Skip to main content

Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces

Abstract

In this note we consider the hyponormality of Toeplitz operators T φ on weighted Bergman space A α 2 (D) with symbol in the class of functions f+ g ¯ with polynomials f and g.

MSC:47B20, 47B35.

1 Introduction

Let D be the open unit disk in the complex plane. For −1<α<∞, the weighted Bergman space A α 2 (D) of the unit disk D is the space of analytic functions in L 2 (D,d A α ), where

d A α (z)=(α+1) ( 1 − | z | 2 ) α dA(z).

The space L 2 (D,d A α ) is a Hilbert space with the inner product

〈 f , g 〉 α = ∫ D f(z) g ( z ) ¯ d A α (z) ( f , g ∈ L 2 ( D , d A α ) ) .

If α=0 then A 0 2 (D) is the Bergman space A 2 (D). For any nonnegative integer n, let

e n (z)= Γ ( n + α + 2 ) Γ ( n + 1 ) Γ ( α + 2 ) z n (z∈D),

where Γ(s) stands for the usual Gamma function. It is easy to check that { e n } is an orthonormal basis for A α 2 (D) [1]. For φ∈ L ∞ (D), the Toeplitz operator T φ , and the Hankel operator H φ on A α 2 (D) are defined by

T φ f:= P α (φ⋅f)and H φ f:=(I− P α )(φ⋅f) ( f ∈ A α 2 ( D ) ) ,

where P α denotes the orthogonal projection that maps from L 2 (D,d A α ) onto A α 2 (D). The reproducing kernel in A α 2 (D) is given by

K z ( α ) (ω)= 1 ( 1 − z ω ¯ ) 2 + α ,

for z,ω∈D. We thus have

( T φ f)(z)= ∫ D φ ( ω ) f ( ω ) ( 1 − z ω ¯ ) 2 + α d A α (ω),

for f∈ A α 2 (D) and ω∈D.

A bounded linear operator A on a Hilbert space is said to be hyponormal if its selfcommutator [ A ∗ ,A]:= A ∗ A−A A ∗ is positive (semidefinite). The hyponormality of Toeplitz operators on the Hardy space H 2 (T) of the unit circle T=∂D has been studied by Cowen [2], Curto, Hwang and Lee [3–5] and others [6]. Recently, in [7] and [8], the hyponormality of T φ on the weighted Bergman space A α 2 (D) was studied. In [2], Cowen characterized the hyponormality of Toeplitz operator T φ on H 2 (T) by properties of the symbol φ∈ L ∞ (T). Here we shall employ an equivalent variant of Cowen’s theorem that was first proposed by Nakazi and Takahashi [9].

Cowen’s theorem ([2, 9])

For φ∈ L ∞ (T), write

E(φ):= { k ∈ H ∞ : ∥ k ∥ ∞ ≤ 1  and  φ − k φ ¯ ∈ H ∞ ( T ) } .

Then T φ is hyponormal if and only if E(φ) is nonempty.

The solution is based on a dilation theorem of Sarason [10]. For the weighted Bergman space, no dilation theorem (similar to Sarason’s theorem) is available. In [11], the first named author characterized the hyponormality of T φ on A α 2 (D) in terms of the coefficients of the trigonometric polynomial φ under certain assumptions as regards the coefficients of φ on the weighted Bergman space when α≥0 and in [12], extended for all −1<α<∞.

Theorem A ([12])

Let φ(z)= g ( z ) ¯ +f(z), where f(z)= a 1 z+ a 2 z 2 g(z)= a − 1 z+ a − 2 z 2 . If a 1 a 2 ¯ = a − 1 a − 2 ¯ and −1<α<∞, then

T φ  on  A α 2 ( D )  is hyponormal  ⟺ { 1 α + 3 ( | a 2 | 2 − | a − 2 | 2 ) ≥ 1 2 ( | a − 1 | 2 − | a 1 | 2 ) if  | a − 2 | ≤ | a 2 | , 4 ( | a − 2 | 2 − | a 2 | 2 ) ≤ | a 1 | 2 − | a − 1 | 2 if  | a 2 | ≤ | a − 2 | .

