Skip to main content

Continued fraction inequalities for the Euler-Mascheroni constant

Abstract

The aim of this paper is to establish new inequalities for the Euler-Mascheroni constant by the continued fraction method.

MSC:11Y60, 41A25, 41A20.

1 Introduction

The Euler-Mascheroni constant was first introduced by Leonhard Euler (1707-1783) in 1734 as the limit of the sequence

γ(n):= ∑ m = 1 n 1 m −lnn.
(1.1)

There are many famous unsolved problems about the nature of this constant (see, e.g., the survey papers or books of Brent and Zimmermann [1], Dence and Dence [2], Havil [3] and Lagarias [4]). For example, it is a long-standing open problem if the Euler-Mascheroni constant is a rational number. A good part of its mystery comes from the fact that the known algorithms converging to γ are not very fast, at least, when they are compared to similar algorithms for π and e.

The sequence ( γ ( n ) ) n ∈ N converges very slowly toward γ, like ( 2 n ) − 1 . Up to now, many authors have been preoccupied with improving its rate of convergence (see, e.g., [2, 5–22] and the references therein). We list some main results as follows:

∑ m = 1 n 1 m − ln ( n + 1 2 ) = γ + O ( n − 2 ) (DeTemple [6]) , ∑ m = 1 n 1 m − ln n 3 + 3 2 n 2 + 227 240 + 107 480 n 2 + n + 97 240 = γ + O ( n − 6 ) (Mortici [13]) , ∑ m = 1 n 1 m − ln ( 1 + 1 2 n + 1 24 n 2 − 1 48 n 3 + 23 5 , 760 n 4 ) = γ + O ( n − 5 ) (Chen and Mortici [5]).

Recently, Mortici and Chen [14] provided a very interesting sequence,

ν ( n ) = ∑ m = 1 n 1 m − 1 2 ln ( n 2 + n + 1 3 ) − ( − 1 180 ( n 2 + n + 1 3 ) 2 + 8 2 , 835 ( n 2 + n + 1 3 ) 3 + + 5 1 , 512 ( n 2 + n + 1 3 ) 4 + 592 93 , 555 ( n 2 + n + 1 3 ) 5 ) ,

and proved

lim n → ∞ n 12 ( ν ( n ) − γ ) =− 796 , 801 43 , 783 , 740 .
(1.2)

Hence the rate of convergence of the sequence ( ν ( n ) ) n ∈ N is n − 12 .

Very recently, by inserting the continued fraction term in (1.1), Lu [9] introduced a class of sequences ( r k ( n ) ) n ∈ N (see Theorem 1) and showed

1 72 ( n + 1 ) 3 <γ− r 2 (n)< 1 72 n 3 ,
(1.3)
1 120 ( n + 1 ) 4 < r 3 (n)−γ< 1 120 ( n − 1 ) 4 .
(1.4)

In fact, Lu [9] also found a 4 without proof. In general, the continued fraction method could provide a better approximation than others, and has less numerical computations.

First, we will prove the following theorem.

Theorem 1 For the Euler-Mascheroni constant, we have the following convergent sequence:

r(n)=1+ 1 2 +⋯+ 1 n −lnn− a 1 n + a 2 n n + a 3 n n + ⋱ ,

where ( a 1 , a 2 , a 4 , a 6 , a 8 , a 10 , a 12 )=( 1 2 , 1 6 , 3 5 , 79 126 , 7 , 230 6 , 241 , 4 , 146 , 631 3 , 833 , 346 , 306 , 232 , 774 , 533 179 , 081 , 182 , 865 ), and a 2 k + 1 =− a 2 k for 1≤k≤6.

Let

R k (n):= a 1 n + a 2 n n + a 3 n n + a 4 n ⋱ n + a k

(see the Appendix for their simple expressions) and

r k (n):= ∑ m = 1 n 1 m −lnn− R k (n).

