Skip to main content

Multilinear fractional integral operators on generalized weighted Morrey spaces

Abstract

Let I α , m be multilinear fractional integral operator and let ( b 1 ,, b m ) ( B M O ) m . In this paper, the estimates of I α , m , the m-linear commutators I α , m Σ b and the iterated commutators I α , m Π b on the generalized weighted Morrey spaces are established.

MSC:42B35, 42B20.

1 Introduction and results

The classical Morrey spaces were introduced by Morrey [1] in 1938, have been studied intensively by various authors, and together with weighted Lebesgue spaces play an important role in the theory of partial differential equations; they appeared to be quite useful in the study of local behavior of the solutions of elliptic differential equations and describe local regularity more precisely than Lebesgue spaces. See [24] for details. Moreover, various Morrey spaces have been defined in the process of this study. Mizuhara [5] introduced the generalized Morrey space M φ p ; Komori and Shirai [6] defined the weighted Morrey spaces L p , κ (ω); Guliyev [7] gave the concept of generalized weighted Morrey space M φ p (ω), which could be viewed as an extension of both M φ p and L p , κ (ω). The boundedness of some operators on these Morrey spaces can be seen in [59].

Let R n be the n-dimensional Euclidean space, ( R n ) m = R n ×× R n be the m-fold product space (mN), and let f =( f 1 ,, f m ) be a collection of m functions on R n . Given α(0,mn) and ( b 1 ,, b m ) ( B M O ) m . We consider the multilinear fractional integral operators I α , m defined by

I α , m ( f )(x)= ( R n ) m f 1 ( y 1 ) f m ( y m ) ( | x y 1 | + + | x y m | ) m n α d y 1 d y m .
(1.1)

The corresponding m-linear commutators I α , m Σ b and the iterated commutators I α , m Π b defined by, respectively,

I α , m Σ b ( f )(x)= i = 1 m ( R n ) m ( b i ( x ) b i ( y i ) ) j = 1 m f j ( y j ) ( | x y 1 | + + | x y m | ) m n α d y 1 d y m
(1.2)

and

I α , m Π b ( f )(x)= ( R n ) m i = 1 m ( b i ( x ) b i ( y i ) ) f i ( y i ) ( | x y 1 | + + | x y m | ) m n α d y 1 d y m .
(1.3)

As is well known, multilinear fractional integral operator was first studied by Grafakos [10], subsequently, by Kenig and Stein [11], Grafakos and Kalton [12]. In 2009, Moen [13] introduced weight function A P , q and gave weighted inequalities for multilinear fractional integral operators; In 2013, Chen and Wu [14] obtained the weighted norm inequalities for the multilinear commutators I α , m Σ b and I α , m Π b . More results of the weighted inequalities for multilinear fractional integral and its commutators can be found in [1517].

The aim of the present paper is to investigate the boundedness of multilinear fractional integral operator and its commutator on the generalized weighted Morrey spaces. Our results can be formulated as follows.

Theorem 1.1 Let m2 and let 0<α<mn. Suppose 1/p= i = 1 m 1/ p i , 1/ q i =1/ p i α/mn, and 1/q= i = 1 m 1/ q i =1/pα/n, ω =( ω 1 ,, ω m ) satisfy the A p , q condition with ω 1 q 1 ,, ω m q m A , and φ k =( φ k 1 ,, φ k m ), k=1,2, satisfy the condition

s ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i i = 1 m ( ω i p i ( B ( x , r ) ) ) 1 p i d r r 1 α C φ 2 (x,s),
(1.4)

where φ 2 = i = 1 m φ 2 i , ν ω = i = 1 m ω i . If p 1 ,, p m (1,), then there exists a constant C independent of f such that

I α , m f M φ 2 q ( ν ω q ) C i = 1 m f i M φ 1 i p i ( ω i p i ) ;
(1.5)

If p 1 ,, p m [1,), and min{ p 1 ,, p m }=1, then there exists a constant C independent of f such that

I α , m f W M φ 2 q ( ν ω q ) C i = 1 m f i M φ 1 i p i ( ω i p i ) .
(1.6)

Theorem 1.2 Let m2 and let 0<α<mn. Suppose p 1 ,, p m (1,) with 1/p= i = 1 m 1/ p i , 1/ q i =1/ p i α/mn and 1/q= i = 1 m 1/ q i =1/pα/n, ω =( ω 1 ,, ω m ) satisfy the A p , q condition with ω 1 p 1 ,, ω m p m A , ν ω = i = 1 m ω i , and φ k =( φ k 1 ,, φ k m ), k=1,2, satisfy the condition

s ( 1 + ln r s ) m ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i i = 1 m ( ω i p i ( B ( x , r ) ) ) 1 p i d r r 1 α C φ 2 (x,s),
(1.7)

where φ 2 = i = 1 m φ 2 i , ν ω = i = 1 m ω i . If ( b 1 ,, b m ) ( B M O ) m , then there exists a constant C>0 independent of f such that

I α , m Σ b ( f ) M φ 2 q ( ν ω q ) C i = 1 m b i f i M φ 1 i p i ( ω i p i ) ;
(1.8)

and

I α , m Π b ( f ) M φ 2 q ( ν ω q ) C i = 1 m b i f i M φ 1 i p i ( ω i p i ) .
(1.9)

2 Definitions and preliminaries

A weight ω is a nonnegative, locally integrable function on R n . Let B=B( x 0 , r B ) denote the ball with the center x 0 and radius r B . For any ball B and λ>0, λB denotes the ball concentric with B whose radius is λ times as long. For a given weight function ω and a measurable set E, we also denote the Lebesgue measure of E by |E| and set weighted measure ω(E)= E ω(x)dx.

