Skip to main content

On a product operator from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces

Abstract

Let D={zC:|z|<1} be the open unit disk, φ an analytic self-map of D and ψ an analytic function in D. Let D be the differentiation operator and W φ , ψ the weighted composition operator. The boundedness and compactness of the product operator D W φ , ψ from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces on D are characterized.

MSC:47B38, 47B33, 47B37.

1 Introduction

Let be the complex plane, D={zC:|z|<1} the open unit disk, H(D) the space of all analytic functions on D and dA(z)= 1 π dxdy the normalized Lebesgue measure on D. For α>1, let d A α (z)=(α+1) ( 1 | z | 2 ) α dA(z) be the weighted Lebesgue measure on D. The weighted Bergman-Nevanlinna space A log α consists of all fH(D) such that

f A log α = D log ( 1 + | f ( z ) | ) d A α (z)<.

It is a Fréchet space with the translation invariant metric

d(f,g)= f g A log α .

For some details of this space, see, e.g., [13] and [4].

For β>0, the weighted-type A β consists of all fH(D) such that

sup z D ( 1 | z | 2 ) β | f ( z ) | <.

This space is a non-separable Banach space with the norm defined by

f A β = sup z D ( 1 | z | 2 ) β | f ( z ) | .

The closure of the set of polynomials in A β is denoted by A β , 0 , which is a separable Banach space and consists exactly of those functions f in A β satisfying the condition

lim | z | 1 ( 1 | z | 2 ) β | f ( z ) | =0.

For β>0, the weighted Bloch space is defined by

B β = { f H ( D ) : sup z D ( 1 | z | 2 ) β | f ( z ) | < } ,

and it is well known (see, e.g., [5]) that, if β>1, then f B β if and only if f A β 1 . Under the norm

f B β = | f ( 0 ) | + sup z D ( 1 | z | 2 ) β | f ( z ) | ,

it is a Banach space. The closure of the set of polynomials in B β is called the little weighted Bloch space and denoted by B β , 0 . For a good source for such spaces, we refer to [5].

For β>0, the weighted Zygmund space Z β consists of all fH(D) such that

sup z D ( 1 | z | 2 ) β | f ( z ) | <.

It is a Banach space with the norm

f Z β = | f ( 0 ) | + | f ( 0 ) | + sup z D ( 1 | z | 2 ) β | f ( z ) | .

The little weighted Zygmund space Z β , 0 consists those functions f in Z β satisfying

lim | z | 1 ( 1 | z | 2 ) β | f ( z ) | =0,

and it is a closed subspace of the weighted Zygmund space.

Recently, many authors have studied the properties of some concrete operators between various spaces of analytic functions in the unit disk, the upper half plane, the unit ball and the unit polydisk. For some operators on weighted-type spaces, weighted Bloch spaces, and weighted Zygmund spaces on these domains, see, e.g., [4, 638] and the references therein.

Let φ be an analytic self-map of D and let ψ be an analytic function in D. It is well known that the weighted composition operator W φ , ψ on H(D) is defined by

W φ , ψ f(z)=ψ(z)f ( φ ( z ) ) ,zD.

If ψ1, W φ , ψ := C φ is called the composition operator. If φ(z)=z, W φ , ψ := M ψ it is called the multiplication operator. It is of interest to provide function theoretic characterizations when φ and ψ induce a bounded or compact weighted composition operator. Sharma and Abbas have studied the boundedness and compactness of weighted composition operators from weighted Bergman-Nevanlinna spaces to Bloch spaces in [39]. Kumar and Sharma have characterized the boundedness and compactness of weighted composition operators from weighted Bergman-Nevanlinna spaces to Zygmund spaces in [40].

Now we list several operators, which will be considered in this paper. Let D be the differentiation operator on H(D) defined by

Df(z)= f (z),zD.