For 1≤k≤13, we have

lim n → ∞ n k + 1 ( r k ( n ) − γ ) = C k ,
(1.5)

where

( C 1 , … , C 13 ) = ( − 1 12 , − 1 72 , 1 120 , 1 200 , − 79 25 , 200 , − 6 , 241 3 , 175 , 200 , 241 105 , 840 , 58 , 081 22 , 018 , 248 , − 262 , 445 91 , 974 , 960 , − 2 , 755 , 095 , 121 892 , 586 , 949 , 408 , 20 , 169 , 451 3 , 821 , 257 , 440 , 406 , 806 , 753 , 641 , 401 45 , 071 , 152 , 103 , 463 , 200 , − 71 , 521 , 421 , 431 5 , 152 , 068 , 292 , 800 ) .

Open problem For every k≥1, we have a 2 k + 1 =− a 2 k .

The main aim of this paper is to improve (1.3) and (1.4). We establish the following more precise inequalities.

Theorem 2 Let r 10 (n), r 11 (n), C 10 and C 11 be defined in Theorem  1, then

C 10 1 ( n + 1 ) 11 <γ− r 10 (n)< C 10 1 n 11 ,
(1.6)
C 11 1 ( n + 1 ) 12 < r 11 (n)−γ< C 11 1 n 12 .
(1.7)

Remark 1 In fact, Theorem 2 implies that r 10 (n) is a strictly increasing function of n, whereas r 11 (n) is a strictly decreasing function of n. Certainly, it has similar inequalities for r k (n) (1≤k≤9), we leave these for readers to verify. It is also should be noted that (1.4) cannot deduce the monotonicity of r 3 (n).

Remark 2 It is worth to point out that Theorem 2 provides sharp bounds for a harmonic sequence which are superior to Theorems 3 and 4 of Mortici and Chen [14].

2 The proof of Theorem 1

The following lemma gives a method for measuring the rate of convergence. This lemma was first used by Mortici [23, 24] for constructing asymptotic expansions or to accelerate some convergences. For proof and other details, see, e.g., [24].

Lemma 1 If the sequence ( x n ) n ∈ N is convergent to zero and there exists the limit

lim n → + ∞ n s ( x n − x n + 1 )=l∈[−∞,+∞]
(2.1)

with s>1, then there exists the limit

lim n → + ∞ n s − 1 x n = l s − 1 .
(2.2)

In the sequel, we always assume n≥2.

We need to find the value a 1 ∈R which produces the most accurate approximation of the form

r 1 (n)= ∑ m = 1 n 1 m −lnn− a 1 n ,
(2.3)

here we note R 1 (n)= a 1 /n. To measure the accuracy of this approximation, we usually say that approximation (2.3) is better as r 1 (n)−γ faster converges to zero. Clearly,

r 1 (n)− r 1 (n+1)=ln ( 1 + 1 n ) − 1 n + 1 + a 1 n + 1 − a 1 n .
(2.4)

It is well known that for |x|<1,

ln(1+x)= ∑ m = 1 ∞ ( − 1 ) m − 1 x m m and 1 1 − x = ∑ m = 0 ∞ x m .

Developing expression (2.4) into power series expansion in 1/n, we obtain

r 1 (n)− r 1 (n+1)= ( 1 2 − a 1 ) 1 n 2 + ( a 1 − 2 3 ) 1 n 3 + ( 3 4 − a 1 ) 1 n 4 +O ( 1 n 5 ) .
(2.5)

From Lemma 1, we see that the rate of convergence of the sequence ( r 1 ( n ) − γ ) n ∈ N is even higher than the value s satisfying (2.1). By Lemma 1, we have

  1. (i)

    If a 1 ≠ 1 2 , then the rate of convergence of ( r 1 ( n ) − γ ) n ∈ N is n − 1 since

    lim n → ∞ n ( r 1 ( n ) − γ ) = 1 2 − a 1 ≠0.
  2. (ii)

    If a 1 = 1 2 , from (2.5) we have

    r 1 (n)− r 1 (n+1)=− 1 6 1 n 3 +O ( 1 n 4 ) .

Hence the rate of convergence of ( r 1 ( n ) − γ ) n ∈ N is n − 2 since

lim n → ∞ n 2 ( r 1 ( n ) − γ ) =− 1 12 .

We also observe that the fastest possible sequence ( r 1 ( n ) ) n ∈ N is obtained only for a 1 = 1 2 .