In this note we consider the hyponormality of Toeplitz operators T φ on A α 2 (D) with symbol in the class of functions f+ g ¯ with polynomials f and g. Since the hyponormality of operators is translation invariant we may assume that f(0)=g(0)=0. The following relations can easily be proved:

T φ + ψ = T φ + T ψ ( φ , ψ ∈ L ∞ ) ;
(1.1)
T φ ∗ = T φ ¯ ( φ ∈ L ∞ ) ;
(1.2)
T φ ¯ T ψ = T φ ¯ ψ if Ï† or Ïˆ is analytic.
(1.3)

The purpose of this paper is to prove Theorem A for the Toeplitz operators on A α 2 (D) when f and g of degree N.

2 Main result

In this section we establish a necessary and sufficient condition for the hyponormality of the Toeplitz operator T φ on the weighted Bergman space under a certain additional assumption concerning the symbol φ. The assumption is related on the symmetry, so it is reasonable in view point of the Hardy space [13]. We expect that this approach would provide some clue for the future study of the symmetry case.

Lemma 1 ([11]) For any s, t nonnegative integers,

P α ( z ¯ t z s ) ={ Γ ( s + 1 ) Γ ( s − t + α + 2 ) Γ ( s + α + 2 ) Γ ( s − t + 1 ) z s − t if  s ≥ t , 0 if  s < t .

For 0≤i≤N−1, write

k i (z):= ∑ n = 0 ∞ c N n + i z N n + i .

The following two lemmas will be used for proving the main result of this section.

Lemma 2 For 0≤m≤N, we have

( i ) ∥ z ¯ m k i ( z ) ∥ α 2 = ∑ n = 0 ∞ Γ ( N n + i + m + 1 ) Γ ( α + 2 ) Γ ( N n + i + m + α + 2 ) | c N n + i | 2 , ( ii ) ∥ P α ( z ¯ m k i ( z ) ) ∥ α 2 = { ∑ n = 0 ∞ Γ ( N n + i + 1 ) 2 Γ ( N n + i − m + α + 2 ) Γ ( α + 2 ) Γ ( N n + i + α + 2 ) 2 Γ ( N n + i − m + 1 ) | c N n + i | 2 if  m ≤ i , ∑ n = 1 ∞ Γ ( N n + i + 1 ) 2 Γ ( N n + i − m + α + 2 ) Γ ( α + 2 ) Γ ( N n + i + α + 2 ) 2 Γ ( N n + i − m + 1 ) | c N n + i | 2 if  m > i .

Proof Let 0≤m≤N. Then we have

∥ z ¯ m k i ( z ) ∥ α 2 = ∥ ∑ n = 0 ∞ c N n + i z N n + i + m ∥ α 2 = ∑ n = 0 ∞ | c N n + i | 2 ∥ z N n + i + m ∥ α 2 = ∑ n = 0 ∞ Γ ( N n + i + m + 1 ) Γ ( α + 2 ) Γ ( N n + i + m + α + 2 ) | c N n + i | 2 .

This proves (i). For (ii), if m≤i then by Lemma 1 we have

∥ P α ( z ¯ m k i ( z ) ) ∥ α 2 = ∥ ∑ n = 0 ∞ Γ ( N n + i + 1 ) Γ ( N n + i − m + α + 2 ) Γ ( N n + i + α + 2 ) Γ ( N n + i − m + 1 ) c N n + i z N n + i − m ∥ α 2 = ∑ n = 0 ∞ Γ ( N n + i + 1 ) 2 Γ ( N n + i − m + α + 2 ) Γ ( α + 2 ) Γ ( N n + i + α + 2 ) 2 Γ ( N n + i − m + 1 ) | c N n + i | 2 .

If instead m>i, a similar argument gives the result. □

Lemma 3 ([14])

Let f(z)= a N − 1 z N − 1 + a N z N and g(z)= a − ( N − 1 ) z N − 1 + a − N z N . If a N − 1 a N ¯ = a − ( N − 1 ) a − N ¯ , then for i≠j, we have

〈 H f ¯ k i ( z ) , H f ¯ k j ( z ) 〉 α = 〈 H g ¯ k i ( z ) , H g ¯ k j ( z ) 〉 α .

Our main result now follows.

Theorem 4 Let φ(z)= g ( z ) ¯ +f(z), where

f(z)= a N − 1 z N − 1 + a N z N andg(z)= a − ( N − 1 ) z N − 1 + a − N z N .

If a N − 1 a N ¯ = a − ( N − 1 ) a − N ¯ and | a − N |≤| a N |, then T φ on A α 2 (D) is hyponormal if and only if

1 N + α + 1 ( | a N | 2 − | a − N | 2 ) ≥ 1 N ( | a − ( N − 1 ) | 2 − | a N − 1 | 2 ) .

Proof For 0≤i<N, put

K i := { k i ( z ) ∈ A α 2 ( D ) : k i ( z ) = ∑ n = 0 ∞ c N n + i z N n + i } .