The classical A p weight theory was first introduced by Muckenhoupt in the study of weighted L p boundedness of Hardy-Littlewood maximal functions in [18]. A weight ω is said to belong to A p for 1<p<, if there exists a constant C such that for every ball B R n ,

( 1 | B | B ω ( x ) d x ) ( 1 | B | B ω ( x ) 1 p d x ) p 1 C,
(2.1)

where p is the dual of p such that 1/p+1/ p =1. The class A 1 is defined by replacing the above inequality with

1 | B | B w(y)dyC ess inf x B w(x)for every ball B R n .
(2.2)

A weight ω is said to belong to A if there are positive numbers C and δ so that

ω ( E ) ω ( B ) C ( | E | | B | ) δ
(2.3)

for all balls B and all measurable EB. It is well known that

A = 1 p < A p .
(2.4)

We need another weight class A p , q introduced by Muckenhoupt and Wheeden in [19]. A weight function ω belongs to A p , q for 1<p<q< if there is a constant C>0 such that, for every ball B R n ,

( 1 | B | B ω ( x ) q d x ) 1 / q ( 1 | B | B ω ( x ) p d x ) p C.
(2.5)

When p=1, ω is in the class A 1 , q with 1<q< if there is a constant C>0 such that, for every ball B R n ,

( 1 | B | B ω ( x ) q d x ) 1 / q ( ess sup x B 1 ω ( x ) ) C.
(2.6)

Let us recall the definition of multiple weights. For m exponents p 1 ,, p m , we write p =( p 1 ,, p m ). Let p 1 ,, p m [1,), 1/p= i = 1 m 1/ p i , and let q>0. Given ω =( ω 1 ,, ω m ), set ν ω = i = 1 m ω i . We say that ω satisfies the A p , q condition if it satisfies

sup B ( 1 | B | B ν ω ( x ) q d x ) 1 / q i = 1 m ( 1 | B | B ω i ( x ) p i d x ) 1 / p i C.
(2.7)

When p i =1, ( 1 | B | B ω i ( x ) p i ( x ) d x ) 1 / p i is understood as ( inf x B ω i ( x ) ) 1 .

Lemma 2.1 [13, 14]

Let 0<α<mn, and p 1 ,, p m [1,), let 1/p= k = 1 m 1/ p k , and let 1/q=1/pα/n. If ω A p , q , then

ν ω q A m q and ω i p i A m p i for i=1,,m,
(2.8)

where ν ω = i = 1 m ω i .

Lemma 2.2 [20]

Let m2, q 1 ,, q m [1,) and q(0,) with 1/q= i = 1 m 1/ q i . Assume that ω 1 q 1 ,, ω m q m A and ν ω = i = 1 m ω i . Then for any ball B, there exists a constant C>0 such that

i = 1 m ( B ω i ( x ) q i d x ) q / q i C B ν ω ( x ) q dx.
(2.9)

Let 1p<, let φ be a positive measurable function on R n ×(0,), and let ω be a nonnegative measurable function on R n . Following [7], we denote by M φ p (ω) the generalized weighted Morrey space and the space of all functions f L loc p (ω) with finite norm

f M φ p ( w ) = sup x R n , r > 0 1 φ ( x , r ) ( 1 w ( B ( x , r ) ) f L p ( ω , B ( x , r ) ) p ) 1 / p ,
(2.10)

where

f L p ( ω , B ( x , r ) ) = B ( x , r ) | f ( y ) | p w(y)dy.

Furthermore, by W M φ p (ω) we denote the weak generalized weighted Morrey space of all function fW M φ p (ω) for which

f W M φ p ( w ) = sup x R n , r > 0 1 φ ( x , r ) ( 1 w ( B ( x , r ) ) f W L p ( ω , B ( x , r ) ) p ) 1 / p ,
(2.11)

where

f W L p ( ω , B ( x , r ) ) = sup t > 0 t ( ω ( { y B ( x , r ) : | f ( y ) | > t } ) ) 1 p .
  1. (1)

    If ω=1 and φ(x,r)= r λ n p with 0<λ<n, then M φ p (ω)= L p , λ is the classical Morrey space.

  2. (2)

    If φ(x,r)=ω ( B ( x , r ) ) κ 1 p , then M φ p (ω)= L p , κ (ω) is the weighted Morrey space.

  3. (3)

    If φ(x,r)=ν ( B ( x , r ) ) κ p ω ( B ( x , r ) ) 1 p , then M φ p (ω)= L p , κ (ν,ω) is the two weighted Morrey space.

  4. (4)

    If ω=1, then M φ p (ω)= M φ p is the generalized Morrey space.

  5. (5)

    If φ(x,r)=ω ( B ( x , r ) ) 1 p , then M φ p (ω)= L p (ω).

Let us recall the definition and some properties of BMO. A locally integrable function b is said to be in BMO if

sup B R n 1 | B | B | b ( x ) b B | dx= b <,

where b B = | B | 1 B b(y)dy.

Lemma 2.3 (John-Nirenberg inequality; see [21])

Let bBMO. Then for any ball B R n , there exist positive constants C 1 and C 2 such that for all λ>0,

| { x B : | b ( x ) b B | > λ } | C 1 |B|exp ( C 2 λ / b ) .
(2.12)

By Lemma 2.3, it is easy to get the following.