Just as Lu [9] did, we may repeat the above approach to determine a 1 to a 4 step by step. However, the computations become very difficult when k≥5. In this paper we use Mathematica software to manipulate symbolic computations.

Let

r k (n)= ∑ m = 1 n 1 m −lnn− R k (n),
(2.6)

then

r k (n)− r k (n+1)=ln ( 1 + 1 n ) − 1 n + 1 + R k (n+1)− R k (n).
(2.7)

It is easy to get the following power series:

ln ( 1 + 1 n ) − 1 n + 1 = ∑ m = 2 ∞ ( − 1 ) m m − 1 m 1 n m .
(2.8)

Hence the key step is to expand R k (n+1)− R k (n) into power series in 1 n . Here we use some examples to explain our method.

Step 1: For example, given a 1 to a 7 , find a 8 . Define

R 8 ( n ) = 1 2 n + n 6 n + − n 6 n + 3 5 n n + − 3 5 n n + 79 126 n n + − 79 126 n n + a 8 = − 237 + 1 , 405 a 8 + 1 , 800 n + 1 , 740 a 8 n − 630 n 2 + 3 , 780 a 8 n 2 + 3 , 780 n 3 6 ( 79 a 8 + 600 a 8 n + 600 n 2 + 790 a 8 n 2 + 1 , 260 a 8 n 3 + 1 , 260 n 4 ) .
(2.9)

By using Mathematica software (Mathematica Program is very similar to the one given in Remark 3; however, it has a parameter a 8 ), we obtain

R 8 ( n + 1 ) − R 8 ( n ) = − 1 2 n 2 + 2 3 n 3 − 3 4 n 4 + 4 5 n 5 − 5 6 n 6 + 6 7 n 7 − 7 8 n 8 + 360 , 030 − 6 , 241 a 8 396 , 900 n 9 + − 346 , 440 + 24 , 964 a 8 + 6 , 241 a 8 2 352 , 800 n 10 + O ( 1 n 11 ) .
(2.10)

Substituting (2.8) and (2.10) into (2.7), we get

r 8 ( n ) − r 8 ( n + 1 ) = ( − 8 9 + 360 , 030 − 6 , 241 a 8 396 , 900 ) 1 n 9 + ( 9 10 + − 346 , 440 + 24 , 964 a 8 + 6 , 241 a 8 2 352 , 800 ) 1 n 10 + O ( 1 n 11 ) .
(2.11)

The fastest possible sequence ( r 8 ( n ) ) n ∈ N is obtained only for a 8 = 7 , 230 6 , 241 . At the same time, it follows from (2.11) that

r 8 (n)− r 8 (n+1)= 58 , 081 2 , 446 , 472 1 n 10 +O ( 1 n 11 ) ,
(2.12)

the rate of convergence of ( r 8 ( n ) − γ ) n ∈ N is n − 9 since

lim n → ∞ n 9 ( r 8 ( n ) − γ ) =− 58 , 081 22 , 018 , 248 .

We can use the above approach to find a k (3≤k≤8). Unfortunately, it does not work well for a 9 . Since a 3 =− a 2 , a 5 =− a 4 and a 7 =− a 6 . So, we may conjecture a 9 =− a 8 . Now let us check it carefully.

Step 2: Check a 9 =− 7 , 230 6 , 241 to a 13 =− 306 , 232 , 774 , 533 179 , 081 , 182 , 865 .

Let a 1 ,…, a 9 and R 9 (n) be defined in Theorem 1. Applying Mathematica software, we obtain

R 9 ( n + 1 ) − R 9 ( n ) = − 1 2 n 2 + 2 3 n 3 − 3 4 n 4 + 4 5 n 5 − 5 6 n 6 + 6 7 n 7 − 7 8 n 8 + 8 9 1 n 9 − 9 10 1 n 10 + 736 , 265 836 , 136 1 n 11 + O ( 1 n 12 ) ,
(2.13)

which is the desired result. Substituting (2.8) and (2.13) into (2.7), we get

r 9 (n)− r 9 (n+1)=− 262 , 445 9 , 197 , 496 1 n 11 +O ( 1 n 12 ) ,
(2.14)

the rate of convergence of ( r 9 ( n ) − γ ) n ∈ N is n − 10 since

lim n → ∞ n 10 ( r 9 ( n ) − γ ) =− 262 , 445 91 , 974 , 960 .

