Skip to main content

Lyapunov type inequalities for even order differential equations with mixed nonlinearities

Abstract

In the case of oscillatory potentials, we present Lyapunov and Hartman type inequalities for even order differential equations with mixed nonlinearities: \(x^{(2n)}(t)+(-1)^{n-1}\sum_{i=1}^{m}q_{i}(t)|x(t)|^{\alpha_{i}-1}x(t)=0\), where \(n,m\in{\mathbb{N}}\) and the nonlinearities satisfy \(0<\alpha_{1}<\cdots<\alpha_{j}<1<\alpha_{j+1}<\cdots<\alpha_{m}<2\).

1 Introduction

Consider the Hill equation

$$ x''(t)+q(t)x(t)=0;\quad a\leq t\leq b, $$
(1.1)

where \(q(t)\in\mathrm{L}^{1}[a,b]\) is a real-valued function. If there exists a nontrivial solution \(x(t)\) of (1.1) satisfying the Dirichlet boundary conditions

$$ x(a)=x(b)=0, $$
(1.2)

where \(a, b\in\mathbb{R}\) with \(a< b\) and \(x(t)\ne0\) for \(t\in(a,b)\), then the inequality

$$ \int_{a}^{b}\bigl|q(t)\bigr|\, \mathrm{d}t>4/(b-a) $$
(1.3)

holds. This striking inequality was first proved by Lyapunov [1] and it is known as the Lyapunov inequality. Later Wintner [2] and thereafter some more authors achieved the replacement of the function \(|q(t)|\) in (1.3) by the function \(q^{+}(t)\), i.e. they obtained the following inequality:

$$ \int_{a}^{b}q^{+}(t)\, \mathrm{d}t>4/(b-a), $$
(1.4)

where \(q^{+}(t)=\max\{q(t),0\}\), and the constant 4 in the right hand side of inequalities (1.3) and (1.4) is the best possible largest number (see [1] and [3], Theorem 5.1).

In [3], Hartman obtained an inequality sharper than both (1.3) and (1.4):

$$ \int_{a}^{b}(b-t) (t-a)q^{+}(t)\, \mathrm{d}t>(b-a). $$
(1.5)

Clearly, (1.5) implies (1.4), since

$$ (b-t) (t-a)\leq(b-a)^{2}/4 $$
(1.6)

for all \(t\in(a,b)\), and equality holds when \(t=(a+b)/2\).

It appears that the first generalization of Hartman’s result was obtained by Das and Vatsala [4], Theorem 3.1.

Theorem 1.1

(Hartman type inequality)

If \(x(t)\) is a nontrivial solution of the equation

$$ x^{(2n)}(t)+(-1)^{n-1}q(t)x(t)=0;\quad a\leq t\leq b, $$
(1.7)

satisfying the 2-point boundary conditions

$$ x^{(k)}(a)=x^{(k)}(b)=0;\quad k=0,1,\ldots, n-1, $$
(1.8)

where \(a, b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$ \int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1}q^{+}(t) \,\mathrm{d}t>(2n-1) (n-1)!^{2}(b-a)^{2n-1} $$
(1.9)

holds.

Note that (1.9) generalizes the Lyapunov type inequality

$$ \int_{a}^{b}q^{+}(t)\,\mathrm{d}t>4^{2n-1}(2n-1) (n-1)!^{2}(b-a)^{1-2n} $$
(1.10)

by (1.6) (see also [5], Corollary 3.3).

The proof of Theorem 1.1 is based on the Green’s function \({\mathcal{G}}_{n}(t,s)\) of the 2-point boundary value problem

$$ -x^{(2n)}(t)=0;\quad a\leq t\leq b, $$
(1.11)

satisfying (1.8), obtained in [4] as follows:

$$\begin{aligned} {\mathcal{G}}_{n}(t,s)={}&\frac{(-1)^{n-1}}{(2n-1)!} \biggl( \frac {(t-a)(b-s)}{(b-a)} \biggr)^{n}\sum_{j=0}^{n-1} \left ( \begin{array}{@{}c@{}} n-1+j \\ j \end{array} \right ) (s-t)^{n-1-j} \\ &{}\times \biggl(\frac{(b-t)(s-a)}{(b-a)} \biggr)^{j},\quad t\leq s\leq b, \end{aligned}$$
(1.12)

and

$$\begin{aligned} {\mathcal{G}}_{n}(t,s)={}&\frac{(-1)^{n-1}}{(2n-1)!} \biggl( \frac {(s-a)(b-t)}{(b-a)} \biggr)^{n}\sum_{j=0}^{n-1} \left ( \begin{array}{@{}c@{}} n-1+j \\ j \end{array} \right ) (t-s)^{n-1-j} \\ &{}\times \biggl(\frac{(t-a)(b-s)}{(b-a)} \biggr)^{j},\quad a\leq s\leq t. \end{aligned}$$
(1.13)