Operator D C φ has been studied, for example, in [10, 15, 19, 20, 31, 35, 4145]. Here we want to mention that Sharma has studied the following two operators from Bergman-Nevanlinna spaces to Bloch-type spaces in [46]. They are defined as follows:

D M ψ C φ f(z)= ψ (z)f ( φ ( z ) ) +ψ(z) φ (z) f ( φ ( z ) )

and

D C φ M ψ f(z)= φ (z) ψ ( φ ( z ) ) f ( φ ( z ) ) +ψ ( φ ( z ) ) φ (z) f ( φ ( z ) ) ,

for zD and fH(D). These operators on weighted Bergman spaces have been also studied by Stević et al. in [47] and [48]. If we consider the product operator D W φ , ψ , it is clear that D M ψ C φ =D W φ , ψ and D C φ M ψ =D W φ , ψ φ . Quite recently, the operator D W φ , ψ from weighted Bergman spaces to weighted Zygmund spaces has been considered in [49]. This paper is devoted to characterizing the boundedness and compactness of the operator D W φ , ψ from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces. This paper can be regarded as an continuousness of our work.

Since the weighted Bergman-Nevanlinna space is a Fréchet space and not a Banach space, it is necessary to introduce several definitions needed in this paper. Let X and Y be topological vector spaces whose topologies are given by translation invariant metrics d X and d Y , respectively, and let L:XY be a linear operator. It is said that L is metrically bounded if there exists a positive constant K such that

d Y (Lf,0)K d X (f,0)

for all fX. When X and Y are Banach spaces, the metrical boundedness coincides with the usual definition of bounded operators between Banach spaces. Recall that L:XY is metrically compact if it maps bounded sets into relatively compact sets. When X and Y are Banach spaces, the metrical compactness coincides with the usual definition of compact operators between Banach spaces. When X= A log α and Y is a Banach space, we define

L A log α Y = sup f A log α 1 L f Y ,

and we often write L A log α Y by L.

Throughout this paper, an operator is bounded (respectively, compact), if it is metrically bounded (respectively, metrically compact). Constants are denoted by C, they are positive and may differ from one occurrence to the next. The notation ab means that there exists a positive constant C such that a/CbCa.

2 The operator D W φ , ψ : A log α Z β ( Z β , 0 )

Our first lemma characterizes the compactness in terms of sequential convergence. Since the proof is standard, it is omitted (see Proposition 3.11 in [50]).

Lemma 2.1 Let α>1, β>0 and Y{ Z β , Z β , 0 }. Then the bounded operator D W φ , ψ : A log α Y is compact if and only if for every bounded sequence ( f n ) n N in A log α such that f n 0 uniformly on every compact subset of D as n, it follows that

lim n D W φ , ψ f n Y =0.

The next result can be found, for example, in [4].

Lemma 2.2 Let α>1 and n N 0 =N{0}. Then, for all f A log α and zD, there exists a positive constant C independent of f such that

( 1 | z | 2 ) n | f ( n ) ( z ) | exp C f A log α ( 1 | z | 2 ) α + 2 .

Now we consider the boundedness of the operator D W φ , ψ : A log α Z β .

Theorem 2.3 Let α>1, β>0, φ an analytic self-map of D and ψH(D). Then, for all c>0, the following statements are equivalent:

  1. (i)

    The operator D W φ , ψ : A log α Z β is bounded.

  2. (ii)

    The operator D W φ , ψ : A log α Z β is compact.

  3. (iii)

    ψ Z β ,

    M 0 : = sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | < , M 1 : = sup z D ( 1 | z | 2 ) β | ψ ( z ) | | φ ( z ) | 3 < , M 2 : = sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | < , lim φ ( z ) D ( 1 | z | 2 ) β | ψ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim φ ( z ) D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 3 | ψ ( z ) | | φ ( z ) | 3 exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim φ ( z ) D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 2 | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 ,

and

lim φ ( z ) D ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 =0.

Proof (i) (iii). Suppose that (i) holds. Take the functions f(z)=z and f(z)1, respectively. Since the operator D W φ , ψ : A log α Z β is bounded, we have

sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + ψ ( z ) φ ( z ) | D W φ , ψ z Z β C D W φ , ψ ,
(1)

and

sup z D ( 1 | z | 2 ) β | ψ ( z ) | D W φ , ψ 1 Z β CD W φ , ψ .
(2)

Inequality (2) shows ψ Z β . From (1), (2), and the boundedness of φ, it follows that

M 0 = sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | CD W φ , ψ .
(3)