Next, we can use Step 1 to find a 10 , and Step 2 to check a 11 and a 12 . It should be noted that Theorem 2 will provide the other proofs for a 10 and a 11 . So we omit the details here.

Finally, we check a 13 =− 306 , 232 , 774 , 533 179 , 081 , 182 , 865 .

R 13 ( n + 1 ) − R 13 ( n ) = − 1 2 n 2 + 2 3 n 3 − 3 4 n 4 + 4 5 n 5 − 5 6 n 6 + 6 7 n 7 − 7 8 n 8 + 8 9 1 n 9 − 9 10 1 n 10 + 10 11 1 n 11 − 11 12 1 n 12 + 12 13 1 n 13 − 13 14 1 n 14 + 1 , 903 , 648 , 586 , 623 2 , 576 , 034 , 146 , 400 1 n 15 + O ( 1 n 16 ) .
(2.15)

Substituting (2.8) and (2.15) into (2.7), one has

r 13 (n)− r 13 (n+1)=− 500 , 649 , 950 , 017 2 , 576 , 034 , 146 , 400 1 n 15 +O ( 1 n 16 ) .
(2.16)

Since

lim n → ∞ n 14 ( r 13 ( n ) − γ ) =− 71 , 521 , 421 , 431 5 , 152 , 068 , 292 , 800 ,

thus the rate of convergence of ( r 13 ( n ) − γ ) n ∈ N is n − 14 .

This completes the proof of Theorem 1.

Remark 3 In fact, if the assertion a 13 =− 306 , 232 , 774 , 533 179 , 081 , 182 , 865 holds, then the other values a j (1≤j≤12) must be true. The following Mathematica Program will generate R 13 (n+1)− R 13 (n) into power series in 1 n with order 16: Normal[Series[( R 13 [n+1]− R 13 [n])/.n→1/x,{x,0,16}]]/. x→1/n.

Remark 4 It is a very interesting question to find a k for k≥14. However, it seems impossible by the above method.

3 The proof of Theorem 2

Before we prove Theorem 2, let us give a simple inequality by the Hermite-Hadamard inequality, which plays an important role in the proof.

Lemma 2 Let f be twice derivable with f ″ continuous. If f ″ (x)>0, then

∫ a a + 1 f(x)dx>f(a+1/2).
(3.1)

In the sequel, the notation P k (x) means a polynomial of degree k in x with all of its non-zero coefficients positive, which may be different at each occurrence.

Let us begin to prove Theorem 2. Note r 10 (∞)=0, it is easy to see

γ− r 10 (n)= ∑ m = n ∞ ( r 10 ( m + 1 ) − r 10 ( m ) ) = ∑ m = n ∞ f(m),
(3.2)

where

f(m)= 1 m + 1 −ln ( 1 + 1 m ) − R 10 (m+1)+ R 10 (m).

Let D 1 = 2 , 755 , 095 , 121 6 , 762 , 022 , 344 . By using Mathematica software, we have

f ′ (x)+ D 1 1 ( x + 1 ) 13 =− P 19 ( x ) ( x − 1 ) + 1 , 619 , 906 , 998 , 377 ⋯ 5 , 270 , 931 33 , 810 , 111 , 720 x ( 1 + x ) 13 P 10 ( 1 ) ( x ) P 10 ( 2 ) ( x ) <0,

and

f ′ (x)+ D 1 1 ( x + 1 2 ) 13 = P 22 ( x ) 4 , 226 , 263 , 965 x ( 1 + x ) 2 ( 1 + 2 x ) 13 P 10 ( 3 ) ( x ) P 10 ( 4 ) ( x ) >0.