Then a straightforward calculation shows that T φ is hyponormal if and only if

〈 ( H f ¯ ∗ H f ¯ − H g ¯ ∗ H g ¯ ) ∑ i = 0 N − 1 k i ( z ) , ∑ i = 0 N − 1 k i ( z ) 〉 α ≥0for all  k i ∈ K i (i=0,1,…,N−1).
(2.1)

Also we have

〈 H f ¯ ∗ H f ¯ ∑ i = 0 N − 1 k i ( z ) , ∑ i = 0 N − 1 k i ( z ) 〉 α = ∑ i = 0 N − 1 〈 H f ¯ k i ( z ) , H f ¯ k i ( z ) 〉 α + ∑ i ≠ j , i , j ≥ 0 N − 1 〈 H f ¯ k i ( z ) , H f ¯ k k ( z ) 〉 α
(2.2)

and

〈 H g ¯ ∗ H g ¯ ∑ i = 0 N − 1 k i ( z ) , ∑ i = 0 N − 1 k i ( z ) 〉 α = ∑ i = 0 N − 1 〈 H g ¯ k i ( z ) , H g ¯ k i ( z ) 〉 α + ∑ i ≠ j , i , j ≥ 0 N − 1 〈 H g ¯ k i ( z ) , H g ¯ k k ( z ) 〉 α .
(2.3)

Substituting (2.2) and (2.3) into (2.1), it follows from Lemma 3 that

T φ : hyponormal ⟺ ∑ i = 0 N − 1 〈 ( H f ¯ ∗ H f ¯ − H g ¯ ∗ H g ¯ ) k i ( z ) , k i ( z ) 〉 α ≥ 0 ⟺ ∑ i = 0 N − 1 ( ∥ f ¯ k i ∥ α 2 − ∥ g ¯ k i ∥ α 2 + ∥ P α ( g ¯ k i ) ∥ α 2 − ∥ P α ( f ¯ k i ) ∥ α 2 ) ≥ 0 .

Therefore it follows from Lemma 2 that T φ is hyponormal if and only if

( | a N − 1 | 2 − | a − ( N − 1 ) | 2 ) [ ∑ i = 0 N − 2 { Γ ( i + N ) Γ ( α + 2 ) Γ ( i + N + α + 1 ) | c i | 2 + ∑ n = 1 ∞ ( Γ ( N n + i + N ) Γ ( α + 2 ) Γ ( N n + i + N + α + 1 ) − Γ ( N n + i + 1 ) 2 Γ ( N n + i − N + α + 3 ) Γ ( α + 2 ) Γ ( N n + i + α + 2 ) 2 Γ ( N n + i − N + 2 ) ) | c N n + i | 2 } + ∑ n = 0 ∞ ( Γ ( N n + 2 N − 1 ) Γ ( α + 2 ) Γ ( N n + 2 N + α ) − Γ ( N n + N ) 2 Γ ( N n + α + 2 ) Γ ( α + 2 ) Γ ( N n + N + α + 1 ) 2 Γ ( N n + 1 ) ) | c N n + N − 1 | 2 ] + ( | a N | 2 − | a − N | 2 ) [ ∑ i = 0 N − 1 { Γ ( N + i + 1 ) Γ ( α + 2 ) Γ ( i + n + α + 2 ) | c i | 2 + ∑ n = 1 ∞ ( Γ ( N n + i + N + 1 ) Γ ( α + 2 ) Γ ( N n + i + N + α + 2 ) − Γ ( N n + i + 1 ) 2 Γ ( N n + i − N + α + 2 ) Γ ( α + 2 ) Γ ( N n + i + α + 2 ) 2 Γ ( N n + i − N + 1 ) ) | c N n + i | 2 } ] ≥ 0 ,

or equivalently

( | a N − 1 | 2 − | a − ( N − 1 ) | 2 ) { ∑ n = 0 N − 2 Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) | c n | 2 + ∑ n = N − 1 ∞ ( Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) − Γ ( n + 1 ) 2 Γ ( n − N + α + 3 ) Γ ( α + 2 ) Γ ( n + α + 2 ) 2 Γ ( n − N + 2 ) ) | c n | 2 } + ( | a N | 2 − | a − N | 2 ) { ∑ n = 0 N − 1 Γ ( n + N + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) | c n | 2 + ∑ n = N ∞ ( Γ ( N + n + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) − Γ ( n + 1 ) 2 Γ ( n − N + α + 2 ) Γ ( α + 2 ) Γ ( n + α + 2 ) 2 Γ ( n − N + 1 ) ) | c n | 2 } ≥ 0 .
(2.4)