Note that \((-1)^{n-1}{\mathcal{G}}_{n}(t,s)\geq0\) and

$$ \max_{a\leq s\leq b}(-1)^{n-1}{\mathcal{G}}_{n}(t,s)=(-1)^{n-1}{\mathcal{G}}_{n}(t,t) $$
(1.14)

for all \(t\in[a,b]\) (see [5]). In fact, in view of the symmetry of \({\mathcal{G}}_{n}(t,s)\), (1.14) also implies that

$$ \max_{a\leq t\leq b}(-1)^{n-1}{\mathcal{G}}_{n}(t,s)=(-1)^{n-1}{\mathcal{G}}_{n}(s,s). $$
(1.15)

In view of the alternating term \((-1)^{n-1}\) in the Green’s function \({\mathcal{G}}_{n}(t,s)\), Hartman and Lyapunov type inequalities for the 2-point boundary value problem

$$\begin{aligned} x^{(2n)}(t)+q(t)x(t)=0;\quad a\leq t\leq b, \end{aligned}$$
(1.16)

satisfying the boundary conditions (1.8) can be obtained by replacing the function \(q^{+}(t)\) by \(|q(t)|\) in (1.9) and (1.10), respectively.

The Lyapunov inequality and its generalizations have been used successfully in connection with oscillation and Sturmian theory, asymptotic theory, disconjugacy, eigenvalue problems, and various properties of the solutions of (1.1) and related equations; see for instance [2, 3, 623] and the references cited therein. For some of its extensions to Hamiltonian systems, higher order differential equations, nonlinear and half-linear differential equations, difference and dynamic equations, and functional and impulsive differential equations, we refer in particular to [10, 11, 2443].

The aim of our paper is to extend the well-known Lyapunov and Hartman type inequalities for even order nonlinear equations of the form

$$ x^{(2n)}(t)+(-1)^{n-1}\sum _{i=1}^{m}q_{i}(t)\bigl|x(t)\bigr|^{\alpha_{i}-1}x(t)=0, $$
(1.17)

where \(n,m\in{\mathbb{N}}\), the potentials \(q_{i}(t)\), \(i=1,\ldots, m\), are real-valued functions and no sign restrictions are imposed on them. Further, the exponents in (1.17) satisfy

$$ 0< \alpha_{1}<\cdots<\alpha_{j}<1< \alpha_{j+1}<\cdots<\alpha_{m}<2. $$
(1.18)

It is clear that the two special cases of (1.17) are the even order sub-linear equation

$$ x^{(2n)}(t)+(-1)^{n-1}q(t)\bigl|x(t)\bigr|^{\gamma-1}x(t)=0,\quad 0< \gamma<1, $$
(1.19)

and the even order super-linear equation

$$ x^{(2n)}(t)+(-1)^{n-1}p(t)\bigl|x(t)\bigr|^{\beta-1}x(t)=0,\quad 1< \beta<2. $$
(1.20)

Further, we note that letting \(\alpha_{i}\to1^{-}\), \(i=1,\ldots,j\), and \(\alpha_{i}\to1^{+}\), \(i=j+1,\ldots,m\), in (1.17) results in (1.7) with \(q(t)=\sum_{i=1}^{m}q_{i}(t)\), i.e.,

$$ x^{(2n)}(t)+(-1)^{n-1} \Biggl(\sum _{i=1}^{m}q_{i}(t) \Biggr)x(t)=0, $$
(1.21)

and as a consequence, our results extend and improve the main results of Das and Vatsala [4], i.e. Theorem 1.1, and in particular the classical Lyapunov [1] and Hartman’s [3] results.

We further remark that the Lyapunov type inequalities have been studied by many authors, see for instance the survey paper [44] and the references therein, but to the best of our knowledge there are no results in the literature for (1.17), and in particular for (1.19) and (1.20).

