1,

G ( t , s ) = ( t s ) α 1 Γ ( α ) + 1 A i = 1 n ( η s ) α + β i 1 Γ ( α + β i ) a A Γ ( α ) ( 1 s ) α 1 1 A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) × i = 1 n ( η s ) α β i 1 Γ ( α β i ) b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) + t B i = 1 n ( η s ) α β i 1 Γ ( α β i ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0stη1,

G ( t , s ) = 1 A i = 1 n ( η s ) α + β i 1 Γ ( α + β i ) a A Γ ( α ) ( 1 s ) α 1 1 A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) × i = 1 n ( η s ) α β i 1 Γ ( α β i ) b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) + t B i = 1 n ( η s ) α β i 1 Γ ( α β i ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0tsη1 and

G(t,s)= a A Γ ( α ) ( 1 s ) α 1 b A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) ( 1 s ) α 2 Γ ( α 1 ) b t B Γ ( α 1 ) ( 1 s ) α 2

whenever 0tηs1, where A=1+a i = 1 n η β i + 1 Γ ( β i + 2 ) and B=1+b i = 1 n η 1 β i Γ ( 2 β i ) .

Proof It is known that the general solution of the equation D α c x(t)=v(t) is

x(t)= I α v(t)+ c 0 + c 1 t= 1 Γ ( α ) 0 t ( t s ) ( α 1 ) v(s)ds+ c 0 + c 1 t,

where c 0 , c 1 R are arbitrary constants (see [10, 13] and [14]). Thus,

D β i c x ( t ) = 1 Γ ( α β i ) 0 t ( t s ) ( α β i 1 ) v ( s ) d s + c 1 t 1 β i Γ ( 2 β i ) , I β i x ( t ) = 1 Γ ( α + β i ) 0 t ( t s ) ( α + β i 1 ) v ( s ) d s + c 0 t 1 + β i Γ ( 2 + β i ) + c 1 t 2 + β i Γ ( 3 + β i ) ,

and x (t)= 1 Γ ( α 1 ) 0 t ( t s ) ( α 2 ) v(s)ds+ c 1 . Hence,

x(0)+ax(1)=(a+1) c 0 +a c 1 + a Γ ( α ) 0 1 ( 1 s ) ( α 1 ) v(s)ds

and

x (0)+b x (1)=(1+b) c 1 + b Γ ( α 1 ) 0 1 ( 1 s ) ( α 2 ) v(s)ds.

By using the boundary conditions, we obtain

c 0 ( 1 + a i = 1 n η β i + 1 Γ ( β i + 2 ) ) + c 1 ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) = i = 1 n 0 η ( η s ) α + β i 1 Γ ( β i + α ) v ( s ) d s a Γ ( α ) 0 1 ( 1 s ) α 1 v ( s ) d s

and

c 1 ( 1 + b i = 1 n η 1 β i Γ ( 2 β i ) ) = i = 1 n 0 η ( η s ) α β i 1 Γ ( α β i ) v(s)ds b Γ ( α 1 ) 0 1 ( 1 s ) α 2 v(s)ds.

Thus,

c 0 = 1 A i = 1 n 0 η ( η s ) α + β i 1 Γ ( α + β i ) v ( s ) d s a A Γ ( α ) 0 1 ( 1 s ) α 1 v ( s ) d s 1 A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) × i = 1 n 0 η ( η s ) α β i 1 Γ ( α β i ) v ( s ) d s b A B Γ ( α 1 ) ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) 0 1 ( 1 s ) α 2 v ( s ) d s , c 1 = 1 B i = 1 n 0 η ( η s ) α β i 1 Γ ( α β i ) v ( s ) d s b B Γ ( α 1 ) 0 1 ( 1 s ) α 2 v ( s ) d s .

Hence,

x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 v ( s ) d s + 1 A i = 1 n 0 η ( η s ) α + β i 1 Γ ( α + β i ) v ( s ) d s a A Γ ( α ) 0 1 ( 1 s ) α 1 v ( s ) d s 1 A B ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) i = 1 n 0 η ( η s ) α β i 1 Γ ( α β i ) v ( s ) d s b A B Γ ( α 1 ) ( a i = 1 n η β i + 2 Γ ( β i + 3 ) ) × 0 1 ( 1 s ) α 2 v ( s ) d s + t B i = 1 n 0 η ( η s ) α β i 1 Γ ( α β i ) v ( s ) d s t b B Γ ( α 1 ) 0 1 ( 1 s ) α 2 v ( s ) d s = 0 1 G ( t , s ) v ( s ) d s .