Lemma 2.4 Suppose ω A and bBMO. Then for any p1 we have

( 1 ω ( B ) B | b ( x ) b B | p ω ( x ) d x ) 1 / p C b .
(2.13)

Lemma 2.5 [22]

Let bBMO, 1p<, and r 1 , r 2 >0. Then

( 1 | B ( x 0 , r 1 ) | B ( x 0 , r 1 ) | b ( y ) b B ( x 0 , r 2 ) | p d y ) 1 p C b ( 1 + | ln r 1 r 2 | ) ,
(2.14)

where C>0 is independent of f, x 0 , r 1 , and r 2 .

By Lemma 2.4 and Lemma 2.5, it is easily to prove the following results.

Lemma 2.6 Suppose ω A and bBMO. Then for any 1p< and r 1 , r 2 >0, we have

( 1 ω ( B ( x 0 , r 1 ) ) B ( x 0 , r 1 ) | b ( x ) b B ( x 0 , r 2 ) | p ω ( x ) d x ) 1 / p C b ( 1 + | ln r 1 r 2 | ) .
(2.15)

We also need the following result.

Lemma 2.7 [23]

Let f be a real-valued nonnegative function and measurable on E. Then

( ess inf x E f ( x ) ) 1 = ess sup x E 1 f ( x ) .
(2.16)

At the end of this section, we list some known results about weighted norm inequalities for the multilinear fractional integrals and their commutators.

Lemma 2.8 [13]

Let m2 and let 0<α<mn. Suppose 1/p=1/ p 1 ++1/ p m , 1/q=1/pα/n, ω =( ω 1 ,, ω m ) satisfies the A p , q condition. If p 1 ,, p m (1,), then there exists a constant C independent of f =( f 1 ,, f m ) such that

I α , m f L q ( ν ω q ) C i = 1 m f i L p i ( ω i p i ) .
(2.17)

If p 1 ,, p m [1,), and min{ p 1 ,, p m }=1, then there exists a constant C independent of f such that

I α , m f W L q ( ν ω q ) C i = 1 m f i L p i ( ω i p i ) ,
(2.18)

where ν ω = i = 1 m ω i .

Lemma 2.9 [14]

Let m2, let 0<α<mn and let ( b 1 ,, b m ) ( B M O ) m . For 1< p 1 ,, p m <, 1/p=1/ p 1 ++1/ p m , and 1/q=1/pα/n, if ω A p , q , then there exists a constant C>0 such that

I α , m Σ b ( f ) L q ( ν ω q ) C i = 1 m b i f i L p i ( ω i p i ) ;
(2.19)

and

I α , m Π b ( f ) L q ( ν ω q ) C i = 1 m b i f i L p i ( ω i p i ) ,
(2.20)

where ν ω = i = 1 m ω i .

3 Proof of Theorem 1.1

We first prove the following conclusions.

Theorem 3.1 Let m2 and let 0<α<mn. Suppose 1/p= i = 1 m 1/ p i , 1/ q i =1/ p i α/mn, and 1/q= i = 1 m 1/ q i =1/pα/n, ω =( ω 1 ,, ω m ) satisfy the A P , q condition with ω 1 q 1 ,, ω m q m A . If p 1 ,, p m (1,), then there exists a constant C independent of f such that

I α , m f L q ( ν ω q , B ( x 0 , s ) ) C i = 1 m ( ω i q i ( B ( x 0 , s ) ) ) 1 q i × 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.1)

If p 1 ,, p m [1,), and min{ p 1 ,, p m }=1, then there exists a constant C independent of f such that

I α , m f W L q ( ν ω q , B ( x 0 , s ) ) C i = 1 m ( ω i q i ( B ( x 0 , s ) ) ) 1 q i × 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α ,
(3.2)

where ν ω = i = 1 m ω i .

Proof We represent f i as f i = f i 0 + f i , where f i 0 = f i χ B ( x 0 , 2 s ) , i=1,,m, and χ B ( x 0 , 2 s ) denotes the characteristic function of B( x 0 ,2s). Then

i = 1 m f i ( y i ) = i = 1 m ( f i 0 ( y i ) + f i ( y i ) ) = α 1 , , α m { 0 , } f 1 α 1 ( y 1 ) f m α m ( y m ) = i = 1 m f i 0 ( y i ) + Σ f 1 α 1 ( y 1 ) f m α m ( y m ) ,

where each term of Σ contains at least one α i 0. Since I α , m is an m-linear operator,

I α , m f L q ( ν ω q , B ( x 0 , s ) ) C I α , m ( f 1 0 , , f m 0 ) L q ( ν ω q , B ( x 0 , s ) ) + C Σ I α , m ( f 1 α 1 , , f m α m ) L q ( ν ω q , B ( x 0 , s ) ) = J 0 , , 0 + Σ J α 1 , , α m
(3.3)

and

I α , m f W L q ( ν ω q , B ( x 0 , s ) ) C I α , m ( f 1 0 , , f m 0 ) W L q ( ν ω q , B ( x 0 , s ) ) + C Σ I α , m ( f 1 α 1 , , f m α m ) W L q ( ν ω q , B ( x 0 , s ) ) = K 0 , , 0 + Σ K α 1 , , α m .
(3.4)

Then by (2.17), if 1< p i <, i=1,,m, we get

J 0 , , 0 C i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 s ) ) .
(3.5)

By (2.18), if min{ p 1 ,, p m }=1, then

K 0 , , 0 C i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 s ) ) .
(3.6)

Applying Hölder’s inequality, for 1 p i q i <, i=1,,m, we have

1 ( 1 | B | B ω i ( y i ) p i d y i ) 1 p i ( 1 | B | B ω i ( y i ) p i d y i ) 1 p i ( 1 | B | B ω i ( y i ) q i d y i ) 1 q i ( 1 | B | B ω i ( y i ) p i d y i ) 1 p i

for any ball B R n . Then

| B ( x 0 , 2 s ) | m α n i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i ( ω i p i ( B ( x 0 , 2 s ) ) ) 1 p i .