2 Main results

Throughout this paper we shall assume that \(q_{i}(t)\in\mathrm{L}^{1}[a,b]\), \(i=1,\ldots,m\).

We will need the following lemma.

Lemma 2.1

If A is positive, and B, z are nonnegative, then

$$ Az^{2}-Bz^{\mu}+(2-\mu)\mu^{\mu/(2-\mu)} 2^{2/(\mu-2)} A^{-\mu/(2-\mu)} B^{2/(2-\mu)}\geq0 $$
(2.1)

for any \(\mu\in(0,2)\) with equality holding if and only if \(B=z=0\).

Proof

Let

$$ {\mathcal{H}}(z)=Az^{2}-Bz^{\mu},\quad z\geq0, $$
(2.2)

where \(A>0\) and \(B\geq0\). Clearly, when \(z=0\) or \(B=0\), (2.1) is obvious. On the other hand, if \(B>0\), then it is easy to see that \({\mathcal{H}}\) attains its minimum at \(z_{0}=(\mu A^{-1}B/2)^{1/(2-\mu)}\) and

$${\mathcal{H}}_{\min}=-(2-\mu)\mu^{\mu/(2-\mu)} 2^{2/(\mu-2)} A^{-\mu /(2-\mu)} B^{2/(2-\mu)}. $$

Thus, (2.1) holds. Note that if \(B>0\), then (2.1) is strict. □

Now we state and prove our first result.

Theorem 2.1

(Hartman type inequality)

If \(x(t)\) is a nontrivial solution of (1.17) satisfying the 2-point boundary conditions (1.8), where \(a,b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$\begin{aligned} & \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \widehat{Q}_{m}(t)\,\mathrm{d}t \biggr) \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \widetilde{Q}_{m}(t)\,\mathrm{d}t \biggr) \\ &\quad >(2n-1)^{2}(n-1)!^{4}(b-a)^{4n-2}/4 \end{aligned}$$
(2.3)

holds, where

$$\widehat{Q}_{m}(t)=\sum_{i=1}^{m}q^{+}_{i}(t) \quad\textit{and}\quad \widetilde {Q}_{m}(t)=\sum_{i=1}^{m} \theta_{i}q^{+}_{i}(t) $$

with

$$ \theta_{i}=(2-{\alpha_{i}}){ \alpha_{i}}^{{\alpha_{i}}/(2-{\alpha_{i}})} 2^{2/({\alpha_{i}}-2)}. $$
(2.4)

Proof

Let \(x(t)\) be a nontrivial solution of (1.17) satisfying the boundary conditions (1.8), where \(a,b\in\mathbb{R}\) with \(a< b\) are consecutive zeros. Without loss of generality, we may assume that \(x(t)>0\) for \(t\in(a,b)\). In fact, if \(x(t)<0\) for \(t\in(a,b)\), then we can consider \(-x(t)\), which is also a solution. Then, by using the Green’s function of (1.11)-(1.8), \(x(t)\) can be expressed as

$$ x(t)=\int_{a}^{b}(-1)^{n-1}{ \mathcal{G}}_{n}(t,s)\sum_{i=1}^{m}q_{i}(s)x^{\alpha _{i}}(s)\,\mathrm{d}s. $$
(2.5)

Let \(x(c)=\max_{t\in(a,b)}x(t)\). Then by (2.1) in Lemma 2.1 with \(A=B=1\), we have

$$x^{\alpha_{i}}(c)< x^{2}(c)+\theta_{i}. $$

Using this in (2.5), we obtain

$$\begin{aligned} x(c)&=\int_{a}^{b}(-1)^{n-1}{ \mathcal{G}}_{n}(c,s)\sum_{i=1}^{m}q_{i}(s)x^{\alpha _{i}}(s) \,\mathrm{d}s \\ &< \int_{a}^{b}(-1)^{n-1}{\mathcal{G}}_{n}(s,s)\sum_{i=1}^{m}q^{+}_{i}(s) \bigl[x^{2}(c)+\theta_{i}\bigr]\,\mathrm{d}s, \end{aligned}$$
(2.6)

which implies the quadratic inequality

$$ \Theta_{1}x^{2}(c)-x(c)+\Theta_{2}>0, $$
(2.7)

where

$$\Theta_{1}=\int_{a}^{b}(-1)^{n-1}{ \mathcal{G}}_{n}(s,s)\widehat{Q}_{m}(t)\,\mathrm{d}s $$

and

$$\Theta_{2}=\int_{a}^{b}(-1)^{n-1}{ \mathcal{G}}_{n}(s,s)\widetilde{Q}_{m}(t)\,\mathrm{d}s. $$