Define ζ α by

ζ α (n):= Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) − Γ ( n + 1 ) 2 Γ ( n − N + α + 3 ) Γ ( α + 2 ) Γ ( n + α + 2 ) 2 Γ ( n − N + 2 ) Γ ( N + n + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) − Γ ( n + 1 ) 2 Γ ( n − N + α + 2 ) Γ ( α + 2 ) Γ ( n + α + 2 ) 2 Γ ( n − N + 1 ) (n≥1).

Then a direct calculation gives

ζ α (n)< Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) Γ ( N + n + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) .

Observe that

N + α + 1 N ≥ N + n + α + 1 N + n ≥ N + N i + α + 1 N + N i ≥ ζ α ( N i ) for all  N i ≥ N  and  n = 1 , 2 , … , N − 1 ;
(2.5)

and

N + α + 1 N ≥ Γ ( 2 N − 1 ) Γ ( α + 2 ) Γ ( 2 N + α ) − Γ ( N ) 2 Γ ( α + 2 ) 2 Γ ( N + α + 1 ) 2 Γ ( 2 N ) Γ ( α + 2 ) Γ ( 2 N + α + 1 ) .

Therefore (2.4) and (2.5) show that T φ is hyponormal if and only if

1 N + α + 1 ( | a N | 2 − | a − N | 2 ) ≥ 1 N ( | a − ( N − 1 ) | 2 − | a N − 1 | 2 ) .

This completes the proof. □

Remark 5 Let φ(z)= g ( z ) ¯ +f(z), where

f(z)= a N − 1 z N − 1 + a N z N andg(z)= a − ( N − 1 ) z N − 1 + a − N z N .

If a N − 1 a N ¯ = a − ( N − 1 ) a − N ¯ , | a N |≤| a − N |, and T φ on A α 2 (D) is hyponormal. Then

| a − N | 2 − | a N | 2 ≤ { 2 N + α 2 N − 1 − Γ ( N ) 2 Γ ( 2 N + α + 1 ) Γ ( α + 2 ) Γ ( 2 N ) Γ ( N + α + 1 ) 2 } ( | a N − 1 | 2 − | a − ( N − 1 ) | 2 ) .

Proof If we let c j =1 for 0≤j≤N−1 and the other c j ’s be 0 into (2.4), then we have

( | a N − 1 | 2 − | a − ( N − 1 ) | 2 ) { ∑ n = 0 N − 2 Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) + ( Γ ( 2 N − 1 ) Γ ( α + 2 ) Γ ( 2 N + α ) − Γ ( N ) 2 Γ ( α + 2 ) 2 Γ ( N + α + 1 ) 2 Γ ( 1 ) ) } + ( | a N | 2 − | a − N | 2 ) ∑ n = 0 N − 1 Γ ( n + N + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) ≥ 0 .
(2.6)

Define ξ α by

ξ α (n):= Γ ( N + n ) Γ ( α + 2 ) Γ ( N + n + α + 1 ) Γ ( N + n + 1 ) Γ ( α + 2 ) Γ ( N + n + α + 2 ) (0≤n≤N−1).

Then ξ α (n) is a strictly decreasing function and

N + n + α + 1 N + n ≥ 2 N + α 2 N − 1 ≥ 2 N + α 2 N − 1 − Γ ( N ) 2 Γ ( 2 N + α + 1 ) Γ ( α + 2 ) Γ ( 2 N ) Γ ( N + α + 1 ) 2 for all  n = 0 , 1 , … , N − 1 .
(2.7)

Therefore (2.6) and (2.7) give that if T φ is hyponormal then

{ 2 N + α 2 N − 1 − Γ ( N ) 2 Γ ( 2 N + α + 1 ) Γ ( α + 2 ) Γ ( 2 N ) Γ ( N + α + 1 ) 2 } ( | a N − 1 | 2 − | a − ( N − 1 ) | 2 ) ≥ | a − N | 2 − | a N | 2 .