Thus, for 1 p i <,

i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 s ) ) C i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 s ) ) | B ( x 0 , 2 s ) | m α n 2 s d r r m n α + 1 C i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i f i L p i ( ω i p i , B ( x 0 , 2 s ) ) ( ω i p i ( B ( x 0 , 2 s ) ) ) 1 p i 2 s d r r m n α + 1 C i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r m n α + 1 .

From (2.7) and Lemma 2.2 we get

i = 1 m ( ω i p i ( B ( x 0 , r ) ) ) 1 p i C | B ( x 0 , r ) | 1 q + i = 1 m 1 p i ( B ( x 0 , r ) ν ω ( x ) q d x ) 1 q C | B ( x 0 , r ) | m α n i = 1 m ( ω i q i ( B ( x 0 , r ) ) ) 1 q i .
(3.7)

Using Hölder’s inequality,

( 1 | B | B ω i ( y ) p i d y ) 1 p i ( 1 | B | B ω i ( y ) q i d y ) 1 q i .

Note that 1/ q i =1/ p i α/mn, then

( ω i q i ( B ( x 0 , r ) ) ) 1 q i C r α / m ( ω i p i ( B ( x 0 , r ) ) ) 1 p i .
(3.8)

Then for 1 p i <, i=1,,m,

i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 s ) ) i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i × 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.9)

This gives J 0 , , 0 and K 0 , , 0 are majored by

i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.10)

For the other term, let us first consider the case when α 1 == α m =. For any xB( x 0 ,s), yB( x 0 , 2 j + 1 s)B( x 0 , 2 j s), we have |x y i ||x y j | for ij. Then

| I α , m ( f 1 , , f m ) ( x ) | C ( R n B ( x 0 , 2 s ) ) m | f 1 ( y 1 ) f m ( y m ) | ( | x y 1 | + + | x y m | ) m n α d y 1 d y m C j = 1 ( B ( x 0 , 2 j + 1 s ) B ( x 0 , 2 j s ) ) m | f 1 ( y 1 ) f m ( y m ) | ( | x y 1 | + + | x y m | ) m n α d y 1 d y m C j = 1 i = 1 m B ( x 0 , 2 j + 1 s ) B ( x 0 , 2 j s ) | f i ( y i ) | | x y i | n α m d y i C j = 1 i = 1 m ( ( 2 j + 1 s ) n + α m B ( x 0 , 2 j + 1 s ) | f i ( y i ) | d y i ) .

Applying Hölder’s inequality, it can be found that sup x B ( x 0 , s ) | I α , m ( f 1 ,, f m )(x)| is less than

C j = 1 i = 1 m ( ( 2 j + 1 s ) n + α m f i L p i ( ω i p i , B ( x 0 , 2 j + 1 s ) ) ( ω i p i ( B ( x 0 , 2 j + 1 s ) ) ) 1 p i ) .

Hence,

sup x B ( x 0 , s ) | I α , m ( f 1 , , f m ) ( x ) | C j = 1 2 j + 1 s 2 j + 2 s ( 2 j + 2 s ) n m + α 1 ( i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 j + 1 s ) ) ( ω i p i ( B ( x 0 , 2 j + 1 s ) ) ) 1 p i ) d r C j = 1 2 j + 1 s 2 j + 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , 2 j + 1 s ) ) ( ω i p i ( B ( x 0 , 2 j + 1 s ) ) ) 1 p i ) d r r m n α + 1 C 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r m n α + 1 .

Substituting (3.7) and (3.8) into the above, we obtain

sup x B ( x 0 , s ) | T ( f 1 , , f m ) ( x ) | C 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.11)

Using Hölder’s inequality,

( B ( x 0 , 2 s ) ν ω ( x ) q d x ) 1 q C i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i .
(3.12)

From (3.11) and (3.12) we know J , , and K , , are not greater than (3.10) for 1 p i <, i=1,,m.

Now we consider the case where exactly τ of the α i are ∞ for some 1τ<m. We only give the arguments for one of the cases. The rest is similar and can easily be obtained from the arguments below by permuting the indices. Then for any xB( x 0 ,s),

| I α , m ( f 1 , , f τ , f τ + 1 0 , , f m 0 ) ( x ) | C ( R n B ( x 0 , 2 s ) ) τ ( B ( x 0 , 2 s ) ) m τ | f 1 ( y 1 ) f m ( y m ) | ( | x y 1 | + + | x y m | ) m n α d y 1 d y m C i = τ + 1 m B ( x 0 , 2 s ) | f i ( y i ) | d y i × j = 1 1 | B ( x 0 , 2 j + 1 s ) | m α / n ( B ( x 0 , 2 j + 1 s ) B ( x 0 , 2 j s ) ) τ | f 1 ( y 1 ) f τ ( y τ ) | d y 1 d y τ C i = τ + 1 m B ( x 0 , 2 s ) | f i ( y i ) | d y i j = 1 1 | B ( x 0 , 2 j + 1 s ) | m α / n i = 1 τ B ( x 0 , 2 j + 1 s ) B ( x 0 , 2 j s ) | f i ( y i ) | d y i C j = 1 i = 1 m ( 2 j + 1 s ) n + α / m B ( x 0 , 2 j + 1 s ) | f i ( y i ) | d y i .