But inequality (2.7) is possible if and only if \(\Theta_{1}\Theta _{2}>1/4\). Finally, we note that

$$(-1)^{n-1}{\mathcal{G}}_{n}(s,s)=\frac {(b-s)^{2n-1}(s-a)^{2n-1}}{(2n-1)(n-1)!^{2}(b-a)^{2n-1}}. $$

This completes the proof of Theorem 2.1. □

Next, we prove the following result.

Theorem 2.2

(Lyapunov type inequality)

If \(x(t)\) is a nontrivial solution of (1.17) satisfying the 2-point boundary conditions (1.8) where \(a,b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$ \biggl(\int_{a}^{b} \widehat{Q}_{m}(t)\,\mathrm{d}t \biggr) \biggl(\int_{a}^{b} \widetilde {Q}_{m}(t)\,\mathrm{d}t \biggr)>\frac{4^{4n-3}(2n-1)^{2}(n-1)!^{4}}{(b-a)^{4n-2}} $$
(2.8)

holds, where the functions \(\widehat{Q}_{m}\) and \(\widetilde{Q}_{m}\) are defined in Theorem  2.1.

Proof

In the view of (1.6), (2.3) immediately implies (2.8). □

Remark 1

Since

$$\lim_{\stackrel{ \alpha_{i}\rightarrow1^{+}}{(i>j)}} \theta _{i}=\lim_{\stackrel{\alpha_{i}\rightarrow1^{-}}{(i\leq j)}} \theta_{i}=1/4, $$

where \(\theta_{i}\) is defined in (2.4), it is easy to see that inequalities (2.3) and (2.8) reduce to inequalities (1.9) and (1.10), respectively, with \(q^{+}(t)=\sum_{i=1}^{m}q^{+}_{i}(t)\). Thus, Theorems 2.1 and 2.2 reduce to Theorem 3.1 of Das and Vatsala [4], and Corollary 3.3 of Yang [5], respectively. Moreover, when \(n=1\), they reduce to the classical Lyapunov (1.4) and Hartman (1.5) inequalities with \(q^{+}(t)=\sum_{i=1}^{m}q^{+}_{i}(t)\).

Remark 2

It is of interest to find analogs of Theorems 2.1 and 2.2 for (1.17)-(1.8) without the term \((-1)^{n-1}\), i.e., for the equation

$$ x^{(2n)}(t)+\sum_{i=1}^{m}q_{i}(t)\bigl|x(t)\bigr|^{\alpha_{i}-1}x(t)=0 $$
(2.9)

satisfying the 2-point boundary conditions (1.8). We state these results in the following.

Proposition 1

If \(x(t)\) is a nontrivial solution of (2.9) satisfying the 2-point boundary conditions (1.8) where \(a, b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the following hold:

  1. (i)

    Hartman type inequality;

    $$\begin{aligned} &\biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \widehat{P}_{m}(t)\,\mathrm{d}t \biggr) \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \widetilde{P}_{m}(t)\,\mathrm{d}t \biggr) \\ &\quad >(2n-1)^{2}(n-1)!^{4}(b-a)^{4n-2}/4. \end{aligned}$$
  2. (ii)

    Lyapunov type inequality;

    $$ \biggl(\int_{a}^{b}\widehat{P}_{m}(t)\, \mathrm{d}t \biggr) \biggl(\int_{a}^{b}\widetilde {P}_{m}(t)\,\mathrm{d}t \biggr)>\frac{4^{4n-3}(2n-1)^{2}(n-1)!^{4}}{(b-a)^{4n-2}}, $$

where

$$\widehat{P}_{m}(t)=\sum_{i=1}^{m}\bigl|q_{i}(t)\bigr| \quad\textit{and}\quad \widetilde {P}_{m}(t)=\sum_{i=1}^{m} \theta_{i}\bigl|q_{i}(t)\bigr| $$

and \(\theta_{i}\) is defined in (2.4).