This completes the proof. □

Suppose that X={x:x, c D γ i xC(J,R) for all i=1,,n} endowed with the norm x= sup t J |x(t)|+ i = 1 n sup t J | c D γ i x(t)|. Then (X,) is a Banach space [15]. For xX, define

S F , x = { v L 1 [ 0 , 1 ] : v ( t ) F ( t , x ( t ) , c D γ 1 x ( t ) , , c D γ n x ( t ) )  for almost all  t [ 0 , 1 ] } .

Now, put

L 1 = 1 Γ ( α + 1 ) + 1 A i = 1 n η α + γ i Γ ( α + γ i + 1 ) + a A Γ ( α + 1 ) + 1 A B ( | a i = 1 n η γ i + 2 Γ ( γ i + 3 ) | ) × i = 1 n η α γ i Γ ( α γ i + 1 ) + b A B Γ ( α ) ( | a i = 1 n η γ i + 2 Γ ( γ i + 3 ) | ) + 1 B i = 1 n η α γ i Γ ( α γ i + 1 ) + b B Γ ( α )

and L 2 j = 1 Γ ( α γ j + 1 ) + 1 B Γ ( 2 γ j ) i = 1 n η α γ i Γ ( α γ i + 1 ) + b B Γ ( 2 γ j ) Γ ( α ) for all 1jn.

Theorem 3.2 Let ψ:[0,)[0,) a nondecreasing upper semi-continuous map such that lim inf t (tψ(t))>0 and ψ(t)<t for all t>0, F:J× R n + 1 P c p (R) a multifunction such that F(, x 1 , x 2 ,, x n + 1 ):[0,1] P c p (R) is measurable and integrable bounded for all x 1 , x 2 ,, x n + 1 R. Assume that there exists mC(J,[0,)) such that

H d ( F ( t , x 1 , x 2 , , x n + 1 ) F ( t , y 1 , y 2 , , y n + 1 ) ) m ( t ) ψ ( | x 1 y 1 | + | x 2 y 2 | + + | x n + 1 y n + 1 | ) ( 1 m ( L 1 + j = 1 n L 2 j ) ) .

Define Ω:X 2 X by

Ω(x)= { h X :  there exist  v S F , x  such that  h ( t ) = 0 1 G ( t , s ) v ( s ) d s  for all  t J } .

If the multifunction Ω has the approximate endpoint property, then the boundary value inclusion problem (3) and (4) has a solution.

Proof We show that the multifunction Ω:XP(X) has a endpoint which is a solution of the problem (3) and (4).

First, we show that Ω(x) is closed subset of X for all xX.

Let xX and { u n } n 1 be a sequence in Ω(x) with u n u. For each nN, choose v n S F , x such that u n (t)= 0 1 G(t,s) v n (s)ds for all tJ. Since F has compact values, { v n } n 1 has a subsequence which converges to some v L 1 [0,1]. We denote this subsequence again by { v n } n 1 .

It is easy to check that v S F , x and u n (t)u(t)= 0 1 G(t,s)v(s)ds for all tJ. This implies that uΩ(x) and so Ω has closed values. Since F is a compact multivalued map, it is easy to check that Ω(x) is a bounded set for all xX.

Now, we show that for all x,yX, H d (Ω(x),Ω(y))ψ(xy).

Let x,yX and h 1 Ω(y). Choose v 1 S F , y such that h 1 (t)= 0 1 G(t,s) v 1 (s)ds for almost all tJ. Since

