Skip to main content

Some conditions for a class of functions to be completely monotonic

Abstract

In this article, we present a necessary condition and a necessary and sufficient condition for a class of functions to be completely monotonic.

1 Introduction and main results

Recall [1] that a function f is said to be completely monotonic on

$$\mathbb {R}^{+}:=(0, \infty) $$

if f has derivatives of all orders on \(\mathbb {R}^{+}\) and for all \(n\in \mathbb {N}_{0}:=\mathbb {N}\cup\{0\}\)

$$ (-1)^{n}f^{(n)}(x) \ge0,\quad x \in \mathbb {R}^{+}. $$

Here and throughout the paper, â„• is the set of all positive integers. The set of all completely monotonic functions on \(\mathbb {R}^{+}\) is denoted by \(CM(\mathbb {R}^{+})\).

Bernstein [2] proved that a function f on the interval \(\mathbb{R}^{+}\) is completely monotonic if and only if there exists an increasing function \(\alpha(t)\) on \([0,\infty)\) such that

$$f(x)= \int_{0}^{\infty}e^{-xt}\,d\alpha(t). $$

Also recall [3] that a positive function f is said to be logarithmically completely monotonic on \(\mathbb {R}^{+}\) if f has derivatives of all orders on \(\mathbb {R}^{+}\) and for all \(n\in \mathbb {N}\)

$$ (-1)^{n}\bigl[\ln f(x)\bigr]^{(n)}\ge0,\quad x \in \mathbb {R}^{+}. $$

The class of all logarithmically completely monotonic functions on \(\mathbb {R}^{+}\) is denoted by \(LCM(\mathbb {R}^{+})\).

It was proved [4] that a logarithmically completely monotonic function is also completely monotonic.

There is a rich literature on completely monotonic, logarithmically completely monotonic functions and their applications. For more recent work, see, for example, [5–28].

The Euler gamma function is defined and denoted for \(\operatorname {Re}z>0\) by

$$\Gamma(z):=\int^{\infty}_{0}t^{z-1} e^{-t}\,dt. $$

The logarithmic derivative of \(\Gamma(z)\), denoted by

$$\psi(z):= \frac{\Gamma'(z)}{\Gamma(z)}, $$

is called the psi or digamma function, and the \(\psi^{(k)}\) for \(k\in \mathbb {N}\) are called the polygamma functions.

In this article, we give two necessary conditions and a necessary and sufficient condition for a class of functions

$$ f_{a,b,c}(x):=(x+a)\ln x-x-\ln\Gamma(x+b)+c,\quad x\in \mathbb {R}^{+}, $$
(1)

where \(a,c\in \mathbb {R}\), \(b \ge0\) are parameters, to be completely monotonic. The main results are as follows.

Theorem 1

A necessary condition for the function \(f_{a,b,c}(x)\) to be completely monotonic on the interval \((0, \infty)\) is that

$$\begin{aligned}& b-a=\frac{1}{2}, \end{aligned}$$
(2)
$$\begin{aligned}& 0< b\le\frac{1}{2}, \end{aligned}$$
(3)

and

$$ c\ge\ln\sqrt{2\pi}. $$
(4)

Corollary 1

A necessary condition for the function \(f_{a,b,c}(x)\) to be completely monotonic on the interval \((0, \infty)\) is that

$$ -\frac{1}{2}< a\le0. $$
(5)

Theorem 2

For

$$b\in \biggl[\frac{1}{2}-\frac{\sqrt{3}}{6},\frac{1}{2} \biggr], $$

a necessary and sufficient condition for the function \(f_{a,b,c}(x)\) to be completely monotonic on the interval \((0, \infty)\) is that

$$ b-a=\frac{1}{2} $$
(6)

and

$$ c\ge\ln\sqrt{2\pi}. $$
(7)

2 Lemmas

We need the following lemmas to prove our main results.

Let the α be real parameters, β a non-negative parameter. Define

$$ g_{\alpha,\beta}(x):=\frac{x^{x+\beta-\alpha}}{e^{x}\Gamma(x+\beta)}, \quad x\in \mathbb {R}^{+}. $$

Lemma 1

(see [11])

If

$$g_{\alpha,\beta}\in LCM\bigl(\mathbb {R}^{+}\bigr), $$

then either

$$\beta>0 \quad\textit{and}\quad \alpha\ge\max \biggl\{ \beta,\frac{1}{2} \biggr\} $$

or

$$\beta=0 \quad\textit{and}\quad \alpha\ge1. $$

Lemma 2

(see [7])

Let

$$\beta\in \biggl[\frac{1}{2}-\frac{\sqrt{3}}{6},\frac{1}{2} \biggr]. $$

If

$$\alpha\ge\frac{1}{2}, $$

then

$$g_{\alpha,\beta}\in LCM\bigl(\mathbb {R}^{+}\bigr). $$

3 Proof of the main results

Proof of Theorem 1

If

$$f_{a,b,c}\in CM\bigl(\mathbb {R}^{+}\bigr), $$

then

$$ f_{a,b,c}(x)\ge0,\quad x\in \mathbb {R}^{+}, $$
(8)

and \(f_{a,b,c}(x)\) is decreasing on \(\mathbb {R}^{+}\).