This completes the proof. □

Example 6 Let φ(z)=2 z ¯ 2 + 3 2 z ¯ + 7 2 z+ 6 7 z 2 and α=0. Then by Theorem A, T φ is not hyponormal. But φ satisfies the inequality in Remark 5, hence the inverse of Remark 5 is not satisfied.

Remark 7 Let φ(z)= ∑ n = − m N a n z n , where a − m and a N are nonzero. Suppose T φ on H 2 (T) is hyponormal. It is well known [15] that

N−m≤rank [ T φ ∗ , T φ ] ≤N.

However, the result cannot be extended to the case of A 2 (D); for example, if φ(z)= a − 1 z ¯ + a 1 z then a straightforward calculation shows that the selfcommutator of Toeplitz operator T φ on A 2 (D) is given by

[ T φ ∗ , T φ ] = ( | a 1 | 2 − | a − 1 | 2 ) [ α 1 0 0 ⋯ 0 α 2 0 ⋯ 0 0 α 3 ⋯ ⋮ ⋮ ⋮ ⋱ ],

where α n = 1 n ( n + 1 ) . Thus rank[ T φ ∗ , T φ ]=∞ and the trace of the selfcommutator tr[ T φ ∗ , T φ ]=1.

References

  1. Zhu K: Theory of Bergman Spaces. Springer, New York; 2000.

    MATH  Google Scholar 

  2. Cowen C: Hyponormality of Toeplitz operators. Proc. Am. Math. Soc. 1988, 103: 809-812. 10.1090/S0002-9939-1988-0947663-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Curto RE, Hwang IS, Lee WY: Hyponormality and subnormality of block Toeplitz operators. Adv. Math. 2012, 230: 2094-2151. 10.1016/j.aim.2012.04.019

    Article  MathSciNet  MATH  Google Scholar 

  4. Curto RE, Lee WY: Joint hyponormality of Toeplitz pairs. Mem. Am. Math. Soc. 2001. 150: Article ID 712

    Google Scholar 

  5. Hwang IS, Lee WY: Hyponormality of trigonometric Toeplitz operators. Trans. Am. Math. Soc. 2002, 354: 2461-2474. 10.1090/S0002-9947-02-02970-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Hwang IS, Kim IH, Lee WY: Hyponormality of Toeplitz operators with polynomial symbol. Math. Ann. 1999, 313: 247-261. 10.1007/s002080050260

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu Y, Shi Y: Hyponormal Toeplitz operators on the weighted Bergman space. Integral Equ. Oper. Theory 2009, 65: 115-129. 10.1007/s00020-009-1712-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Lu Y, Liu C: Commutativity and hyponormality of Toeplitz operators on the weighted Bergman space. J. Korean Math. Soc. 2009, 46: 621-642. 10.4134/JKMS.2009.46.3.621

    Article  MathSciNet  MATH  Google Scholar 

  9. Nakazi T, Takahashi K: Hyponormal Toeplitz operators and extremal problems of Hardy spaces. Trans. Am. Math. Soc. 1993, 338: 759-769.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sarason D: Generalized interpolation in H ∞ . Trans. Am. Math. Soc. 1967, 127: 179-203.

    MathSciNet  MATH  Google Scholar 

  11. Hwang IS, Lee JR: Hyponormal Toeplitz operators on the weighted Bergman spaces. Math. Inequal. Appl. 2012, 15: 323-330.

    MathSciNet  MATH  Google Scholar 

  12. Lee J, Lee Y: Hyponormality of Toeplitz operators on the weighted Bergman spaces. Honam Math. J. 2013, 35: 311-317. 10.5831/HMJ.2013.35.2.311

    Article  MathSciNet  MATH  Google Scholar 

  13. Farenick DR, Lee WY: Hyponormality and spectra of Toeplitz operators. Trans. Am. Math. Soc. 1996, 348: 4153-4174. 10.1090/S0002-9947-96-01683-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang IS: Hyponormal Toeplitz operators on the Bergman spaces. J. Korean Math. Soc. 2005, 42: 387-403.

    MathSciNet  MATH  Google Scholar 

  15. Farenick DR, Lee WY: On hyponormal Toeplitz operators with polynomial and circulant-type symbols. Integral Equ. Oper. Theory 1997, 29: 202-210. 10.1007/BF01191430

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2011-0022577). The authors are grateful to the referee for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongrak Lee.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I.S., Lee, J. & Park, S.W. Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces. J Inequal Appl 2014, 335 (2014). https://doi.org/10.1186/1029-242X-2014-335

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-335

Keywords