Similar to the estimates for J , , , we get

sup x B ( x 0 , s ) | I α , m ( f 1 , , f τ , f τ + 1 0 , , f m 0 ) ( x ) | C 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.13)

Then J , , , 0 , , 0 and K , , , 0 , , 0 are all less than

i = 1 m ( ω i q i ( B ( x 0 , 2 s ) ) ) 1 q i 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.14)

Combining the above estimates, the proof of Theorem 3.1 is completed. □

Now, we can give the proof of Theorem 1.1. From the definition of generalized weighted Morrey space, the norm of I α , m ( f ) on M φ 2 q ( ν ω q ) equals

sup x R n , r > 0 φ 2 ( x , s ) 1 ( 1 ν ω q ( B ( x , s ) ) B ( x , s ) | I α , m ( f ) ( y ) | q ν ω q ( y ) d y ) 1 / q .
(3.15)

By Lemma 2.2 we have

( B ( x , s ) ν ω q ( x ) d x ) 1 q C i = 1 m ( B ( x , s ) ω i q i ( x ) d x ) 1 q i .
(3.16)

Combining (3.1) and (3.16),

( 1 ν ω q ( B ( x , s ) ) B ( x , s ) | I α , m ( f ) ( y ) | q ν ω q ( y ) d y ) 1 / q 2 s ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(3.17)

Since f i M φ 1 i p i ( ω i p i ), from Lemma 2.7 and the fact f i L p i ( ω i p i , B ( x , r ) ) are all non-decreasing functions of r, we get

i = 1 m f i L p i ( ω i p i , B ( x , r ) ) ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i ess sup 0 < r < t < i = 1 m f i L p i ( ω i p i , B ( x , r ) ) i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i ess sup t > 0 , x R n i = 1 m f i L p i ( ω i p i , B ( x , t ) ) i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i C i = 1 m f i M φ 1 i p i ( ω i p i ) .
(3.18)

Then

s ( i = 1 m f i L p i ( ω p i , B ( x , r ) ) ( ω i p i ( B ( x , r ) ) ) 1 p i ) d r r 1 α = s i = 1 m f i L p i ( ω i p i , B ( x , r ) ) ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i × ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i i = 1 n ( ω i p i ( B ( x , r ) ) ) 1 p i d r r 1 α C i = 1 m f i M φ 1 i p i ( ω i p i ) s ess inf r < t < i = 1 m φ 1 i ( x , t ) ω i ( B ( x , t ) ) 1 p i i = 1 n ω i ( B ( x , r ) ) 1 p i d r r 1 α .
(3.19)

By (1.4) we get

s ( i = 1 m f i L p i ( ω i p i , B ( x , r ) ) ( ω i p i ( B ( x , r ) ) ) 1 p i ) d r r 1 α C φ 2 (x,s) i = 1 m f i M φ 1 i p i ( ω i p i ) .
(3.20)

Combining (3.15), (3.17), and (3.20), then

I α , m f M φ 2 q ( ν ω q ) C i = 1 m f i M φ 1 i p i ( ω i p i ) .

This completes the proof of first part of Theorem 1.1.

Similarly, the norm of I α , m ( f ) on W M φ 2 p ( ν ω q ) equals

sup x R n , r > 0 φ 2 ( x , s ) 1 ( 1 ν ω q ( B ( x , s ) ) I α , m ( f ) W L q ( ν ω q , B ( x , s ) ) q ) 1 / q .
(3.21)

Combining (3.2) and (3.16),

( 1 ν ω q ( B ( x , s ) ) I α , m ( f ) W L q ( ν ω q , B ( x , s ) ) q ) 1 / q C s ( i = 1 m f i L p i ( ω i p i , B ( x , r ) ) ( ω i p i ( B ( x , r ) ) ) 1 p i ) d r r 1 α .
(3.22)

Substituting (3.20) into (3.22),

( 1 ν ω q ( B ( x , s ) ) I α , m ( f ) W L q ( ν ω q , B ( x , s ) ) q ) 1 / q C φ 2 (x,s) i = 1 m f i M φ 1 i p i ( ω i p i ) .
(3.23)

Then

I α , m f W M φ 2 q ( ν ω q ) C i = 1 m f i M φ 1 i p i ( ω i p i ) .

This completes the proof of second part of Theorem 1.1.

4 Proof of Theorem 1.2

Theorem 4.1 Let m2 and let 0<α<mn. Suppose 1/p= i = 1 m 1/ p i , 1/ q i =1/ p i α/mn, and 1/q= i = 1 m 1/ q i =1/pα/n, ω =( ω 1 ,, ω m ) satisfy the A p , q condition with ω 1 q 1 ,, ω m q m A , ν ω = i = 1 m ω i . If p 1 ,, p m (1,), ( b 1 ,, b m ) ( B M O ) m , then there exists a constant C independent of f such that

I α , m Σ b f L q ( ν ω q , B ( x 0 , s ) ) C i = 1 m b i ( ω i q i ( B ( x 0 , s ) ) ) 1 q i × 2 s ( 1 + ln r s ) m ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α
(4.1)

and

I α , m Π b f L q ( ν ω q , B ( x 0 , s ) ) C i = 1 m b i ( ω i q i ( B ( x 0 , s ) ) ) 1 q i × 2 s ( 1 + ln r s ) m ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α ,
(4.2)

where ν ω = i = 1 m ω i .