H d ( F ( t , x ( t ) , c D γ 1 x ( t ) , , c D γ n x ( t ) ) , F ( t , y ( t ) , c D γ 1 y ( t ) , , c D γ n y ( t ) ) ) m ( t ) ψ ( | x ( t ) y ( t ) | + | c D γ 1 x ( t ) c D γ 1 y ( t ) | + + | c D γ n x ( t ) c D γ n y ( t ) | ) × ( 1 m ( L 1 + j = 1 n L 2 j ) )

for all tJ, there exists wF(t,x(t), c D γ 1 x(t),, c D γ n x(t)) such that

| v 1 ( t ) w | m ( t ) ψ ( | x ( t ) y ( t ) | + | c D γ 1 x ( t ) c D γ 1 y ( t ) | + + | c D γ n x ( t ) c D γ n y ( t ) | ) ( 1 m ( L 1 + j = 1 n L 2 j ) )

for all tJ. Consider the multivalued map U:JP(R) defined by the rule

U ( t ) = { w R : | v 1 ( t ) w | m ( t ) ψ ( | x ( t ) y ( t ) | + | c D γ 1 x ( t ) c D γ 1 y ( t ) | + + | c D γ n x ( t ) c D γ n y ( t ) | ) ( 1 m ( L 1 + j = 1 n L 2 j ) ) } .

Since v 1 and

φ=mψ ( | x y | + | c D γ 1 x c D γ 1 y | + + | c D γ n x c D γ n y | ) ( 1 m ( L 1 + j = 1 n L 2 j ) )

are measurable, the multifunction

U()F ( t , x ( ) , c D γ 1 x ( ) , , c D γ n x ( ) )

is measurable.

Choose v 2 (t)F(t,x(t), c D γ 1 x(t),, c D γ n x(t)) such that

| v 1 ( t ) v 2 ( t ) | m ( t ) ψ ( | x ( t ) y ( t ) | + | c D γ 1 x ( t ) c D γ 1 y ( t ) | + + | c D γ n x ( t ) c D γ n y ( t ) | ) ( 1 m ( L 1 + j = 1 n L 2 j ) )

for all tJ. Now, consider the element h 2 Ω(x) which is defined by h 2 (t)= 0 1 G(t,s) v 2 (s)ds for all tJ.

Thus,

| h 1 ( t ) h 2 ( t ) | = | 0 1 G ( t , s ) v 1 ( s ) d s 0 1 G ( t , s ) v 2 ( s ) d s | = | 1 Γ ( α ) 0 t ( t s ) α 1 v 1 ( s ) d s + 1 A i = 1 n 0 η ( η s ) α + γ i 1 Γ ( α + γ i ) v 1 ( s ) d s a A Γ ( α ) 0 1 ( 1 s ) α 1 v 1 ( s ) d s 1 A B ( a i = 1 n η γ i + 2 Γ ( γ i + 3 ) ) × i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) v 1 ( s ) d s b A B Γ ( α 1 ) ( a i = 1 n η γ i + 2 Γ ( γ i + 3 ) ) × 0 1 ( 1 s ) α 2 v 1 ( s ) d s + t B i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) v 1 ( s ) d s t b B Γ ( α 1 ) 0 1 ( 1 s ) α 2 v 1 ( s ) d s 1 Γ ( α ) 0 t ( t s ) α 1 v 2 ( s ) d s 1 A i = 1 n 0 η ( η s ) α + γ i 1 Γ ( α + γ i ) v 2 ( s ) d s + a A Γ ( α ) 0 1 ( 1 s ) α 1 v 2 ( s ) d s + 1 A B ( a i = 1 n η γ i + 2 Γ ( γ i + 3 ) ) × i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) v 2 ( s ) d s + b A B Γ ( α 1 ) ( a i = 1 n η γ i + 2 Γ ( γ i + 3 ) ) × 0 1 ( 1 s ) α 2 v 2 ( s ) d s t B i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) v 2 ( s ) d s + t b B Γ ( α 1 ) 0 1 ( 1 s ) α 2 v 2 ( s ) d s | 1 Γ ( α ) 0 t ( t s ) α 1 | v 1 ( s ) v 2 ( s ) | d s + 1 A i = 1 n 0 η ( η s ) α + γ i 1 Γ ( α + γ i ) | v 1 ( s ) v 2 ( s ) | d s + a A Γ ( α ) 0 1 ( 1 s ) α 1 | v 1 ( s ) v 2 ( s ) | d s + 1 A B ( | a i = 1 n η γ i + 2 Γ ( γ i + 3 ) | ) i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) | v 1 ( s ) v 2 ( s ) | d s + b A B Γ ( α 1 ) ( | a i = 1 n η γ i + 2 Γ ( γ i + 3 ) | ) × 0 1 ( 1 s ) α 2 | v 1 ( s ) v 2 ( s ) | d s + t B i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) | v 1 ( s ) v 2 ( s ) | d s + t b B Γ ( α 1 ) 0 1 ( 1 s ) α 2 | v 1 ( s ) v 2 ( s ) | d s ( L 1 L 1 + j = 1 n L 2 j ) ψ ( x y ) ,

