Skip to main content

Sharp bounds for Neuman means in terms of one-parameter family of bivariate means

Abstract

We present the best possible parameters p 1 , p 2 , p 3 , p 4 , q 1 , q 2 , q 3 , q 4 ∈[0,1] such that the double inequalities G p 1 (a,b)< S H A (a,b)< G q 1 (a,b), Q p 2 (a,b)< S C A (a,b)< Q q 2 (a,b), H p 3 (a,b)< S A H (a,b)< H q 3 (a,b), C p 4 (a,b)< S A C (a,b)< C q 4 (a,b) hold for all a,b>0 with a≠b, where S H A , S C A , S A H , S A C are the Neuman means, and G p , Q p , H p , C p are the one-parameter means.

MSC:26E60.

1 Introduction

Let a,b>0 with a≠b. Then the Schwab-Borchardt mean SB(a,b) [1–3], and the Neuman means S H A (a,b), S A H (a,b), S C A (a,b), and S A C (a,b) [4, 5] of a and b are given by

S B ( a , b ) = b 2 − a 2 cos − 1 ( a / b ) ( a < b ) , S B ( a , b ) = a 2 − b 2 cosh − 1 ( a / b ) ( a > b ) , S H A ( a , b ) = S B [ H ( a , b ) , A ( a , b ) ] , S A H ( a , b ) = S B [ A ( a , b ) , H ( a , b ) ] , S C A ( a , b ) = S B [ C ( a , b ) , A ( a , b ) ] , S A C ( a , b ) = S B [ A ( a , b ) , C ( a , b ) ] ,

respectively. Here, cos − 1 (x) and cosh − 1 (x)=log(x+ x 2 − 1 ) are, respectively, the inverse cosine and inverse hyperbolic cosine functions, and H(a,b)=2ab/(a+b), A(a,b)=(a+b)/2, and C(a,b)=( a 2 + b 2 )/(a+b) are, respectively, the classical harmonic, arithmetic, and contraharmonic means of a and b.

Let v=(a−b)/(a+b)∈(−1,1), and p∈(0,∞), q∈(0,π/2), r∈(0,log(2+ 3 )), and s∈(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1− v 2 and cosh(r)=1/cosh(s)=1+ v 2 . Then the following explicit formulas were found by Neuman [4]:

S A H (a,b)=A(a,b) tanh ( p ) p , S H A (a,b)=A(a,b) sin ( q ) q ,
(1.1)
S C A (a,b)=A(a,b) sinh ( r ) r , S A C (a,b)=A(a,b) tan ( s ) s .
(1.2)

Let p∈[0,1] and N be a bivariate symmetric mean. Then the one-parameter bivariate mean N p (a,b) was defined by Neuman [6] as follows:

N p (a,b)=N [ ( 1 + p ) 2 a + ( 1 − p ) 2 b , ( 1 + p ) 2 b + ( 1 − p ) 2 a ] .
(1.3)

Recently, the Neuman means S A H , S H A , S C A , and S A C , and the one-parameter bivariate mean N p have been the subject of intensive research. He et al. [7] found the greatest values α 1 , α 2 ∈[0,1/2], and α 3 , α 4 ∈[1/2,1], and the least values β 1 , β 2 ∈[0,1/2], and β 3 , β 4 ∈[1/2,1] such that the double inequalities

H [ α 1 a + ( 1 − α 1 ) b , α 1 b + ( 1 − α 1 ) a ] < S A H ( a , b ) < H [ β 1 a + ( 1 − β 1 ) b , β 1 b + ( 1 − β 1 ) a ] , H [ α 2 a + ( 1 − α 2 ) b , α 2 b + ( 1 − α 2 ) a ] < S H A ( a , b ) < H [ β 2 a + ( 1 − β 2 ) b , β 2 b + ( 1 − β 2 ) a ] , C [ α 3 a + ( 1 − α 3 ) b , α 3 b + ( 1 − α 3 ) a ] < S C A ( a , b ) < C [ β 3 a + ( 1 − β 3 ) b , β 3 b + ( 1 − β 3 ) a ] , C [ α 4 a + ( 1 − α 4 ) b , α 4 b + ( 1 − α 4 ) a ] < S A C ( a , b ) < C [ β 4 a + ( 1 − β 4 ) b , β 4 b + ( 1 − β 4 ) a ]

hold for all a,b>0 with a≠b.