It is well known that (see [29, p.47])

$$ \ln\Gamma(x+\beta)= \biggl(x+\beta-\frac{1}{2} \biggr)\ln x-x+\frac{\ln(2\pi)}{2} +O \biggl(\frac{1}{x} \biggr), \quad\mbox{as } x\to \infty. $$
(9)

Hence

$$ f_{a,b,c}(x)= \biggl(\frac{1}{2}-b+a \biggr)\ln x-\ln \sqrt{2\pi}+c+O \biggl(\frac{1}{x} \biggr), \quad\mbox{as } x\to\infty. $$
(10)

From (8) and (10), we get

$$ \frac{1}{2}-b+a\ge\frac{\ln\sqrt{2\pi}-c+O(1/x)}{\ln x}, \quad\mbox{as } x\to\infty. $$
(11)

Since

$$ \frac{\ln\sqrt{2\pi}-c+O(1/x)}{\ln x} \to0, \quad\mbox{as } x\to\infty, $$
(12)

from (11) we have

$$ b-a \le\frac{1}{2}. $$
(13)

On the other hand, since \(f_{a,b,c}(x)\) is decreasing on \(\mathbb {R}^{+}\), from (10), we obtain

$$ \biggl(\frac{1}{2}-b+a \biggr)\ln x-\ln\sqrt{2\pi}+c+O \biggl(\frac{1}{x} \biggr) \le f_{a,b,c}(\tau), \quad\mbox{as } x\to \infty, $$
(14)

where, in (14), Ï„ is a fixed number in \(\mathbb {R}^{+}\).

Equation (14) is equivalent to

$$ \frac{1}{2}-b+a\le\frac{\ln\sqrt{2\pi}+O(1/x)-c+f_{a,b,c}(\tau)}{\ln x}, \quad\mbox{as } x\to\infty. $$
(15)

It is easy to see that

$$ \frac{\ln\sqrt{2\pi}+O(1/x)-c+f_{a,b,c}(\tau)}{\ln x} \to 0, \quad\mbox{as } x\to\infty. $$
(16)

Then from (15) we have

$$ b-a \ge\frac{1}{2}. $$
(17)

Combining (13) and (17) gives

$$ b-a = \frac{1}{2}. $$
(18)

From (8), (10), and (18), we obtain

$$ c-\ln\sqrt{2\pi}\ge O \biggl(\frac{1}{x} \biggr), \quad\mbox{as } x\to\infty. $$
(19)

Since

$$ O \biggl(\frac{1}{x} \biggr)\to0, \quad\mbox{as } x\to\infty, $$
(20)

from (19) we have

$$ c\ge\ln\sqrt{2\pi}. $$
(21)

We note that

$$ f_{a,b,c}(x)=\ln g_{b-a,b}(x)+c. $$
(22)

If

$$f_{a,b,c}\in CM\bigl(\mathbb {R}^{+}\bigr), $$

we can verify that

$$g_{b-a,b}\in LCM\bigl(\mathbb {R}^{+}\bigr). $$

By Lemma 1, if

$$b>\frac{1}{2}, $$

then

$$ b-a\ge b>\frac{1}{2}, $$
(23)

which contradicts (18); if

$$b=0, $$

by Lemma 1, we get

$$ b-a\ge1, $$
(24)

which is another contradiction to (18). So we have proved that

$$ 0< b\le\frac{1}{2}. $$
(25)

The proof of Theorem 1 is thus completed. □

Proof of Corollary 1

This follows from (2) and (3).

The proof of Corollary 1 is completed. □

Proof of Theorem 2

By Theorem 1, the condition is necessary.

On the other hand, by Lemma 2, we see that

$$g_{b-a,b}\in LCM\bigl(\mathbb {R}^{+}\bigr). $$

Then from (22), we have, for \(n\in \mathbb {N}\),

$$ (-1)^{n} f^{(n)}_{a,b,c}(x)\ge0,\quad x\in \mathbb {R}^{+}. $$
(26)

In particular,

$$ f'_{a,b,c}(x)\le0,\quad x\in \mathbb {R}^{+}. $$
(27)

Hence \(f_{a,b,c}(x)\) is decreasing on \(\mathbb {R}^{+}\).