Proof We will give the proof for I α , m Π b because the proof for I α , m Σ b is very similar but easier. Moreover, for simplicity of the expansion, we only present the case m=2.

We represent f i as f i = f i 0 + f i , where f i 0 = f i χ B ( x 0 , 2 s ) , i=1,2, and χ B ( x 0 , 2 s ) denotes the characteristic function of B( x 0 ,2s). Then

I α , 2 Π b ( f ) L q ( ν ω q , B ( x 0 , s ) ) C ( B ( x 0 , s ) | I α , 2 Π b ( f 1 0 , f 2 0 ) ( x ) | q ν ω q ( x ) d x ) 1 q + C ( B ( x 0 , s ) | I α , 2 Π b ( f 1 0 , f 2 ) ( x ) | q ν ω q ( x ) d x ) 1 q + C ( B ( x 0 , s ) | I α , 2 Π b ( f 1 , f 2 0 ) ( x ) | q ν ω q ( x ) d x ) 1 q + C ( B ( x 0 , s ) | I α , 2 Π b ( f 1 , f 2 ) ( x ) | q ν ω q ( x ) d x ) 1 q = I + I I + I I I + I V .
(4.3)

Since I α , 2 Π b bounded from L p 1 ( ω 1 p 1 )× L p 2 ( ω 2 p 2 ) to L q ( ν ω q ), we get

( B ( x 0 , s ) | I α , 2 Π b ( f 1 0 , f 2 0 ) ( x ) | q ν ω q ( x ) d x ) 1 q C i = 1 2 b i f i L p i ( ω p i , B ( x 0 , 2 s ) ) .

Then by (3.9) we get

I C i = 1 2 b i ( ω i q i ( B ( x 0 , s ) ) ) 1 q i 2 s ( i = 1 2 f i L p i ( ω p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.4)

Owing to the symmetry of II and III, we only estimate II. Taking λ i = ( b i ) B ( x 0 , s ) , then

I α , 2 Π b ( f 1 0 , f 2 ) ( x ) = ( b 1 ( x ) λ 1 ) ( b 2 ( x ) λ 2 ) I α , 2 ( f 1 0 , f 2 ) ( x ) ( b 1 ( x ) λ 1 ) I α , 2 ( f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) ( b 2 ( x ) λ 2 ) I α , 2 ( ( b 1 λ 1 ) f 1 0 , f 2 ) ( x ) + I α , 2 ( ( b 1 λ 1 ) f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) = I I 1 + I I 2 + I I 3 + I I 4 .
(4.5)

Similar to the estimate of (3.13), for any xB( x 0 ,s) we can deduce

sup x B ( x 0 , s ) | I α , 2 ( f 1 0 , f 2 ) ( x ) | C 2 s ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.6)

By Lemma 2.1 we know ν ω q A . Applying Hölder’s inequality and (2.13), we have

( B ( x 0 , s ) | ( b 1 ( x ) λ 1 ) ( b 2 ( x ) λ 2 ) | q ν ω q ( x ) d x ) 1 q C i = 1 2 ( B ( x 0 , s ) | b i ( x ) λ i | 2 q ν ω q ( x ) d x ) 1 2 q C i = 1 2 b i ( ν ω q ( B ( x 0 , s ) ) ) 1 q .
(4.7)

Then by (4.6), (4.7), and (3.12), we have

( B ( x 0 , s ) | I I 1 | q ν ω q ( x ) d x ) 1 q ( B ( x 0 , s ) | ( b 1 ( x ) λ 1 ) ( b 2 ( x ) λ 2 ) | q ν ω q ( x ) d x ) 1 q sup x B ( x 0 , s ) | I α , 2 ( f 1 0 , f 2 ) ( x ) | C i = 1 2 b i ( ω i q i ( B ( x 0 , s ) ) ) 1 q i 2 s ( i = 1 2 f i L p i ( ω i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.8)

For any xB( x 0 ,s), we have

| I α , 2 ( f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C B ( x 0 , 2 s ) R n B ( x 0 , 2 s ) | f 1 ( y 1 ) ( b 2 ( y 2 ) λ 2 ) f 2 ( y 2 ) | ( | x y 1 | + | x y 2 | ) 2 n α d y 1 d y 2 C j = 1 ( 2 j + 1 s ) 2 n + α B ( x 0 , 2 s ) | f 1 ( y 1 ) | d y 1 B ( x 0 , 2 j + 1 s ) | ( b 2 ( y 2 ) λ 2 ) f 2 ( y 2 ) | d y 2 .
(4.9)

Note that

B ( x 0 , 2 s ) | f 1 ( y 1 ) | d y 1 C f 1 L p 1 ( ω 1 p 1 , B ( x 0 , 2 s ) ) ( ω 1 p 1 ( B ( x 0 , 2 s ) ) ) 1 p 1
(4.10)

and

B ( x 0 , 2 j + 1 s ) | ( b 2 ( y 2 ) λ 2 ) f 2 ( y 2 ) | d y 2 C f 2 L p 2 ( ω 2 p 2 , B ( x 0 , 2 j + 1 s ) ) b 2 ( ) λ 2 L p 2 ( ω 2 p 2 , B ( x 0 , 2 j + 1 s ) ) .
(4.11)