In [4, 5], Neuman proved that the inequalities

H ( a , b ) < S A H ( a , b ) < L ( a , b ) < S H A ( a , b ) < P ( a , b ) , T ( a , b ) < S C A ( a , b ) < Q ( a , b ) < S A C ( a , b ) < C ( a , b ) , H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S H A ( a , b ) < 1 3 H ( a , b ) + 2 3 A ( a , b ) , C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S C A ( a , b ) < 1 3 C ( a , b ) + 2 3 A ( a , b ) , A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) < S A H ( a , b ) < 1 3 A ( a , b ) + 2 3 H ( a , b ) , A 1 / 3 ( a , b ) C 2 / 3 ( a , b ) < S A C ( a , b ) < 1 3 A ( a , b ) + 2 3 C ( a , b )
(1.4)

hold for all a,b>0 with a≠b, where L(a,b)=(a−b)/(loga−logb), P(a,b)=(a−b)/[2arcsin((a−b)/(a+b))], Q(a,b)= ( a 2 + b 2 ) / 2 , and T(a,b)=(a−b)/[2arctan((a−b)/(a+b))] are, respectively, the logarithmic, first Seiffert, quadratic, and second Seiffert means of a and b.

Qian and Chu [8] proved that the double inequalities

α 1 A ( a , b ) + ( 1 − α 1 ) G ( a , b ) < S H A ( a , b ) < β 1 A ( a , b ) + ( 1 − β 1 ) G ( a , b ) , α 2 A ( a , b ) + ( 1 − α 2 ) Q ( a , b ) < S C A ( a , b ) < β 2 A ( a , b ) + ( 1 − β 2 ) Q ( a , b )

hold for all a,b>0 with a≠b if and only if α 1 ≤1/3, β 1 ≥π/2, α 2 ≥1/3, and β 2 ≤[ 2 log(2+ 3 )− 3 ]/[( 2 −1)log(2+ 3 )]=0.2394⋯, where G(a,b)= a b is the geometric mean of a and b.

In [9], the authors proved that the double inequalities

α 1 [ H ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 − α 1 ) H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S H A ( a , b ) < β 1 [ H ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 − β 1 ) H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) , α 2 [ C ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 − α 2 ) C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S C A ( a , b ) < β 2 [ C ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 − β 2 ) C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) , α 3 [ A ( a , b ) 3 + 2 H ( a , b ) 3 ] + ( 1 − α 3 ) A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) < S A H ( a , b ) < β 3 [ A ( a , b ) 3 + 2 H ( a , b ) 3 ] + ( 1 − β 3 ) A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) , α 4 [ A ( a , b ) 3 + 2 C ( a , b ) 3 ] + ( 1 − α 4 ) A 1 / 3 ( a , b ) C 2 / 3 ( a , b ) < S A C ( a , b ) < β 4 [ A ( a , b ) 3 + 2 C ( a , b ) 3 ] + ( 1 − β 4 ) A 1 / 3 ( a , b ) C 2 / 3 ( a , b )

hold for all a,b>0 with a≠b if and only if α 1 ≤4/5, β 1 ≥3/π, α 2 ≤3[ 2 3 log(2+ 3 )− 3 ]/[(3 2 3 −4)log(2+ 3 )]=0.7528⋯, β 2 ≥4/5, α 3 ≤0, β 3 ≥4/5, α 4 ≤4/5, and β 4 ≥3(3 3 − 4 3 π)/[(5−3 4 3 )π]=0.8400⋯.