Taking the functions f(z)= z 2 and f(z)= z 3 , respectively, we have

sup z D ( 1 | z | 2 ) β | ψ ( z ) ( z ) φ ( z ) 2 + 6 ψ ( z ) φ ( z ) φ ( z ) + 6 ψ ( z ) φ ( z ) φ ( z ) + 6 ψ ( z ) φ ( z ) 2 + 6 ψ ( z ) φ ( z ) φ ( z ) + 2 ψ ( z ) φ ( z ) φ ( z ) | D W φ , ψ z 2 Z β C D W φ , ψ ,
(4)

and

sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 3 + 9 ψ ( z ) φ ( z ) φ ( z ) 2 + 18 ψ ( z ) φ ( z ) φ ( z ) 2 + 6 ψ ( z ) φ ( z ) 3 + 18 ψ ( z ) φ ( z ) φ ( z ) φ ( z ) + 9 ψ ( z ) φ ( z ) φ ( z ) 2 + 3 ψ ( z ) φ ( z ) 2 φ ( z ) | D W φ , ψ z 3 Z β C D W φ , ψ .
(5)

By (2) and the boundedness of φ, we have

sup z D ( 1 | z | 2 ) β | ψ ( z ) | | φ ( z ) | 2 CD W φ , ψ ,
(6)

and

sup z D ( 1 | z | 2 ) β | ψ ( z ) | | φ ( z ) | 3 CD W φ , ψ .
(7)

From (3), (4), (6), and the boundedness of φ, it follows that

M 2 = sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | CD W φ , ψ .
(8)

Inequalities (3), (5), (7), (8), and the boundedness of φ give

M 1 = sup z D ( 1 | z | 2 ) | ψ ( z ) | | φ ( z ) | 3 CD W φ , ψ .
(9)

For wD, we choose the functions

f 1 ( z ) = α + 4 3 α + 6 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) 2 α + 8 α + 3 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + 16 α + 64 6 α + 21 ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 ( 1 | φ ( w ) | 2 ) α + 6 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 4

and

g 1 (z)= 2 α + 7 4 α + 8 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) 6 α + 21 4 α + 12 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 .

By a direct calculation, it follows that

f 1 ( φ ( w ) ) = f 1 ( φ ( w ) ) = f 1 ( φ ( w ) ) =0
(10)

and

g 1 ( φ ( w ) ) = g 1 ( φ ( w ) ) =0.
(11)

Using f 1 and g 1 , we define the function f(z)= f 1 (z)expc g 1 (z). Applying (10) and (11) to f , f and f , we find

f ( φ ( w ) ) = f ( φ ( w ) ) = f ( φ ( w ) ) =0.

It is obvious that

f ( φ ( w ) ) = C ( 1 | φ ( w ) | 2 ) α + 2 exp c ( 1 | φ ( w ) | 2 ) α + 2 ,

where

C= α + 4 3 α + 6 2 α + 8 α + 3 + 16 α + 64 6 α + 21 1.

From the proof in [46], we see that f A log α and f A log α C. Since the operator D W φ , ψ : A log α Z β is bounded, it follows that

D W φ , ψ f Z β CD W φ , ψ ,

which means that, for all zD,

( 1 | z | 2 ) β | ( D W φ , ψ f ) ( z ) | C.
(12)

Replacing z by w in (12), we obtain

( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) α + 2 | ψ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 C

and then

( 1 | w | 2 ) β | ψ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 C ( 1 | φ ( w ) | 2 ) α + 2 .
(13)

Taking the limit as φ(w)D in (13), it gives

lim φ ( w ) D ( 1 | w | 2 ) β | ψ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 =0.

For wD, we choose the functions

f 2 ( z ) = 1 3 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) 2 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + 8 3 ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 ( 1 | φ ( w ) | 2 ) α + 6 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 4

and

g 2 (z)= ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) .

From a calculation, we obtain

f 2 ( φ ( w ) ) = f 2 ( φ ( w ) ) = f 2 ( φ ( w ) ) =0.
(14)

Define the function g(z)= f 2 (z)expc g 2 (z). Then by (14),

g ( φ ( w ) ) = g ( φ ( w ) ) = g ( φ ( w ) ) =0,

and by a direct calculation,

g ( φ ( w ) ) =C φ ( w ) ¯ 3 ( 1 | φ ( w ) | 2 ) α + 5 exp c ( 1 | φ ( w ) | 2 ) α + 2 ,

where C=30 ( α + 2 ) 2 8. Since D W φ , ψ : A log α Z β is bounded, we have

D W φ , ψ g Z β CD W φ , ψ ,

and so

( 1 | z | 2 ) β | ( D W φ , ψ g ) ( z ) | CD W φ , ψ ,
(15)

for all zD. Letting z=w in (15) yields

( 1 | w | 2 ) β | φ ( w ) | 3 | φ ( w ) | 3 | ψ ( w ) | ( 1 | φ ( w ) | 2 ) α + 5 exp c ( 1 | φ ( w ) | 2 ) α + 2 C W φ , ψ .