Hence, we get the following inequalities for x≥1:

D 1 1 ( x + 1 ) 13 <− f ′ (x)< D 1 1 ( x + 1 2 ) 13 .
(3.3)

Applying f(∞)=0, (3.3) and Lemma 2, we get

f ( m ) = − ∫ m ∞ f ′ ( x ) d x ≤ D 1 ∫ m ∞ ( x + 1 2 ) − 13 d x = D 1 12 ( m + 1 2 ) − 12 ≤ D 1 12 ∫ m m + 1 x − 12 d x .
(3.4)

From (3.1) and (3.4) we obtain

γ − r 10 ( n ) ≤ ∑ m = n ∞ D 1 12 ∫ m m + 1 x − 12 d x = D 1 12 ∫ n ∞ x − 12 d x = D 1 132 1 n 11 .
(3.5)

Similarly, we also have

f ( m ) = − ∫ m ∞ f ′ ( x ) d x ≥ D 1 ∫ m ∞ ( x + 1 ) − 13 d x = D 1 12 ( m + 1 ) − 12 ≥ D 1 12 ∫ m + 1 m + 2 x − 12 d x

and

γ − r 10 ( n ) ≥ ∑ m = n ∞ D 1 12 ∫ m + 1 m + 2 x − 12 d x = D 1 12 ∫ n + 1 ∞ x − 12 d x = D 1 132 1 ( n + 1 ) 11 .
(3.6)

Combining (3.5) and (3.6) completes the proof of (1.6).

Note r 11 (∞)=0, it is easy to deduce

r 11 (n)−γ= ∑ m = n ∞ ( r 11 ( m ) − r 11 ( m + 1 ) ) = ∑ m = n ∞ g(m),
(3.7)

where

g(m)=ln ( 1 + 1 m ) − 1 m + 1 − R 11 (m)+ R 11 (m+1).

We write D 2 = 20 , 169 , 451 24 , 495 , 240 . By using Mathematica software, we have

− g ′ (x)− D 2 1 ( x + 1 ) 14 = P 18 ( x ) 24 , 495 , 240 x 3 ( 1 + x ) 14 P 8 ( 1 ) ( x ) P 8 ( 2 ) ( x ) >0

and

− g ′ ( x ) − D 2 1 ( x + 1 2 ) 14 = − P 19 ( x ) ( x − 1 ) + 4 , 622 , 005 , 677 , 839 , 353 , 997 , 724 , 676 , 307 , 741 6 , 123 , 810 x 3 ( 1 + x ) 3 ( 1 + 2 x ) 14 P 8 ( 3 ) ( x ) P 8 ( 4 ) ( x ) < 0 .

Hence, for x≥1,

D 2 1 ( x + 1 ) 14 <− g ′ (x)< D 2 1 ( x + 1 2 ) 14 .
(3.8)

Applying g(∞)=0, (3.8) and (3.1), we get

g ( m ) = − ∫ m ∞ g ′ ( x ) d x ≤ D 2 ∫ m ∞ ( x + 1 2 ) − 14 d x = D 2 13 ( m + 1 2 ) − 13 ≤ D 2 13 ∫ m m + 1 x − 13 d x .
(3.9)

It follows from (3.7) and (3.9) that

r 11 ( n ) − γ ≤ ∑ m = n ∞ D 2 13 ∫ m m + 1 x − 13 d x = D 2 13 ∫ n ∞ x − 13 d x = D 2 156 1 n 12 .
(3.10)

Finally,

g ( m ) = − ∫ m ∞ g ′ ( x ) d x ≥ D 2 ∫ m ∞ ( x + 1 ) − 14 d x = D 2 13 ( m + 1 ) − 13 ≥ D 2 13 ∫ m + 1 m + 2 x − 13 d x

and

r 11 ( n ) − γ ≥ ∑ m = n ∞ D 2 13 ∫ m + 1 m + 2 x − 13 d x = D 2 13 ∫ n + 1 ∞ x − 13 d x = D 2 156 1 ( n + 1 ) 12 .
(3.11)

Combining (3.10) and (3.11) completes the proof of (1.7).

Remark 5 As an example, we give Mathematica Program for the proof of the left-hand side of (3.3):

  1. (i)

    Together [D[f[x],{x,1}]+ D 1 ( x + 1 ) 13 ];

  2. (ii)

    Take out the numerator P[x] of the above rational function, then manipulate the program: Apart [P[x]/(x−1)].