and

| c D γ j h 1 ( t ) c D γ j h 2 ( t ) | 1 Γ ( α γ j ) 0 t ( t s ) α γ j 1 | v 1 ( s ) v 2 ( s ) | d s + t 1 γ j B Γ ( 2 γ j ) × i = 1 n 0 η ( η s ) α γ i 1 Γ ( α γ i ) | v 1 ( s ) v 2 ( s ) | d s + b t 1 γ j B Γ ( 2 γ j ) Γ ( α 1 ) 0 1 ( 1 s ) α 2 | v 1 ( s ) v 2 ( s ) | d s ( L 2 j L 1 + j = 1 n Λ 2 j ) ψ ( x y )

for all 1jn. Hence,

h 1 h 2 = sup t J | h 1 ( t ) h 2 ( t ) | + sup t J i = 1 n | c D γ i h 1 ( t ) c D γ i h 2 ( t ) | ψ ( x y ) ( L 1 L 1 + j = 1 n L 2 j + i = 1 n L 2 i L 1 + j = 1 n L 2 j ) = ψ ( x y ) .

Analogously, interchanging the roles of x, y, we obtain H d (Ω(x),Ω(y))ψ(xy). Since the multifunction Ω has the approximate endpoint property, by using Lemma 3.2 there exists x X such that Ω( x )={ x }. □

4 Example

Here, we give an example to illustrate our first main result.

Example 4.1 Consider the fractional differential inclusion problem via the integral boundary conditions

{ D 5 2 c x ( t ) [ 0 , t 1 , 000 sin x ( t ) + 1 1 , 000 cos x ( t ) + 1 1 , 000 | x ( t ) | 1 + | x ( t ) | ] , x ( 0 ) + x ( 1 2 ) + x ( 1 ) = 0 1 s 300 sin x ( s ) d s , D 1 2 c x ( 0 ) + c D 1 2 x ( 1 2 ) + c D 1 2 x ( 1 ) = 0 1 e s 1 300 sin x ( s ) d s , D 3 2 c x ( 0 ) + c D 3 2 x ( 3 2 ) + c D 3 2 x ( 1 ) = 0 1 2 s + 1 286 π sin x ( s ) d s ,

where t[0,1]. Define the maps

F : [ 0 , 1 ] × R 3 P ( R ) , F ( t , x , y , z ) = [ 0 , t 1 , 000 sin x + 1 1 , 000 cos y + 1 1 , 000 | z | 1 + | z | ] , g 0 : [ 0 , 1 ] × R R , g 0 ( t , x ) = t 300 sin x , g 1 : [ 0 , 1 ] × R R , g 1 ( t , x ) = e t 1 300 sin x , g 2 : [ 0 , 1 ] × R R , g 2 ( t , x ) = 2 t + 1 286 π sin x ,

and N: C 2 ([0,1]) 2 C 2 ( [ 0 , 1 ] ) by the rule

N(x)= { h C 2 ( [ 0 , 1 ] ) :  there exist  v S F , x  such that  h ( t ) = w ( t )  for all  t [ 0 , 1 ] } ,