Then

sup x B ( x 0 , s ) | I α , 2 ( f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C j = 1 ( 2 j + 1 s ) 2 n + α i = 1 2 f i L p i ( ω i p i , B ( x 0 , 2 j + 1 s ) ) × ( ω 1 p 1 ( B ( x 0 , 2 j + 1 s ) ) ) 1 p 1 b 2 ( ) λ 2 L p 2 ( ω 2 p 2 , B ( x 0 , 2 j + 1 s ) ) C 2 s i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω 1 p 1 ( B ( x 0 , r ) ) ) 1 p 1 × b 2 ( ) λ 2 L p 2 ( ω 2 p 2 , B ( x 0 , r ) ) d r r 2 n + 1 α .
(4.12)

From Lemma 2.1 we know ω 2 p 2 A 2 p 2 , then by Lemma 2.4 we get

b 2 ( ) λ 2 L p 2 ( ω 2 p 2 , B ( x 0 , r ) ) C ( B ( x 0 , r ) | b 2 ( z ) λ 2 | p 2 ω 2 p 2 ( z ) d z ) 1 p 2 C ( 1 + | ln r s | ) b 2 ( ω 2 p 2 ( B ( x 0 , r ) ) 1 p 2 .
(4.13)

By (3.7) and (3.8) we have

i = 1 2 ( ω i p i ( B ( x 0 , r ) ) ) 1 p i C | B ( x 0 , r ) | 2 i = 1 2 ( ω i p i ( B ( x 0 , r ) ) ) 1 p i .
(4.14)

From (4.12), (4.13), and (4.14) we can deduce

sup x B ( x 0 , s ) | I α , 2 ( f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C b 2 2 s ( 1 + ln r s ) ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.15)

Applying (2.13) and (3.12) we have

( B ( x 0 , s ) | b 1 ( x ) λ 1 | q ν ω q ( x ) d x ) 1 q C b 1 ( ν ω q ( B ( x 0 , s ) ) ) 1 q C b 1 i = 1 2 ( ω i q i ( B ( x 0 , r ) ) ) 1 q i .
(4.16)

Then by (4.15) and (4.16),

( B ( x 0 , s ) | I I 2 | q ν ω q ( x ) d x ) 1 q ( B ( x 0 , s ) | b 1 ( x ) λ 1 | q ν ω q ( x ) d x ) 1 q sup x B ( x 0 , s ) | I α , 2 ( f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C i = 1 2 b i ω i ( B ( x 0 , s ) ) 1 p i × 2 s ( 1 + ln r s ) ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.17)

Similarly, we also have

( B ( x 0 , s ) | I I 3 | p ν ω ( x ) d x ) 1 p C i = 1 2 b i ω i ( B ( x 0 , s ) ) 1 p i × 2 s ( 1 + ln r s ) ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.18)

For any xB( x 0 ,s), with the same method of estimate for (4.15) we have

| I α , 2 ( ( b 1 λ 1 ) f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C j = 1 ( 2 j + 1 s ) 2 n + α i = 1 2 B ( x 0 , 2 j + 1 s ) | ( b i ( y i ) λ i ) f i ( y i ) | d y i C 2 s i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) b i ( ) λ i L p i ( ω i p i , B ( x 0 , r ) ) d r r 2 n α + 1 C i = 1 2 b i 2 s ( 1 + ln r s ) 2 × ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.19)

Then

( B ( x 0 , s ) | I I 4 | q ν ω q ( x ) d x ) 1 q C ( ν ω q ( B ( x 0 , s ) ) ) 1 q sup x B ( x 0 . s ) | I α , 2 ( ( b 1 λ 1 ) f 1 0 , ( b 2 λ 2 ) f 2 ) ( x ) | C i = 1 2 b i ω i ( B ( x 0 , s ) ) 1 p i × 2 s ( 1 + ln r s ) 2 ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.20)

Then combining (4.8), (4.17), (4.18), and (4.20) we get

( B ( x 0 , s ) | I I | q ν ω q ( x ) d x ) 1 q C i = 1 2 b i ω i ( B ( x 0 , s ) ) 1 p i × 2 s ( 1 + ln r s ) 2 ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.21)

Finally, we still decompose I α , 2 Π b ( f 1 , f 2 )(x) as follows:

I α , 2 Π b ( f 1 , f 2 ) ( x ) = ( b 1 ( x ) λ 1 ) ( b 2 ( x ) λ 2 ) I α , 2 ( f 1 , f 2 ) ( x ) ( b 1 ( x ) λ 1 ) I α , 2 ( f 1 , ( b 2 λ 2 ) f 2 ) ( x ) ( b 2 ( x ) λ 2 ) I α , 2 ( ( b 1 λ 1 ) f 1 , f 2 ) ( x ) + I α , 2 ( ( b 1 λ 1 ) f 1 , ( b 2 λ 2 ) f 2 ) ( x ) = I V 1 + I V 2 + I V 3 + I V 4 .
(4.22)

Because each term I V j is completely analogous to I I j , j=1,2,3,4, being slightly different, we get the following estimate without details:

( B ( x 0 , s ) | I V | q ν ω q ( x ) d x ) 1 q C i = 1 2 b i ω i ( B ( x 0 , s ) ) 1 p i × 2 s ( 1 + ln r s ) 2 ( i = 1 2 f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.23)