Let p, p i , q i , α j , β j ∈[0,1] (i,j=1,2,…,8). Then Neuman [6, 10] proved that the inequalities

H p 1 ( a , b ) < P ( a , b ) < H q 1 ( a , b ) , G p 2 ( a , b ) < P ( a , b ) < G q 2 ( a , b ) , Q p 3 ( a , b ) < T ( a , b ) < Q q 3 ( a , b ) , C p 4 ( a , b ) < T ( a , b ) < C q 4 ( a , b ) , Q p 5 ( a , b ) < M ( a , b ) < Q q 5 ( a , b ) , C p 6 ( a , b ) < M ( a , b ) < C q 6 ( a , b ) , H p 7 ( a , b ) < L ( a , b ) < H q 7 ( a , b ) , G p 8 ( a , b ) < L ( a , b ) < G q 8 ( a , b ) , α 1 A ( a , b ) + ( 1 − α 1 ) G p ( a , b ) < P p ( a , b ) < β 1 A ( a , b ) + ( 1 − β 1 ) G p ( a , b ) , α 2 Q p ( a , b ) + ( 1 − α 2 ) A ( a , b ) < T p ( a , b ) < β 2 Q p ( a , b ) + ( 1 − β 2 ) A ( a , b ) , α 3 Q p ( a , b ) + ( 1 − α 3 ) A ( a , b ) < M p ( a , b ) < β 3 Q p ( a , b ) + ( 1 − β 3 ) A ( a , b ) , α 4 A ( a , b ) + ( 1 − α 4 ) G p ( a , b ) < L p ( a , b ) < β 4 A ( a , b ) + ( 1 − β 4 ) G p ( a , b ) , A α 5 ( a , b ) G p 1 − α 5 ( a , b ) < P p ( a , b ) < A β 5 ( a , b ) G p 1 − β 5 ( a , b ) , Q p α 6 ( a , b ) A 1 − α 6 ( a , b ) < T p ( a , b ) < Q p β 6 ( a , b ) A 1 − β 6 ( a , b ) , Q p α 7 ( a , b ) A 1 − α 7 ( a , b ) < M p ( a , b ) < Q p β 7 ( a , b ) A 1 − β 7 ( a , b ) , A α 8 ( a , b ) G p 1 − α 8 ( a , b ) < L p ( a , b ) < A β 8 ( a , b ) G p 1 − β 8 ( a , b ) ,

hold for all a,b>0 with a≠b if and only if p 1 ≥ 1 − 2 / π , q 1 ≤ 6 /6, p 2 ≥ 1 − 4 / π 2 , q 2 ≤ 3 /3, p 3 ≤ 16 / π 2 − 1 , q 3 ≥ 6 /3, p 4 ≤ 4 / π − 1 , q 4 ≥ 3 /3, p 5 ≤ 1 / log 2 ( 1 + 2 ) − 1 , q 5 ≥ 3 /3, p 6 ≤ 1 / log ( 1 + 2 ) − 1 , q 6 ≥ 6 /6, p 7 =1, q 7 ≤ 3 /3, p 8 =1, q 8 ≤ 6 /3, α 1 ≤2/π, β 1 ≥2/3, α 2 ≤(4−π)/[( 2 −1)π], β 2 ≥2/3, α 3 ≤[1−log(1+ 2 )]/[( 2 −1)log(1+ 2 )], β 3 ≥1/3, α 4 =0, β 4 ≥1/3, α 5 ≤2/3, β 5 =1, α 6 ≤2/3, β 6 ≥(4log2−2logπ)/log2, α 7 ≤1/3, β 7 ≥−log[log(1+ 2 )]/log[cosh(log(1+ 2 ))], α 8 ≤1/3, β 8 =1, where M(a,b)=(a−b)/[2 sinh − 1 ((a−b)/(a+b))] is the Neuman-Sándor mean of a and b.

The main purpose of this paper is to present the best possible parameters p 1 , p 2 , p 3 , p 4 , q 1 , q 2 , q 3 , q 4 on the interval [0,1] such that the double inequalities

G p 1 ( a , b ) < S H A ( a , b ) < G q 1 ( a , b ) , Q p 2 ( a , b ) < S C A ( a , b ) < Q q 2 ( a , b ) , H p 3 ( a , b ) < S A H ( a , b ) < H q 3 ( a , b ) , C p 4 ( a , b ) < S A C ( a , b ) < C q 4 ( a , b )

hold for all a,b>0 with a≠b.

2 Main results

Theorem 2.1 Let p 1 , q 1 ∈[0,1]. Then the double inequality

G p 1 (a,b)< S H A (a,b)< G q 1 (a,b)
(2.1)

holds for all a,b>0 with a≠b if and only if p 1 ≥ 6 /3 and q 1 ≤ 1 − 4 / π 2 .