Thus

( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) 3 | φ ( w ) | 3 | ψ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 C ( 1 | φ ( w ) | 2 ) α + 2 | φ ( w ) | 3 .
(16)

Taking the limit as φ(w)D in (16), we have

lim φ ( w ) D ( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) 3 | φ ( w ) | 3 | ψ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 =0.

For wD, we choose the function

f 3 ( z ) = c 1 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + c 2 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + c 3 ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 ( 1 | φ ( w ) | 2 ) α + 6 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 4 ,

where

c 2 = 48 α 3 + 460 α 2 + 1398 α + 1340 24 α 3 + 214 α 2 + 655 α + 682 , c 3 = 16 α 2 + 104 α + 164 6 α 2 + 37 α + 62 ,

and

c 1 =1 c 2 c 3 .

We also choose the function

g 3 (z)= 2 α + 7 4 α + 8 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) 6 α + 21 4 α + 12 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 .

For the functions f 3 and g 3 , we have

f 3 ( φ ( w ) ) = f 3 ( φ ( w ) ) = f 3 ( φ ( w ) ) =0
(17)

and

g 3 ( φ ( w ) ) = g 3 ( φ ( w ) ) =0.
(18)

Consequently, (17) and (18) make the function h(z)= f 3 (z)expc g 3 (z) to satisfy

h ( φ ( w ) ) = h ( φ ( w ) ) = h ( φ ( w ) ) =0

and

h ( φ ( w ) ) =C φ ( w ) ¯ ( 1 | φ ( w ) | 2 ) α + 3 exp c ( 1 | φ ( w ) | 2 ) α + 2 ,

where

C=2 c 2 +3 c 3 4.

By the boundedness of the operator D W φ , ψ : A log α Z β , we find

| φ ( w ) | ( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) α + 3 | 3 ψ ( w ) φ ( w ) + 3 ψ ( w ) φ ( w ) + ψ ( w ) φ ( w ) | × exp c ( 1 | φ ( w ) | 2 ) α + 2 C .

Thus

lim φ ( w ) D ( 1 | w | 2 ) β 1 | φ ( w ) | 2 | 3 ψ ( w ) φ ( w ) + 3 ψ ( w ) φ ( w ) + ψ ( w ) φ ( w ) | × exp c ( 1 | φ ( w ) | 2 ) α + 2 = 0 .

For wD, we choose the functions

f 4 ( z ) = 3 α + 8 3 α + 10 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) 6 α + 22 3 α + 10 ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 + 6 α + 24 3 α + 10 ( 1 | φ ( w ) | 2 ) α + 5 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 3 ( 1 | φ ( w ) | 2 ) α + 6 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 4

and

g 4 (z)= α + 3 α + 2 ( 1 | φ ( w ) | 2 ) α + 2 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) ( 1 | φ ( w ) | 2 ) α + 4 ( 1 φ ( w ) ¯ z ) 2 ( α + 2 ) + 2 .

Then

f 4 ( φ ( w ) ) = f 4 ( φ ( w ) ) = f 4 ( φ ( w ) ) =0
(19)

and g 4 (φ(w))=0. From this and (19), for the function u(z)= f 4 (z)expc g 4 (z) we have

u ( φ ( w ) ) = u ( φ ( w ) ) = u ( φ ( w ) ) =0

and

u ( φ ( w ) ) =C φ ( w ) ¯ 2 ( 1 | φ ( w ) | 2 ) α + 4 exp c ( 1 | φ ( w ) | 2 ) α + 2 ,

where

C= 24 α + 120 α + 141 3 α + 10 .

By the boundedness of D W φ , ψ : A log α Z β ,

D W φ , ψ u φ ( w ) Z β CD W φ , ψ ,

and from which we get

| φ ( w ) | 2 ( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) α + 4 | ψ ( w ) φ ( w ) 2 + ψ ( w ) φ ( w ) φ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 C.