When \(q_{i}(t)=0\), for all \(i=2,3,\ldots,m-1\), then (1.17) and (2.9) reduce to the equations

$$ x^{(2n)}(t)+(-1)^{n-1}p(t)\bigl|x(t)\bigr|^{\beta -1}x(t)+(-1)^{n-1}q(t)\bigl|x(t)\bigr|^{\gamma-1}x(t)=0 $$
(2.10)

and

$$ x^{(2n)}(t)+p(t)\bigl|x(t)\bigr|^{\beta-1}x(t)+q(t)\bigl|x(t)\bigr|^{\gamma-1}x(t)=0, $$
(2.11)

respectively, where \(p(t)=q_{m}(t)\), \(q(t)=q_{1}(t)\), \(\gamma=\alpha_{1}\in (0,1)\), and \(\beta=\alpha_{m}\in(1,2)\).

For these equations we have the following corollaries.

Corollary 2.3

If \(x(t)\) is a nontrivial solution of (2.10) satisfying the 2-point boundary conditions (1.8) where \(a, b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the following hold:

  1. (i)

    Hartman type inequality;

    $$\begin{aligned} & \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \bigl[p^{+}(t)+q^{+}(t)\bigr]\,\mathrm{d}t \biggr)\\ &\qquad{} \times \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \bigl[\beta_{0}p^{+}(t)+\gamma _{0}q^{+}(t)\bigr]\,\mathrm{d}t \biggr)\\ &\quad>(2n-1)^{2}(n-1)!^{4}(b-a)^{4n-2}/4. \end{aligned}$$
  2. (ii)

    Lyapunov type inequality;

    $$\biggl(\int_{a}^{b}\bigl[p^{+}(t)+q^{+}(t)\bigr]\, \mathrm{d}t \biggr) \biggl(\int_{a}^{b}\bigl[\beta _{0}p^{+}(t)+\gamma_{0}q^{+}(t)\bigr]\,\mathrm{d}t \biggr) > \frac{4^{4n-3}(2n-1)^{2}(n-1)!^{4}}{(b-a)^{4n-2}}, $$

where

$$\beta_{0}=(2-\beta)\beta^{\beta/(2-\beta)} 2^{2/(\beta-2)} \quad\textit{and}\quad \gamma_{0}=(2-\gamma)\gamma^{\gamma/(2-\gamma)} 2^{2/(\gamma-2)}. $$

Corollary 2.4

If \(x(t)\) is a nontrivial solution of (2.11) satisfying the 2-point boundary conditions (1.8) where \(a, b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the following hold:

  1. (i)

    Hartman type inequality;

    $$\begin{aligned} & \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \bigl[\bigl|p(t)\bigr|+\bigl|q(t)\bigr|\bigr]\,\mathrm{d}t \biggr) \\ &\qquad{} \times \biggl(\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \bigl[\beta_{0}\bigl|p(t)\bigr|+\gamma _{0}\bigl|q(t)\bigr|\bigr]\,\mathrm{d}t \biggr)\\ &\quad>(2n-1)^{2}(n-1)!^{4}(b-a)^{4n-2}/4. \end{aligned}$$
  2. (ii)

    Lyapunov type inequality;

    $$\biggl(\int_{a}^{b}\bigl[\bigl|p(t)\bigr|+\bigl|q(t)\bigr|\bigr]\, \mathrm{d}t \biggr) \biggl(\int_{a}^{b}\bigl[\beta _{0}\bigl|p(t)\bigr|+\gamma_{0}\bigl|q(t)\bigr|\bigr]\,\mathrm{d}t \biggr) > \frac{4^{4n-3}(2n-1)^{2}(n-1)!^{4}}{(b-a)^{4n-2}}, $$

where the constants \(\beta_{0}\) and \(\gamma_{0}\) are defined in Corollary  2.3.

Remark 3

Corollary 2.3 is of particular interest since it gives two new results for the even order sub-linear equation (when \(p(t)=0\)) and super-linear equation (when \(q(t)=0\)), i.e., (1.19) and (1.20). Moreover, classical results can also be obtained by the limiting process \(\gamma\to1^{-}\) and \(\beta\to1^{+}\) in inequalities (i) and (ii) given in Corollary 2.3.

3 Some special cases

In this section we consider the situations when the potentials \(q_{i}(t)\), \(i=1,\ldots,m\), are either linear, convex, or concave functions.