Proof Without loss of generality, we assume that a>b. Let v=(a−b)/(a+b), λ=v 2 − v 2 , x= 1 − λ 2 and p∈[0,1]. Then v,λ,x∈(0,1), and (1.1) and (1.3) lead to

S H A ( a , b ) − G p ( a , b ) = A ( a , b ) [ λ arcsin ( λ ) − 1 − p 2 ( 1 − 1 − λ 2 ) ] = A ( a , b ) 1 − p 2 ( 1 − 1 − λ 2 ) arcsin ( λ ) F ( x ) ,
(2.2)

where

F(x)= 1 − x 2 1 − p 2 ( 1 − x ) −arcsin ( 1 − x 2 ) ,
(2.3)
F(0)= 1 1 − p 2 − π 2 ,F(1)=0,
(2.4)
F ′ (x)=− ( 1 − x ) f ( x ) 2 1 − x 2 ( p 2 x + 1 − p 2 ) 3 / 2 [ 2 ( p 2 x + 1 − p 2 ) 3 / 2 + p 2 x + 2 ( 1 − p 2 ) x + p 2 ] ,
(2.5)

where

f ( x ) = − p 4 x 3 + ( 4 p 6 + 3 p 4 − 4 p 2 ) x 2 + ( − 8 p 6 + 9 p 4 + 4 p 2 − 4 ) x + ( 4 p 6 − 11 p 4 + 12 p 2 − 4 ) ,
(2.6)
f ′ (x)=−3 p 4 x 2 +2 ( 4 p 6 + 3 p 4 − 4 p 2 ) x+ ( − 8 p 6 + 9 p 4 + 4 p 2 − 4 ) .
(2.7)

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.6) becomes

f(x)= 4 27 (1−x) ( 3 x 2 + 4 x + 2 ) .
(2.8)

From (2.5) and (2.8) we clearly see that F(x) is strictly decreasing on [0,1], then (2.4) leads to the conclusion that

F(x)>0
(2.9)

for all x∈(0,1).

Therefore,

S H A (a,b)> G 6 / 3 (a,b)
(2.10)

for all a,b>0 with a≠b follows from (2.2) and (2.9).

Case 2 p= 1 − 4 / π 2 . Then numerical computations lead to

4 p 6 +3 p 4 −4 p 2 = 3 π 6 − 56 π 4 + 240 π 2 − 256 π 6 <0,
(2.11)
−8 p 6 +9 p 4 +4 p 2 −4= π 6 + 8 π 4 − 240 π 2 + 512 π 6 <0,
(2.12)
f(0)=4 p 6 −11 p 4 +12 p 2 −4= π 6 − 8 π 4 + 16 π 2 − 256 π 6 >0,
(2.13)
f(1)=4 ( 3 p 2 − 2 ) =− 4 ( 12 − π 2 ) π 2 <0.
(2.14)

It follows from (2.7) and (2.11) together with (2.12) that f(x) is strictly decreasing on [0,1]. Then inequalities (2.13) and (2.14) together with (2.5) lead to the conclusion that there exists λ 1 ∈(0,1) such that F(x) is strictly decreasing on [0, λ 1 ] and strictly increasing on [ λ 1 ,1].

Note that inequality (2.4) becomes

F(0)=F(1)=0.
(2.15)

From (2.2), (2.15), and the piecewise monotonicity of F(x) we clearly see that the inequality

S H A (a,b)< G 1 − 4 / π 2 (a,b)
(2.16)

holds for all a,b>0 with a≠b.

Note that

lim λ → 0 + arcsin 2 ( λ ) − λ 2 arcsin ( λ ) 1 − 1 − λ 2 = 6 3 ,
(2.17)
lim λ → 1 arcsin 2 ( λ ) − λ 2 arcsin ( λ ) 1 − 1 − λ 2 = 1 − 4 π 2 .
(2.18)

Therefore, Theorem 2.1 follows from (2.10) and (2.16)-(2.18) together with the fact that inequality (2.1) is equivalent to the inequality (2.19) as follows:

q 1 < arcsin 2 ( λ ) − λ 2 arcsin ( λ ) 1 − 1 − λ 2 < p 1 .
(2.19)

 □

Theorem 2.2 Let p 2 , q 2 ∈[0,1]. Then the double inequality

Q p 2 (a,b)< S C A (a,b)< Q q 2 (a,b)
(2.20)

holds for all a,b>0 with a≠b if and only if p 2 ≤ 6 /3 and q 2 ≥ 3 / log 2 ( 2 + 3 ) − 1 =0.8542⋯.