This shows that

lim φ ( w ) D ( 1 | w | 2 ) β ( 1 | φ ( w ) | 2 ) 2 | ψ ( w ) φ ( w ) 2 + ψ ( w ) φ ( w ) φ ( w ) | exp c ( 1 | φ ( w ) | 2 ) α + 2 =0.

The proof of the implication is finished.

  1. (iii)

    (ii). Let ( f n ) n N be a sequence in A log α with sup n N f n A log α M and f n 0 uniformly on every compact subset of D as n. We have, for all c>0, and especially for constant C in Lemma 2.2, for any ε>0, the result that there exists a constant δ(0,1) such that whenever δ<|φ(z)|<1, it follows that

    ( 1 | z | 2 ) β | ψ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 < ε , ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 3 | φ ( z ) | 3 | ψ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 < ε , ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 2 | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 < ε ,

and

( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 <ε.

Then by Lemma 2.2, we have

D W φ , ψ f n Z β = | ( ψ f n φ ) ( 0 ) | + | ( ψ f n φ ) ( 0 ) | + sup z D ( 1 | z | 2 ) β | ( ψ f n φ ) ( z ) | | ( ψ f n φ ) ( 0 ) | + | ( ψ f n φ ) ( 0 ) | + sup z D ( 1 | z | 2 ) β | ψ ( z ) f n ( φ ( z ) ) | + sup z D ( 1 | z | 2 ) β | ( 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + ψ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + 3 sup z D ( 1 | z | 2 ) β | ( ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + sup z D ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 3 f n ( φ ( z ) ) | | ( ψ f n φ ) ( 0 ) | + | ( ψ f n φ ) ( 0 ) | + sup | φ ( z ) | δ ( 1 | z | 2 ) β | ψ ( z ) f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β | ψ ( z ) f n ( φ ( z ) ) | + sup | φ ( z ) | δ ( 1 | z | 2 ) β | ( 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + ψ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β | ( 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + ψ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + 3 sup | φ ( z ) | δ ( 1 | z | 2 ) β | ( ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + 3 sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β | ( ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) ) f n ( φ ( z ) ) | + sup | φ ( z ) | δ ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 3 f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β | ψ ( z ) φ ( z ) 3 f n ( φ ( z ) ) | | ( ψ f n φ ) ( 0 ) | + | ( ψ f n φ ) ( 0 ) | + ψ Z β sup | φ ( z ) | δ | f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β | ψ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 + M 0 sup | φ ( z ) | δ | f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + ψ ( z ) φ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 + 3 sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 2 | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | exp C ( 1 | φ ( z ) | 2 ) α + 2 + 3 M 2 sup | φ ( z ) | δ | f n ( φ ( z ) ) | + M 1 sup | φ ( z ) | δ | f n ( φ ( z ) ) | + sup δ < | φ ( z ) | < 1 ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 3 | ψ ( z ) | | φ ( z ) | 3 exp C ( 1 | φ ( z ) | 2 ) α + 2 .

By Cauchy’s estimation, if ( f n ) n N converges to zero on each compact subset of D, then ( f n ) n N , ( f n ) n N , and ( f n ) n N also do as n. From this, and since both {zD:|z|δ} and {0} are compact subset of D, we can choose a natural number N such that, whenever n>N, it follows that

| ( ψ f n φ ) ( 0 ) | + | ( ψ f n φ ) ( 0 ) | <ε

and

sup | φ ( z ) | δ | f n ( i ) ( φ ( z ) ) | <ε,

where i=0,1,2,3. Consequently, for all n>N it follows that

D W φ , ψ f n Z β ( 7 + ψ Z β + M 0 + M 1 + 3 M 2 ) ε,

which shows that the operator D W φ , ψ : A log α Z β is compact.

  1. (ii)

    (i). This implication is obvious. The proof is finished. □

Now, we consider the boundedness of operator D W φ , ψ : A log α Z β , 0 . We first have the following result.

Lemma 2.4 Let α>1 and β>0. Let φ be an analytic self-map of D and ψ an analytic function on D. Then, for all c>0, the following statements are equivalent:

  1. (i)
    lim z D ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | × exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 .
  2. (ii)
    lim φ ( z ) D ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | × exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 ,

and ψ φ +3 ψ φ +3 ψ φ A β , 0 .