where

w ( t ) = 1 Γ ( 5 2 ) 0 t ( t s ) 3 2 v ( s ) d s + 1 3 0 1 s 300 sin x ( s ) d s 1 3 Γ ( 5 2 ) [ 0 1 ( 1 s ) 3 2 v ( s ) d s + 0 1 2 ( 1 2 s ) 3 2 v ( s ) d s ] + 3 Γ ( 3 2 ) t 3 2 Γ ( 3 2 ) 3 ( 1 2 1 2 + 1 ) 0 1 e s 1 300 sin x ( s ) d s + 3 2 Γ ( 3 2 ) 3 Γ ( 3 2 ) t 3 ( 1 2 1 2 + 1 ) × [ 0 1 ( 1 s ) v ( s ) d s + 0 1 2 ( 1 2 s ) v ( s ) d s ] + ( 3 ( 1 2 5 2 + 1 ) Γ ( 3 2 ) 2 5 4 Γ ( 3 2 ) ( 1 2 1 2 + 1 ) Γ ( 5 2 ) 6 ( 1 2 1 2 + 1 ) 2 Γ ( 5 2 ) + 6 ( 1 2 3 2 + 1 ) Γ ( 3 2 ) 2 t + 3 ( 1 2 1 2 + 1 ) Γ ( 3 2 ) Γ ( 5 2 ) t 2 6 ( 1 2 1 2 + 1 ) 2 Γ ( 5 2 ) ) 0 1 2 s + 1 286 π sin x ( s ) d s + ( ( 5 4 ) Γ ( 3 2 ) ( 1 2 1 2 + 1 ) Γ ( 3 2 ) 3 ( 1 2 3 2 + 1 ) Γ ( 3 2 ) Γ ( 3 2 ) 6 ( 1 2 1 2 + 1 ) 2 Γ ( 5 2 ) + 6 ( 1 2 3 2 + 1 ) Γ ( 3 2 ) Γ ( 3 2 ) t 3 Γ ( 3 2 ) Γ ( 5 2 ) ( 1 2 1 2 + 1 ) t 2 6 ( 1 2 1 2 + 1 ) 2 Γ ( 5 2 ) ) × [ 0 1 v ( s ) d s + 0 1 2 v ( s ) d s ] .

Put m(t)= 3 t 1 , 000 , m 0 (t)= t 100 , m 1 (t)= e t 1 100 , m 2 (t)= 2 t + 1 100 π , ψ(t)= t 3 , α= 5 2 , β= 1 2 , γ= 3 2 , η= 1 2 . Then we have Λ 1 0.135, Λ 2 0.037, and Λ 3 0.017.

It is easy to check that

H d ( F ( t , x 1 , x 2 , x 3 ) , F ( t , y 1 , y 2 , y 3 ) ) 1 Λ 1 + Λ 2 + Λ 3 m(t)ψ ( | x 1 y 1 | + | x 2 y 2 | + | x 3 y 3 | )

and | g j (t,x) g j (t,y)| 1 Λ 1 + Λ 2 + Λ 3 m j (t)ψ(|xy|) for all t[0,1], x,y, x 1 , x 2 , x 3 , y 1 , y 2 , y 3 R and j=0,1,2. Note that sup x N ( 0 ) x=0 and so inf x C 2 ( [ 0 , 1 ] ) sup y N ( x ) xy=0. Hence, N has the approximate endpoint property. Now by using Theorem 3.1, the system of fractional differential inclusions has at least one solution.

5 Concluding remarks

This work contains our dedicated study to develop and improve methods for studying two fractional differential inclusions via integral boundary value conditions. We introduced our result by using an endpoint result for multifunctions, due to Amini-Harandi [36]. This study is motivated by relevant applications for solving many real-world problems which give rise to mathematical models in the sphere of boundary value problems.

References

  1. Ahmad B, Nieto JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 2010, 35: 295–304.

    MathSciNet  MATH  Google Scholar 

  2. Bai Z, Sun W: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 2012, 63: 1369–1381. 10.1016/j.camwa.2011.12.078

    Article  MathSciNet  MATH  Google Scholar 

  3. Baleanu D, Agarwal RP, Mohammadi H, Rezapour S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013., 2013: Article ID 112

    Google Scholar 

  4. Baleanu D, Mohammadi H, Rezapour S: The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Differ. Equ. 2013., 2013: Article ID 359

    Google Scholar 

  5. Baleanu D, Mohammadi H, Rezapour S: Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstr. Appl. Anal. 2012., 2012: Article ID 837437

    Google Scholar 

  6. Baleanu D, Mohammadi H, Rezapour S: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 2013., 371: Article ID 20120144

    Google Scholar 

  7. Baleanu D, Mohammadi H, Rezapour S: On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Differ. Equ. 2013., 2013: Article ID 83

    Google Scholar 

  8. Baleanu D, Nazemi Z, Rezapour S: The existence of positive solutions for a new coupled system of multi-term singular fractional integro-differential boundary value problems. Abstr. Appl. Anal. 2013., 2013: Article ID 368659

    Google Scholar 

  9. Baleanu D, Nazemi Z, Rezapour S: Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv. Differ. Equ. 2013., 2013: Article ID 368

    Google Scholar 

  10. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  11. Miller KS, Ross B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York; 1993.