Proof Without loss of generality, we assume that a>b. Let v=(a−b)/(a+b), μ=v 2 + v 2 , x= 1 + μ 2 , and p∈[0,1]. Then v∈(0,1), μ∈(0, 3 ), x∈(1,2), and (1.2) and (1.3) lead to

S C A ( a , b ) − Q p ( a , b ) = A ( a , b ) [ μ sinh − 1 ( μ ) − 1 + p 2 ( 1 + μ 2 − 1 ) ] = A ( a , b ) 1 + p 2 ( 1 + μ 2 − 1 ) sinh − 1 ( μ ) G ( x ) ,
(2.21)

where

G ( x ) = x 2 − 1 1 + p 2 ( x − 1 ) − sinh − 1 ( x 2 − 1 ) , G ( 1 ) = 0 , G ( 2 ) = 3 1 + p 2 − log ( 2 + 3 ) ,
(2.22)
G ′ (x)=− ( x − 1 ) f ( x ) 2 x 2 − 1 ( p 2 x + 1 − p 2 ) 3 / 2 [ p 2 x 2 + 2 ( p 2 x + 1 − p 2 ) 3 / 2 + 2 ( 1 − p 2 ) x + p 2 ] ,
(2.23)

where f(x) is defined by (2.6).

We divide the discussion into two cases.

Case 1 p= 6 /3. Then it follows from (2.6) that

f(x)=− 4 27 (x−1) ( 3 x 2 + 4 x + 2 ) <0
(2.24)

for all x∈(1,2).

Therefore,

S C A (a,b)> Q 6 / 3 (a,b)
(2.25)

for all a,b>0 with a≠b follows easily from (2.21)-(2.24).

Case 2 p= 3 / log 2 ( 2 + 3 ) − 1 . Then numerical computations lead to

4 p 6 +3 p 4 −4 p 2 =0.2329⋯>0,
(2.26)
−8 p 6 +9 p 4 +4 p 2 −4=0.6027⋯>0,
(2.27)
3 p 4 − p 2 −1=−0.1322⋯<0,
(2.28)
f(1)=4 ( 3 p 2 − 2 ) =0.7567⋯>0,
(2.29)
f(2)=4 p 6 +11 p 4 +4 p 2 −12=−1.669⋯<0.
(2.30)

It follows from (2.7) and (2.26)-(2.28) that

f ′ ( x ) < − 3 p 4 x 2 + 2 ( 4 p 6 + 3 p 4 − 4 p 2 ) x 2 + ( − 8 p 6 + 9 p 4 + 4 p 2 − 4 ) x 2 = 4 ( 3 p 4 − p 2 − 1 ) x 2 < 0
(2.31)

for x∈(1,2).

Equation (2.23) and inequalities (2.29)-(2.31) lead to the conclusion that there exists λ 2 ∈(1,2) such that G(x) is strictly decreasing on [0, λ 2 ] and strictly increasing on [ λ 2 ,1].

Note that (2.22) becomes

G(1)=G(2)=0.
(2.32)

Therefore,

S C A (a,b)< Q 3 / log 2 ( 2 + 3 ) − 1 (a,b)
(2.33)

for all a,b>0 with a≠b follows from (2.21) and (2.32) together with the piecewise monotonicity of G(x).