Corollary 3.1

Let \(q_{i}(t)=c_{i}t+d_{i}\), \(i=1,\ldots,m\), in (1.17) be positive on \([a,b]\). If \(x(t)\) is a nontrivial solution of (1.17) satisfying the 2-point boundary conditions (1.8), where \(a,b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$ \bigl((a+b)\widehat{C}_{m}+2\widehat{D}_{m} \bigr) \bigl((a+b)\widetilde {C}_{m}+2\widetilde{D}_{m} \bigr) >\frac{(2n-1)^{2}(n-1)!^{4}(4n-1)!^{2}}{(2n-1)!^{4}(b-a)^{4n}} $$
(3.1)

holds, where

$$\begin{aligned} \widehat{C}_{m}=\sum_{i=1}^{m}c_{i},\qquad \widehat{D}_{m}=\sum_{i=1}^{m}d_{i},\qquad \widetilde{C}_{m}=\sum_{i=1}^{m} \theta_{i}c_{i} \quad\textit{and}\quad \widetilde {D}_{m}=\sum _{i=1}^{m}\theta_{i}d_{i}, \end{aligned}$$

and \(\theta_{i}\) is the same as in (2.4).

Proof

In this special case, we need to compute the integral

$$I:=\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1}(ct+d) \,\mathrm{d}t $$

for real constants c and d. Writing \(ct+d=c(t-a)+ca+d\) and making the substitution \(t=(b-a)z+a\), we obtain

$$\begin{aligned} I&=c\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n} \,\mathrm{d}t+(ca+d)\int_{a}^{b}(b-t)^{2n-1}(t-a)^{2n-1} \,\mathrm{d}t \\ &=c(b-a)^{4n}\int_{0}^{1}(1-z)^{2n-1}z^{2n} \,\mathrm{d}z+(ca+d) (b-a)^{4n-1}\int_{0}^{1}(1-z)^{2n-1}z^{2n-1} \,\mathrm{d}z \\ &=c(b-a)^{4n}B(2n,2n+1)+(ca+d) (b-a)^{4n-1}B(2n,2n) \\ &=B(2n,2n)\bigl[c(b-a)/2+ca+d\bigr](b-a)^{4n-1}, \end{aligned}$$

where \(B(\cdot,\cdot)\) is the Beta function. However, since

$$B(2n,2n)=\frac{\Gamma^{2}(2n)}{\Gamma(4n)}=\frac{(2n-1)!^{2}}{(4n-1)!} $$

we have

$$I=\frac{(2n-1)!^{2}}{(4n-1)!}\bigl[c(a+b)/2+d\bigr](b-a)^{4n-1}. $$

Using this in (2.3) with \(q_{i}(t)=c_{i}t+d_{i}\) the result follows. □

Corollary 3.2

Let \(q_{i}(t)\), \(i=1,\ldots,m\), in (1.17) be continuous, positive, and convex on \([a,b]\). If \(x(t)\) is a nontrivial solution of (1.17) satisfying the 2-point boundary conditions (1.8), where \(a,b\in \mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$ \sum_{i=1}^{m} \bigl[q_{i}(b)+q_{i}(a)\bigr]>\frac {(2n-1)^{2}(n-1)!^{4}(4n-1)!^{2}}{(2n-1)!^{4}(b-a)^{4n}} $$
(3.2)

holds.

Corollary 3.3

Let \(q_{i}(t)\), \(i=1,\ldots,m\), in (1.17) be continuous, positive, and concave on \([a,b]\). If \(x(t)\) is a nontrivial solution of (1.17) satisfying the 2-point boundary conditions (1.8), where \(a,b\in\mathbb{R}\) with \(a< b\) are consecutive zeros, then the inequality

$$ \sum_{i=1}^{m}q_{i} \bigl[(a+b)/2\bigr]>\frac{(2n-1)^{2}(n-1)!^{4}(4n-1)!^{2}}{(2n-1)!^{4}(b-a)^{4n}} $$
(3.3)

holds.

The proofs of Corollaries 3.2 and 3.3 are similar to those of Propositions 4.2 and 4.3 of Das and Vatsala [4], and hence they are omitted.