    MATH  Google Scholar 

  12. Mohammadi H, Rezapour S: Two existence results for nonlinear fractional differential equations by using fixed point theory on ordered Gauge spaces. J. Adv. Math. Stud. 2013,6(2):154–158.

    MathSciNet  MATH  Google Scholar 

  13. Podlubny I: Fractional Differential Equations. Academic Press, New York; 1999.

    MATH  Google Scholar 

  14. Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon; 1993.

    MATH  Google Scholar 

  15. Su X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22: 64–69. 10.1016/j.aml.2008.03.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Agarwal RP, Ahmad B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. J. Appl. Math. Comput. 2011, 62: 1200–1214. 10.1016/j.camwa.2011.03.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Agarwal RP, Belmekki M, Benchohra M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009., 2009: Article ID 981728

    Google Scholar 

  18. Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109: 973–1033. 10.1007/s10440-008-9356-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahmad B, Ntouyas SK: Boundary value problem for fractional differential inclusions with four-point integral boundary conditions. Surv. Math. Appl. 2011, 6: 175–193.

    MathSciNet  Google Scholar 

  20. Ahmad B, Ntouyas SK, Alsedi A: On fractional differential inclusions with anti-periodic type integral boundary conditions. Bound. Value Probl. 2013., 2013: Article ID 82

    Google Scholar 

  21. Alsaedi A, Ntouyas SK, Ahmad B: Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space. Abstr. Appl. Anal. 2013., 2013: Article ID 869837

    Google Scholar 

  22. Aubin J, Ceuina A: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin; 1984.

    Book  Google Scholar 

  23. Bragdi M, Debbouche A, Baleanu D: Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space. Adv. Math. Phys. 2013., 2013: Article ID 426061

    Google Scholar 

  24. Benchohra M, Hamidi N: Fractional order differential inclusions on the Half-Lin. Surv. Math. Appl. 2010, 5: 99–111.

    MathSciNet  Google Scholar 

  25. Benchohra M, Ntouyas SK: On second order differential inclusions with periodic boundary conditions. Acta Math. Univ. Comen. 2000,LXIX(2):173–181.

    MathSciNet  MATH  Google Scholar 

  26. El-Sayed AMA, Ibrahim AG: Multivalued fractional differential equations. Appl. Math. Comput. 1995, 68: 15–25. 10.1016/0096-3003(94)00080-N

    Article  MathSciNet  MATH  Google Scholar 

  27. Kisielewicz M: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht; 1991.

    MATH  Google Scholar 

  28. Liu X, Liu Z: Existence result for fractional differential inclusions with multivalued term depending on lower-order derivative. Abstr. Appl. Anal. 2012., 2012: Article ID 423796

    Google Scholar 

  29. Nieto JJ, Ouahab A, Prakash P: Extremal solutions and relaxation problems for fractional differential inclusions. Abstr. Appl. Anal. 2013., 2013: Article ID 292643

    Google Scholar 

  30. Phung PD, Truong LX: On a fractional differential inclusion with integral boundary conditions in Banach space. Fract. Calc. Appl. Anal. 2013,16(3):538–558.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ouahab A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 2008, 69: 3877–3896. 10.1016/j.na.2007.10.021

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang J, Ibrahim AG: Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces. J. Funct. Spaces Appl. 2013., 2013: Article ID 518306

    Google Scholar 

  33. Heikkila S, Lakshmikantam V: Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations. Dekker, New York; 1994.

    Google Scholar 

  34. Heymans N, Podlubny I: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006,45(5):765–772. 10.1007/s00397-005-0043-5

    Article  Google Scholar 

  35. Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge; 2009.

    MATH  Google Scholar 

  36. Amini-Harandi A: Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 2010, 72: 132–134. 10.1016/j.na.2009.06.074

    Article  MathSciNet  MATH  Google Scholar 

  37. Deimling K: Multi-Valued Differential Equations. de Gruyter, Berlin; 1992.

    Book  MATH  Google Scholar 

  38. Berinde V, Pacurar M: The role of the Pompeiu-Hausdorff metric in fixed point theory. Creative Math. Inform. 2013,22(2):35–42.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of the second and fourth authors was supported by Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Postolache.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanian, R., Hedayati, V., Postolache, M. et al. On a fractional differential inclusion via a new integral boundary condition. J Inequal Appl 2014, 319 (2014). https://doi.org/10.1186/1029-242X-2014-319

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-319

Keywords