Note that

lim μ → 0 + μ 2 − [ sinh − 1 ( μ ) ] 2 sinh − 1 ( μ ) 1 + μ 2 − 1 = 6 3 ,
(2.34)
lim μ → 3 μ 2 − [ sinh − 1 ( μ ) ] 2 sinh − 1 ( μ ) 1 + μ 2 − 1 = 3 log 2 ( 2 + 3 ) − 1 .
(2.35)

Therefore, Theorem 2.2 follows from (2.25) and (2.33)-(2.35) together with the fact that inequality (2.20) is equivalent to the inequality (2.36) as follows:

p 2 < μ 2 − [ sinh − 1 ( μ ) ] 2 sinh − 1 ( μ ) 1 + μ 2 − 1 < q 2 .
(2.36)

 □

Theorem 2.3 Let p 3 , q 3 ∈[0,1]. Then the double inequality

H p 3 (a,b)< S A H (a,b)< H q 3 (a,b)
(2.37)

holds for all a,b>0 with a≠b if and only if p 3 =1 and q 3 ≤ 6 /3.

Proof Without loss of generality, we assume that a>b. Let v=(a−b)/(a+b), λ=v 2 − v 2 , x= 1 − λ 2 and p∈[0,1]. Then v,λ,x∈(0,1), and (1.1) and (1.3) lead to

S A H ( a , b ) − H p ( a , b ) = A ( a , b ) [ λ tanh − 1 ( λ ) + p 2 ( 1 − 1 − λ 2 ) − 1 ] = A ( a , b ) [ 1 − p 2 ( 1 − 1 − λ 2 ) ] tanh − 1 ( λ ) H ( x ) ,
(2.38)

where

H ( x ) = 1 − x 2 p 2 x + ( 1 − p 2 ) − tanh − 1 ( 1 − x 2 ) , H ( 1 ) = 0 ,
(2.39)
H ′ (x)=− 1 − x x 1 − x 2 [ p 2 x + ( 1 − p 2 ) ] 2 g(x),
(2.40)

where

g(x)= ( p 4 + p 2 − 1 ) x− p 4 +2 p 2 −1.
(2.41)

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.41) leads to

g(x)=− 1 9 (1−x)<0
(2.42)

for x∈(0,1).

Therefore,

S A H (a,b)< H 6 / 3 (a,b)
(2.43)

for all a,b>0 with a≠b follows easily from (2.38)-(2.40) and (2.42).

Case 2 p=1. Then it follows from (1.3) and (1.4) that

S A H (a,b)>H(a,b)= H 1 (a,b)
(2.44)

for all a,b>0 with a≠b.

Note that

lim λ → 0 + tanh − 1 ( λ ) − λ tanh − 1 ( λ ) ( 1 − 1 − λ 2 ) = 6 3 ,
(2.45)
lim λ → 1 tanh − 1 ( λ ) − λ tanh − 1 ( λ ) ( 1 − 1 − λ 2 ) =1.
(2.46)

Therefore, Theorem 2.3 follows from (2.43)-(2.46) and the fact that inequality (2.37) is equivalent to

q 3 < tanh − 1 ( λ ) − λ tanh − 1 ( λ ) ( 1 − 1 − λ 2 ) < p 3 .

 □

Theorem 2.4 Let p 4 , q 4 ∈[0,1]. Then the double inequality

C p 4 (a,b)< S A C (a,b)< C q 4 (a,b)
(2.47)

holds for all a,b>0 with a≠b if and only if p 4 ≤ 3 3 / π − 1 and q 4 ≥ 6 /3.

Proof Without loss of generality, we assume that a>b. Let v=(a−b)/(a+b), μ=v 2 + v 2 , x= 1 + μ 2 , and p∈[0,1]. Then v∈(0,1), μ∈(0, 3 ), x∈(1,2), and (1.2) and (1.3) lead to

S A C ( a , b ) − C p ( a , b ) = A ( a , b ) [ μ arctan ( μ ) − p 2 ( 1 + μ 2 − 1 ) − 1 ] = A ( a , b ) [ 1 + p 2 ( 1 + μ 2 − 1 ) ] arctan ( μ ) J ( x ) ,
(2.48)

where

J ( x ) = x 2 − 1 p 2 x + ( 1 − p 2 ) − arctan ( x 2 − 1 ) , J ( 1 ) = 0 , J ( 2 ) = 3 p 2 + 1 − π 3 ,
(2.49)
J ′ (x)=− x − 1 x x 2 − 1 [ p 2 x + ( 1 − p 2 ) ] 2 g(x),
(2.50)

where g(x) is defined by (2.41).

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.41) leads to

g(x)= 1 9 (x−1)>0
(2.51)

for x∈(1,2).