Appendix

For the reader’s convenience, we rewrite R k (n) (k≤13) with minimal denominators as follows.

R 1 ( n ) = 1 2 n , R 3 ( n ) = 1 2 n − 1 12 1 n 2 , R 5 ( n ) = 1 2 n − 5 6 ( 1 + 10 n 2 ) , R 7 ( n ) = 1 2 n − 79 1 , 200 1 n 2 − 147 400 ( 10 + 21 n 2 ) , R 9 ( n ) = 1 2 n − 7 ( 871 + 790 n 2 ) 20 ( 241 + 3 , 990 n 2 + 3 , 318 n 4 ) , R 11 ( n ) = 1 2 n − 52 , 489 894 , 348 1 n 2 − 1 , 237 , 227 , 621 + 584 , 280 , 400 n 2 4 , 471 , 740 ( 3 , 549 + 13 , 020 n 2 + 5 , 302 n 4 ) , R 13 ( n ) = 1 2 n − 39 , 577 , 260 , 671 + 66 , 288 , 226 , 620 n 2 + 15 , 762 , 446 , 700 n 4 1 , 260 ( 20 , 169 , 451 + 434 , 410 , 620 n 2 + 646 , 328 , 298 n 4 + 150 , 118 , 540 n 6 ) , R 2 ( n ) = 3 6 n + 1 , R 4 ( n ) = 13 + 30 n 6 ( 1 + 6 n + 10 n 2 ) , R 6 ( n ) = 5 ( 281 + 348 n + 756 n 2 ) 6 ( 79 + 600 n + 790 n 2 + 1 , 260 n 3 ) , R 8 ( n ) = 964 , 337 + 2 , 646 , 000 n + 2 , 599 , 730 n 2 + 2 , 621 , 220 n 3 20 ( 19 , 039 + 144 , 600 n + 315 , 210 n 2 + 303 , 660 n 3 + 262 , 122 n 4 ) , R 10 ( n ) = ( 7 ( 108 , 237 , 701 + 208 , 886 , 046 n + 523 , 341 , 290 n 2 R 10 ( n ) = + 210 , 464 , 400 n 3 + 230 , 000 , 760 n 4 ) ) R 10 ( n ) = / ( 20 ( 12 , 649 , 849 + 107 , 768 , 934 n + 209 , 431 , 110 n 2 R 10 ( n ) = + 395 , 365 , 320 n 3 + 174 , 158 , 502 n 4 + 161 , 000 , 532 n 5 ) ) , R 12 ( n ) = ( 3 , 604 , 759 , 235 , 968 , 501 + 11 , 032 , 319 , 618 , 513 , 046 n R 12 ( n ) = + 17 , 366 , 281 , 558 , 290 , 420 n 2 + 19 , 958 , 033 , 982 , 902 , 400 n 3 R 12 ( n ) = + 7 , 661 , 417 , 445 , 218 , 460 n 4 + 4 , 964 , 130 , 389 , 017 , 800 n 5 ) R 12 ( n ) = / ( 1 , 260 ( 1 , 058 , 674 , 313 , 539 + 9 , 019 , 254 , 081 , 474 n R 12 ( n ) = + 22 , 801 , 779 , 033 , 180 n 2 + 33 , 088 , 387 , 754 , 520 n 3 + 33 , 925 , 126 , 033 , 722 n 4 R 12 ( n ) = + 13 , 474 , 242 , 079 , 452 n 5 + 7 , 879 , 572 , 046 , 060 n 6 ) ) .