Proof Suppose that (i) holds. Since

1 1 | φ ( z ) | 2 exp c ( 1 | φ ( z ) | 2 ) α + 2 1

for all zD, we have

( 1 | z | 2 ) β | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 0 ,

as zD. Hence ψ φ +3 ψ φ +3 ψ φ A β , 0 . Since φ(z)D implies zD, it follows that the first assertion in (ii) holds.

Now suppose that (ii) holds, but (i) is not true. Then there exist constants c 0 >0, ε 0 >0 and a sequence { z n } tending to D as n such that

( 1 | z n | 2 ) β 1 | φ ( z n ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | exp c ( 1 | φ ( z n ) | 2 ) α + 2 ε 0 .
(20)

Since ψ φ +3 ψ φ +3 ψ φ A β , 0 , it follows from (20) that the sequence ( z n ) n N has a subsequence ( z n k ) k N with φ( z n k )D. Therefore, applying ( z n k ) k N to the first assertion in (ii), we arrive at a contradiction to (20), finishing the proof. □

By Lemma 2.4, the following result follows similar to the proof of Theorem 2.3. Hence, we omit the details.

Theorem 2.5 Let α>1 and β>0. Let φ be an analytic self-map of D and ψ an analytic function on D. Then, for all c>0, the following statements are equivalent:

  1. (i)

    The operator D W φ , ψ : A log α Z β , 0 is bounded.

  2. (ii)

    The operator D W φ , ψ : A log α Z β , 0 is compact.

  3. (iii)
    ψ φ + 3 ψ φ + 3 ψ φ , φ 3 ψ , ψ φ 2 + ψ φ φ , ψ A β , 0 , lim φ ( z ) D ( 1 | z | 2 ) β | ψ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim φ ( z ) D ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | × exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim φ ( z ) D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 2 | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 ,

and

lim φ ( z ) D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 3 | ψ ( z ) | | φ ( z ) | 3 exp c ( 1 | φ ( z ) | 2 ) α + 2 =0.
  1. (iv)
    lim z D ( 1 | z | 2 ) β | ψ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim z D ( 1 | z | 2 ) β 1 | φ ( z ) | 2 | ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) + 3 ψ ( z ) φ ( z ) | × exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 , lim z D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 2 | ψ ( z ) φ ( z ) 2 + ψ ( z ) φ ( z ) φ ( z ) | exp c ( 1 | φ ( z ) | 2 ) α + 2 = 0 ,

and

lim z D ( 1 | z | 2 ) β ( 1 | φ ( z ) | 2 ) 3 | ψ ( z ) | | φ ( z ) | 3 exp c ( 1 | φ ( z ) | 2 ) α + 2 =0.

References

  1. Jiang ZJ, Cao GF: Composition operator on Bergman-Orlicz space. J. Inequal. Appl. 2009. Article ID 832686, 2009: Article ID 832686

    Google Scholar 

  2. Jiang ZJ: Carleson measures and composition operators on Bergman-Orlicz spaces of the unit ball. Int. J. Math. Anal. 2010,4(33):1607-1615.

    MathSciNet  MATH  Google Scholar 

  3. Stević S: Weighted composition operators from Bergman-Privalov-type spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 2010, 217: 1939-1943. 10.1016/j.amc.2010.06.049

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang W, Yan W: Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces. Bull. Korean Math. Soc. 2011,48(6):1195-1205. 10.4134/BKMS.2011.48.6.1195

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu K: Spaces of Holomorphic Functions in the Unit Ball. Springer, New York; 2005.

    MATH  Google Scholar 

  6. Jiang ZJ: Weighted composition operator from Bergman-type spaces into Bers-type spaces. Acta Math. Sci. 2010 (in Chinese),53(1):67-74.

    MATH  Google Scholar 

  7. Jiang ZJ: Weighted composition operators from weighted Bergman spaces to some spaces of analytic functions on the upper half plane. Ars Comb. 2010, 91: 10-16.

    Google Scholar 

  8. Jiang ZJ: On Volterra composition operators from Bergman-type space to Bloch-type space. Czechoslov. Math. J. 2011,61(4):993-1005. 10.1007/s10587-011-0042-x

    Article  MATH  MathSciNet  Google Scholar 

  9. Jiang ZJ, Stević S: Compact differences of weighted composition operators from weighted Bergman spaces to weighted-type spaces. Appl. Math. Comput. 2010, 217: 3522-3530. 10.1016/j.amc.2010.09.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Li S, Stević S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 2007,9(2):195-205.