Therefore,

S A C (a,b)< C 6 / 3 (a,b)
(2.52)

for all a,b>0 with a≠b follows easily from (2.48)-(2.51).

Case 2 p= 3 3 / π − 1 . Then numerical computations lead to

p 4 + p 2 −1= 27 − π 2 − 3 3 π π 2 >0,
(2.53)
g(1)=3 p 2 −2= 9 3 − 5 π π <0,
(2.54)
g(2)= p 4 +4 p 2 −3= 27 − 6 π 2 + 6 3 π π 2 >0.
(2.55)

From (2.41) and (2.50) together with (2.53)-(2.55) we clearly see that there exists λ 3 ∈(1,2) such that J(x) is strictly increasing on [1, λ 3 ] and strictly decreasing on [ λ 3 ,2].

Note that (2.49) becomes

J(1)=J(2)=0.
(2.56)

It follows from (2.56) and the piecewise monotonicity of J(x) that

J(x)>0
(2.57)

for all x∈(1,2).

Therefore,

S A C (a,b)> C 3 3 / π − 1 (a,b)
(2.58)

for all a,b>0 with a≠b follows from (2.48) and (2.58).

Note that

lim μ → 0 + μ − arctan ( μ ) arctan ( μ ) ( 1 + μ 2 − 1 ) = 6 3 ,
(2.59)
lim μ → 1 μ − arctan ( μ ) arctan ( μ ) ( 1 + μ 2 − 1 ) = 3 3 π − 1 .
(2.60)

Therefore, Theorem 2.4 follows from (2.52) and (2.58)-(2.60) together with the fact that inequality (2.47) is equivalent to

p 4 < μ − arctan ( μ ) arctan ( μ ) ( 1 + μ 2 − 1 ) < q 4 .

 □

References

  1. Neuman E, Sándor J: On the Schwab-Borchardt mean. Math. Pannon. 2003,14(2):253–266.

    MathSciNet  MATH  Google Scholar 

  2. Neuman E, Sándor J: On the Schwab-Borchardt mean II. Math. Pannon. 2006,17(1):49–59.

    MathSciNet  MATH  Google Scholar 

  3. Neuman E: Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal. 2011,5(4):601–609.

    Article  MathSciNet  MATH  Google Scholar 

  4. Neuman E: On some means derived from the Schwab-Borchardt mean. J. Math. Inequal. 2014,8(1):171–183.

    Article  MathSciNet  MATH  Google Scholar 

  5. Neuman E: On some means derived from the Schwab-Borchardt mean II. J. Math. Inequal. 2014,8(2):361–370.

    MathSciNet  MATH  Google Scholar 

  6. Neuman E: A one-parameter family of bivariate means. J. Math. Inequal. 2013,7(3):399–412.

    Article  MathSciNet  MATH  Google Scholar 

  7. He Z-Y, Chu Y-M, Wang M-K: Optimal bounds for Neuman means in terms of harmonic and contraharmonic means. J. Appl. Math. 2013., 2013: Article ID 807623

    Google Scholar 

  8. Qian W-M, Chu Y-M: Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means. J. Inequal. Appl. 2014., 2014: Article ID 175

    Google Scholar 

  9. Chu Y-M, Qian W-M: Refinements of bounds for Neuman means. Abstr. Appl. Anal. 2014., 2014: Article ID 354132

    Google Scholar 

  10. Neuman E: Sharp inequalities involving Neuman-Sándor and logarithmic means. J. Math. Inequal. 2013,7(3):413–419.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 61374086 and 11171307, the Natural Science Foundation of the Open University of China under Grant Q1601E-Y and the Natural Science Foundation of Zhejiang Broadcast and TV University under Grant XKT-13Z04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Z-HS provided the main idea and carried out the proof of Theorem 2.1. W-MQ carried out the proof of Theorem 2.2. Y-MC carried out the proof of Theorems 2.3 and 2.4. All authors read and approved the final manuscript.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, ZH., Qian, WM. & Chu, YM. Sharp bounds for Neuman means in terms of one-parameter family of bivariate means. J Inequal Appl 2014, 468 (2014). https://doi.org/10.1186/1029-242X-2014-468

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-468

Keywords