By (9),

$$ f_{a,b,c}(x)= \biggl(\frac{1}{2}-b+a \biggr)\ln x+c- \ln\sqrt{2\pi}+O \biggl(\frac{1}{x} \biggr),\quad \mbox{as } x\to\infty. $$
(28)

If

$$b-a=\frac{1}{2} $$

and

$$c \ge\ln\sqrt{2\pi}, $$

from (28), we obtain

$$ \lim_{x \to\infty}f_{a,b,c}(x)=c-\ln\sqrt{2\pi} \ge0. $$
(29)

Therefore

$$ f_{a,b,c}(x)\ge\lim_{x \to\infty}f_{a,b,c}(x) \ge0,\quad x\in \mathbb {R}^{+}, $$
(30)

which means that (26) is also valid for \(n=0\). Hence we have proved that

$$f_{a,b,c}\in CM\bigl(\mathbb {R}^{+}\bigr). $$

The proof of Theorem 2 is hence completed. □

References

  1. Bernstein, S: Sur la définition et les propriétés des fonctions analytiques d’une variable réelle. Math. Ann. 75, 449-468 (1914)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernstein, S: Sur les fonctions absolument monotones. Acta Math. 51, 1-66 (1928)

    Article  Google Scholar 

  3. Atanassov, RD, Tsoukrovski, UV: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 41, 21-23 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Horn, RA: On infinitely divisible matrices, kernels, and functions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 8, 219-230 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Guo, B-N, Qi, F: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. J. Korean Math. Soc. 48, 655-667 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guo, S: A class of logarithmically completely monotonic functions and their applications. J. Appl. Math. 2014, 757462 (2014)

    Google Scholar 

  7. Guo, S: Logarithmically completely monotonic functions and applications. Appl. Math. Comput. 221, 169-176 (2013)

    Article  MathSciNet  Google Scholar 

  8. Guo, S: Some properties of completely monotonic sequences and related interpolation. Appl. Math. Comput. 219, 4958-4962 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guo, S, Laforgia, A, Batir, N, Luo, Q-M: Completely monotonic and related functions: their applications. J. Appl. Math. 2014, 768516 (2014)

    Google Scholar 

  10. Guo, S, Qi, F: A class of logarithmically completely monotonic functions associated with the gamma function. J. Comput. Appl. Math. 224, 127-132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, S, Qi, F, Srivastava, HM: A class of logarithmically completely monotonic functions related to the gamma function with applications. Integral Transforms Spec. Funct. 23, 557-566 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, S, Qi, F, Srivastava, HM: Supplements to a class of logarithmically completely monotonic functions associated with the gamma function. Appl. Math. Comput. 197, 768-774 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo, S, Qi, F, Srivastava, HM: Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic. Integral Transforms Spec. Funct. 18, 819-826 (2007)

    Article  MathSciNet  Google Scholar 

  14. Guo, S, Srivastava, HM: A certain function class related to the class of logarithmically completely monotonic functions. Math. Comput. Model. 49, 2073-2079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo, S, Srivastava, HM: A class of logarithmically completely monotonic functions. Appl. Math. Lett. 21, 1134-1141 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, S, Srivastava, HM, Batir, N: A certain class of completely monotonic sequences. Adv. Differ. Equ. 2013, 294 (2013)

    Article  MathSciNet  Google Scholar 

  17. Guo, S, Srivastava, HM, Cheung, WS: Some properties of functions related to certain classes of completely monotonic functions and logarithmically completely monotonic functions. Filomat 28, 821-828 (2014)

    Article  Google Scholar 

  18. Krasniqi, VB, Srivastava, HM, Dragomir, SS: Some complete monotonicity properties for the \((p,q)\)-gamma function. Appl. Math. Comput. 219, 10538-10547 (2013)

    Article  MathSciNet  Google Scholar 

  19. Mortici, C: Completely monotone functions and the Wallis ratio. Appl. Math. Lett. 25, 717-722 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qi, F, Luo, Q-M: Bounds for the ratio of two gamma functions - from Wendel’s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 6, 132-158 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Qi, F, Luo, Q-M, Guo, B-N: Complete monotonicity of a function involving the divided difference of digamma functions. Sci. China Math. 56, 2315-2325 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Salem, A: An infinite class of completely monotonic functions involving the q-gamma function. J. Math. Anal. Appl. 406, 392-399 (2013)

    Article  MathSciNet  Google Scholar 

  23. Salem, A: A completely monotonic function involving q-gamma and q-digamma functions. J. Approx. Theory 164, 971-980 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sevli, H, Batir, N: Complete monotonicity results for some functions involving the gamma and polygamma functions. Math. Comput. Model. 53, 1771-1775 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shemyakova, E, Khashin, SI, Jeffrey, DJ: A conjecture concerning a completely monotonic function. Comput. Math. Appl. 60, 1360-1363 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wei, C-F, Guo, B-N: Complete monotonicity of functions connected with the exponential function and derivatives. Abstr. Appl. Anal. 2014, 851213 (2014)

    MathSciNet  Google Scholar 

  27. Yang, S: Absolutely (completely) monotonic functions and Jordan-type inequalities. Appl. Math. Lett. 25, 571-574 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Srivastava, HM, Guo, S, Qi, F: Some properties of a class of functions related to completely monotonic functions. Comput. Math. Appl. 64, 1649-1654 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Erdélyi, A (ed.): Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)

    Google Scholar 

Download references

Acknowledgements

The author thanks the editor and the referees for their valuable suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Guo.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S. Some conditions for a class of functions to be completely monotonic. J Inequal Appl 2015, 11 (2015). https://doi.org/10.1186/s13660-014-0534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-014-0534-y

MSC

Keywords