References

  1. Brent RP, Zimmermann P Cambridge Monographs on Applied and Computational Mathematics 18. In Modern Computer Arithmetic. Cambridge University Press, Cambridge; 2011. p. xvi+221 p. xvi+221

    Google Scholar 

  2. Dence TP, Dence JB: A survey of Euler’s constant. Math. Mag. 2009, 82: 255-265. 10.4169/193009809X468689

    Article  MathSciNet  MATH  Google Scholar 

  3. Havil J: Gamma: Exploring Euler’s Constant. Princeton University Press, Princeton; 2003.

    MATH  Google Scholar 

  4. Lagarias JC: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 2013,50(4):527-628. 10.1090/S0273-0979-2013-01423-X

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen CP, Mortici C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2012, 64: 391-398. 10.1016/j.camwa.2011.03.099

    Article  MathSciNet  MATH  Google Scholar 

  6. DeTemple DW: A quicker convergence to Euler’s constant. Am. Math. Mon. 1993,100(5):468-470. 10.2307/2324300

    Article  MathSciNet  MATH  Google Scholar 

  7. Gavrea I, Ivan M: Optimal rate of convergence for sequences of a prescribed form. J. Math. Anal. Appl. 2013,402(1):35-43. 10.1016/j.jmaa.2012.12.070

    Article  MathSciNet  MATH  Google Scholar 

  8. Gourdon, X, Sebah, P: Collection of formulae for the Euler constant. http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf, or see, http://numbers.computation.free.fr/Constants/constants.html

  9. Lu D: A new quicker sequence convergent to Euler’s constant. J. Number Theory 2014, 136: 320-329.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu D: Some quicker classes of sequences convergent to Euler’s constant. Appl. Math. Comput. 2014, 232: 172-177.

    Article  MathSciNet  Google Scholar 

  11. Lu D: Some new convergent sequences and inequalities of Euler’s constant. J. Math. Anal. Appl. 2014,419(1):541-552. 10.1016/j.jmaa.2014.05.018

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu D: Some new improved classes of convergence towards Euler’s constant. Appl. Math. Comput. 2014, 243: 24-32.

    Article  MathSciNet  Google Scholar 

  13. Mortici C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2010,59(8):2610-2614. 10.1016/j.camwa.2010.01.029

    Article  MathSciNet  MATH  Google Scholar 

  14. Mortici C, Chen CP: On the harmonic number expansion by Ramanujan. J. Inequal. Appl. 2013. Article ID 222 , 2013: Article ID 222

    Google Scholar 

  15. Mortici C: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. 2010,8(1):99-107. 10.1142/S0219530510001539

    Article  MathSciNet  MATH  Google Scholar 

  16. Mortici C: A quicker convergence toward the gamma constant with the logarithm term involving the constant e . Carpath. J. Math. 2010,26(1):86-91.

    MathSciNet  MATH  Google Scholar 

  17. Mortici C: A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 2013,402(2):405-410. 10.1016/j.jmaa.2012.11.023

    Article  MathSciNet  MATH  Google Scholar 

  18. Mortici C, Berinde V: New sharp estimates of the generalized Euler-Mascheroni constant. Math. Inequal. Appl. 2013,16(1):279-288.

    MathSciNet  MATH  Google Scholar 

  19. Mortici C: Fast convergences toward Euler-Mascheroni constant. Comput. Appl. Math. 2010,29(3):479-491.

    MathSciNet  MATH  Google Scholar 

  20. Mortici C: On some Euler-Mascheroni type sequences. Comput. Math. Appl. 2010,60(7):2009-2014. 10.1016/j.camwa.2010.07.038

    Article  MathSciNet  MATH  Google Scholar 

  21. Mortici C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 2010,59(8):2610-2614. 10.1016/j.camwa.2010.01.029

    Article  MathSciNet  MATH  Google Scholar 

  22. Mortici C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 2010,215(9):3443-3448. 10.1016/j.amc.2009.10.039

    Article  MathSciNet  MATH  Google Scholar 

  23. Mortici C: Product approximations via asymptotic integration. Am. Math. Mon. 2010,117(5):434-441.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mortici C: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23: 97-100. 10.1016/j.aml.2009.08.012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and Prof Xiaodong Cao for their careful reading of the manuscript and insightful comments. Research of this paper was supported by the National Natural Science Foundation of China (Grant No.11171344) and the Natural Science Foundation of Beijing (Grant No.1112010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu You.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., You, X. Continued fraction inequalities for the Euler-Mascheroni constant. J Inequal Appl 2014, 343 (2014). https://doi.org/10.1186/1029-242X-2014-343

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-343

Keywords