    MathSciNet  MATH  Google Scholar 

  11. Li S, Stević S: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 2007,117(3):371-385. 10.1007/s12044-007-0032-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Li S, Stević S: Weighted composition operators from α -Bloch space to H on the polydisk. Numer. Funct. Anal. Optim. 2007,28(7):911-925.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li S, Stević S:Weighted composition operators from H to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007. Article ID 48478, 2007: Article ID 48478

    Google Scholar 

  14. Li S, Stević S: Weighted composition operators between H and α -Bloch spaces in the unit ball. Taiwan. J. Math. 2008, 12: 1625-1639.

    MATH  MathSciNet  Google Scholar 

  15. Li S, Stević S: Composition followed by differentiation from mixed norm spaces to α -Bloch spaces. Sb. Math. 2008,199(12):1847-1857. 10.1070/SM2008v199n12ABEH003983

    Article  MathSciNet  MATH  Google Scholar 

  16. Li S, Stević S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 2008, 338: 1282-1295. 10.1016/j.jmaa.2007.06.013

    Article  MathSciNet  MATH  Google Scholar 

  17. Li S, Stević S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 2008,206(2):825-831. 10.1016/j.amc.2008.10.006

    Article  MathSciNet  MATH  Google Scholar 

  18. Li S, Stević S:Products of Volterra type operator and composition operator from H and Bloch spaces to the Zygmund space. J. Math. Anal. Appl. 2008, 345: 40-52. 10.1016/j.jmaa.2008.03.063

    Article  MathSciNet  MATH  Google Scholar 

  19. Li S, Stević S: Composition followed by differentiation between H and α -Bloch spaces. Houst. J. Math. 2009,35(1):327-340.

    MATH  MathSciNet  Google Scholar 

  20. Li S, Stević S: Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces. Appl. Math. Comput. 2010, 217: 3144-3154. 10.1016/j.amc.2010.08.047

    Article  MathSciNet  MATH  Google Scholar 

  21. Nieminen PJ: Compact differences of composition operators on Bloch and Lipschitz spaces. Comput. Methods Funct. Theory 2007,7(2):325-344. 10.1007/BF03321648

    Article  MathSciNet  MATH  Google Scholar 

  22. Ohno S:Weighted composition operators between H and the Bloch space. Taiwan. J. Math. 2001,5(3):555-563.

    MathSciNet  MATH  Google Scholar 

  23. Sharma SD, Sharma AK, Ahmed S: Composition operators between Hardy and Bloch-type spaces of the upper half-plane. Bull. Korean Math. Soc. 2007,43(3):475-482.

    Article  MathSciNet  MATH  Google Scholar 

  24. Stević S: Composition operators between H and the α -Bloch spaces on the polydisc. Z. Anal. Anwend. 2006, 25: 457-466.

    Article  MathSciNet  MATH  Google Scholar 

  25. Stević S: Essential norms of weighted composition operators from the α -Bloch space to a weighted-type space on the unit ball. Abstr. Appl. Anal. 2008. Article ID 279691, 2008:

    Google Scholar 

  26. Stević S:Norm of weighted composition operators from Bloch space to H on the unit ball. Ars Comb. 2008, 88: 125-127.

    MATH  MathSciNet  Google Scholar 

  27. Stević S: Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 2008, 76: 59-64.

    MathSciNet  MATH  Google Scholar 

  28. Stević S:On a new operator from H to the Bloch-type space on the unit ball. Util. Math. 2008, 77: 257-263.

    MathSciNet  MATH  Google Scholar 

  29. Stević S: On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Appl. Math. Comput. 2008, 206: 313-320. 10.1016/j.amc.2008.09.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Stević S: Integral-type operators from the mixed-norm space to the Bloch-type space on the unit ball. Sib. Math. J. 2009,50(6):1098-1105. 10.1007/s11202-009-0121-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Stević S: Norm and essential norm of composition followed by differentiation from α -Bloch spaces to H . Appl. Math. Comput. 2009, 207: 225-229. 10.1016/j.amc.2008.10.032