Summing up the above estimates, (4.2) is proved for m=2. □

In the following we give the proof of Theorem 1.2. From (3.16) and (4.2),

( 1 ν ω q ( B ( x , s ) ) B ( x , s ) | I α , m Π b ( f ) ( y ) | q ν ω q ( y ) d y ) 1 / q C i = 1 m b i 2 s ( 1 + ln r s ) m × ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α .
(4.24)

Since φ k , k=1,2, satisfy the condition (1.7), and f i M φ 1 i p i ( ω i p i ), by (3.18) we get

2 s ( 1 + ln r s ) m ( i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ( ω i p i ( B ( x 0 , r ) ) ) 1 p i ) d r r 1 α = s i = 1 m f i L p i ( ω i p i , B ( x 0 , r ) ) ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i × ( 1 + ln r s ) m ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i i = 1 m ( ω i p i ( B ( x , t ) ) ) 1 p i d r r 1 α C i = 1 m f i M φ 1 i p i ( ω i p i ) s ( 1 + ln r s ) m ess inf r < t < i = 1 m φ 1 i ( x , t ) ( ω i p i ( B ( x , t ) ) ) 1 p i i = 1 m ( ω i p i ( B ( x , t ) ) ) 1 p i d r r 1 α C φ 2 ( x , s ) i = 1 m f i M φ 1 i p i ( ω i p i ) .
(4.25)

Combining (4.24) and (4.25), we have

I α , m Π b ( f ) M φ 2 q ( ν ω q ) C i = 1 m b i f i M φ 1 i p i ( ω i p i ) .

References

  1. Morrey CB: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43: 126-166. 10.1090/S0002-9947-1938-1501936-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Di Fazio G, Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241-256. 10.1006/jfan.1993.1032

    Article  MathSciNet  MATH  Google Scholar 

  3. Palagachev DK, Softova LG: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal. 2004, 20: 237-263.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ragusa MA: Regularity of solutions of divergence form elliptic equation. Proc. Am. Math. Soc. 2000, 128: 533-540. 10.1090/S0002-9939-99-05165-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. ICM-90 Satell. Conf. Proc. Harmonic Analysis (Sendai, 1990) 1991, 183-189.

    Google Scholar 

  6. Komori Y, Shirai S: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 2009, 282: 219-231. 10.1002/mana.200610733

    Article  MathSciNet  MATH  Google Scholar 

  7. Guliyev VS: Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J. 2012, 3: 33-61.

    MathSciNet  MATH  Google Scholar 

  8. Guliyev VS, Aliyev SS, Karaman T, Shukurov P: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Integral Equ. Oper. Theory 2011, 71: 327-355. 10.1007/s00020-011-1904-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Eroglu A: Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces. Bound. Value Probl. 2013. Article ID 70, 2013: Article ID 70

    Google Scholar 

  10. Grafakos L: On multilinear fractional integrals. Stud. Math. 1992, 102: 49-56.

    MathSciNet  MATH  Google Scholar 

  11. Kenig CE, Stein EM: Multilinear estimates and fractional integration. Math. Res. Lett. 1996, 6: 1-15.

    Article  MathSciNet  MATH  Google Scholar 

  12. Grafakos L, Kalton N: Some remarks on multilinear maps and interpolation. Math. Ann. 2001, 319: 151-180. 10.1007/PL00004426

    Article  MathSciNet  MATH  Google Scholar 

  13. Moen K: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 2009, 60: 213-238. 10.1007/BF03191210

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen S, Wu H: Multiple weighted estimates for commutators of multilinear fractional integral operators. Sci. China Math. 2013, 56: 1879-1894. 10.1007/s11425-013-4607-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen X, Xue Q: Weighted estimates for a class of multilinear fractional type operators. J. Math. Anal. Appl. 2010, 362: 355-373. 10.1016/j.jmaa.2009.08.022

    Article  MathSciNet  MATH  Google Scholar 

  16. Si Z, Lu S: Weighted estimates for iterated commutators of multilinear fractional operators. Acta Math. Sin. Engl. Ser. 2012, 28: 1769-1778. 10.1007/s10114-011-0591-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Pradolini G: Weighted inequalities and point-wise estimates for the multilinear fractional integral and maximal operators. J. Math. Anal. Appl. 2010, 367: 640-656. 10.1016/j.jmaa.2010.02.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Muckenhoupt B: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 1972, 165: 207-226.

    Article  MathSciNet  MATH  Google Scholar 

  19. Muckenhoupt B, Wheeden R: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 1974, 192: 261-274.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang H, Yi W: Multilinear singular and fractional integral operators on weighted Morrey spaces. J. Funct. Spaces Appl. 2013. Article ID 735795, 2013: Article ID 735795

    Google Scholar 

  21. John F, Nirenberg L: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 1961, 14: 415-426. 10.1002/cpa.3160140317

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin Y, Lu S: Strongly singular Calderón-Zygmund operators and their commutators. Jordan J. Math. Stat. 2008, 1: 31-49.

    MATH  Google Scholar 

  23. Wheeden RL, Zygmund A Pure and Applied Mathematics 43. In Measure and Integral. An Introduction to Real Analysis. Dekker, New York; 1977.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the Editors for carefully reading the manuscript and making several useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Hu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, Y. Multilinear fractional integral operators on generalized weighted Morrey spaces. J Inequal Appl 2014, 323 (2014). https://doi.org/10.1186/1029-242X-2014-323

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-323

Keywords