    Article  MathSciNet  MATH  Google Scholar 

  32. Stević S: Norm of weighted composition operators from α -Bloch spaces to weighted-type spaces. Appl. Math. Comput. 2009, 215: 818-820. 10.1016/j.amc.2009.06.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Stević S: On a new integral-type operator from the Bloch spaces to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 2009, 354: 426-434. 10.1016/j.jmaa.2008.12.059

    Article  MathSciNet  MATH  Google Scholar 

  34. Stević S: Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 2009, 212: 499-504. 10.1016/j.amc.2009.02.057

    Article  MathSciNet  MATH  Google Scholar 

  35. Stević S: Weighted differentiation composition operators from H and Bloch spaces to n -th weighted-type spaces on the unit disk. Appl. Math. Comput. 2010, 216: 3634-3641. 10.1016/j.amc.2010.05.014

    Article  MathSciNet  MATH  Google Scholar 

  36. Stević S, Jiang ZJ: Differences of weighted composition operators on the unit polydisk. Sib. Math. J. 2011,52(2):454-468.

    MathSciNet  MATH  Google Scholar 

  37. Stević S, Agarwal RP: Weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces. J. Inequal. Appl. 2009. Article ID 964814, 2009:

    Google Scholar 

  38. Yang W: Weighted composition operators from Bloch-type spaces to weighted-type spaces. Ars Comb. 2009, 93: 265-274.

    MATH  MathSciNet  Google Scholar 

  39. Sharma AK, Abbas Z: Weighted composition operators between weighted Bergman-Nevanlinna and Bloch-type spaces. Appl. Math. Sci. 2010,41(4):2039-2048.

    MathSciNet  MATH  Google Scholar 

  40. Kumar P, Sharma SD: Weighted composition operators from weighted Bergman Nevanlinna spaces to Zygmund spaces. Int. J. Mod. Math. Sci. 2012,3(1):31-54.

    Google Scholar 

  41. Hibschweiler RA, Portnoy N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 2005,35(3):843-855. 10.1216/rmjm/1181069709

    Article  MathSciNet  MATH  Google Scholar 

  42. Hosokawa T, Ohno S: Differences of composition operators on the Bloch spaces. J. Oper. Theory 2007, 57: 229-242.

    MathSciNet  MATH  Google Scholar 

  43. Ohno S: Products of composition and differentiation on Bloch spaces. Bull. Korean Math. Soc. 2009,46(6):1135-1140. 10.4134/BKMS.2009.46.6.1135

    Article  MathSciNet  MATH  Google Scholar 

  44. Stević S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 2009, 16: 623-635.

    MathSciNet  MATH  Google Scholar 

  45. Stević S: Composition followed by differentiation from H and the Bloch space to n -th weighted-type spaces on the unit disk. Appl. Math. Comput. 2010, 216: 3450-3458. 10.1016/j.amc.2010.03.117

    Article  MathSciNet  MATH  Google Scholar 

  46. Sharma AK: Products of composition multiplication and differentiation between Bergman and Bloch type spaces. Turk. J. Math. 2011, 35: 275-291.

    MATH  Google Scholar 

  47. Stević S, Sharma AK, Bhat A: Products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 2011, 217: 8115-8125. 10.1016/j.amc.2011.03.014

    Article  MathSciNet  MATH  Google Scholar 

  48. Stević S, Sharma AK, Bhat A: Essential norm of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 2011, 218: 2386-2397. 10.1016/j.amc.2011.06.055

    Article  MathSciNet  MATH  Google Scholar 

  49. Jiang ZJ: On a class of operators from weighted Bergman spaces to some spaces of analytic functions. Taiwan. J. Math. 2011,15(5):2095-2121.

    MATH  MathSciNet  Google Scholar 

  50. Cowen CC, MacCluer BD: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton; 1995.

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his or her helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 11201323), the Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QZJ01, No. 2013QYY01), the Key Fund Project of Sichuan Provincial Department of Education (Grant No. 12ZB288) and the Introduction of Talent Project of SUSE (Grant No. 2014RC04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jie Jiang.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Zj. On a product operator from weighted Bergman-Nevanlinna spaces to weighted Zygmund spaces. J Inequal Appl 2014, 404 (2014). https://doi.org/10.1186/1029-242X-2014-404

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-404

Keywords