Finally, we conclude this paper with the following remark. When \(n=1\), the results obtained in this paper for (1.17) (or (2.11)) can easily be extended to the second order equations

$$ x''(t)\pm p(t)\bigl|x(t)\bigr|^{\beta-1}x(t) \mp q(t)\bigl|x(t)\bigr|^{\gamma-1}x(t)=0, $$
(3.4)

i.e., for Emden-Fowler sub-linear and Emden-Fowler super-linear equations with positive and negative coefficients. The formulations of these results are left to the reader.

It will be of interest to find similar results for the even order mixed nonlinear equations of the form (1.17) for some \(\alpha_{k}\geq2\), or the super-linear equation (1.20) for \(\beta\in [2,\infty)\). In fact, the case when \(n=1\) (Emden-Fowler super-linear) is of immense interest.

References

  1. Lyapunov, AM: Probleme général de la stabilité du mouvement (French Translation of a Russian paper dated 1893). Ann. Fac. Sci. Univ. Toulouse 2, 27-247 (1907); Reprinted as Ann. Math. Studies, No. 17, Princeton (1947)

    Google Scholar 

  2. Wintner, A: On the nonexistence of conjugate points. Am. J. Math. 73, 368-380 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964); Birkhäuser, Boston (1982)

    MATH  Google Scholar 

  4. Das, AM, Vatsala, AS: Green function for n-n boundary value problem and an analogue of Hartman’s result. J. Math. Anal. Appl. 51, 670-677 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yang, X: On inequalities of Lyapunov type. Appl. Math. Comput. 134, 293-300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Agarwal, RP, Wong, PJY: Error Inequalities in Polynomial Interpolation and Their Applications. Kluwer Academic, Dordrecht (1993)

    Book  MATH  Google Scholar 

  7. Beurling, A: Un théorème sur les fonctions bornées et uniformément continues sur l’axe réel. Acta Math. 77, 127-136 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borg, G: On a Lyapunov criterion of stability. Am. J. Math. 71, 67-70 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brown, RC, Hinton, DB: Opial’s inequality and oscillation of 2nd order equations. Proc. Am. Math. Soc. 125, 1123-1129 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng, SS: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25-41 (1991)

    MATH  Google Scholar 

  11. Dahiya, RS, Singh, B: A Lyapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations. J. Math. Phys. Sci. 7, 163-170 (1973)

    MATH  MathSciNet  Google Scholar 

  12. Eliason, SB: Lyapunov inequalities and bounds on solutions of certain second order equations. Can. Math. Bull. 17(4), 499-504 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hochstadt, H: A new proof of stability estimate of Lyapunov. Proc. Am. Math. Soc. 14, 525-526 (1963)

    MATH  MathSciNet  Google Scholar 

  14. Kwong, MK: On Lyapunov’s inequality for disfocality. J. Math. Anal. Appl. 83, 486-494 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lee, C, Yeh, C, Hong, C, Agarwal, RP: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17, 847-853 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications (East European Series), vol. 53. Kluwer Academic, Dordrecht (1991)

    Book  MATH  Google Scholar 

  17. Napoli, PL, Pinasco, JP: Estimates for eigenvalues of quasilinear elliptic systems. J. Differ. Equ. 227, 102-115 (2006)

    Article  MATH  Google Scholar 

  18. Nehari, Z: Some eigenvalue estimates. J. Anal. Math. 7, 79-88 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nehari, Z: On an inequality of Lyapunov. In: Studies in Mathematical Analysis and Related Topics. Stanford University Press, Stanford (1962)

    Google Scholar 

  20. Pachpatte, BG: Inequalities related to the zeros of solutions of certain second order differential equations. Facta Univ., Ser. Math. Inform. 16, 35-44 (2001)

    MATH  Google Scholar 

  21. Reid, TW: A matrix equation related to an non-oscillation criterion and Lyapunov stability. Q. Appl. Math. Soc. 23, 83-87 (1965)

    MATH  Google Scholar 

  22. Reid, TW: A matrix Lyapunov inequality. J. Math. Anal. Appl. 32, 424-434 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Singh, B: Forced oscillation in general ordinary differential equations. Tamkang J. Math. 6, 5-11 (1975)

    MATH  MathSciNet  Google Scholar 

  24. Cakmak, D: Lyapunov-type integral inequalities for certain higher order differential equations. Appl. Math. Comput. 216, 368-373 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cheng, SS: A discrete analogue of the inequality of Lyapunov. Hokkaido Math. J. 12, 105-112 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Došlý, O, Řehák, P: Half-Linear Differential Equations. Elsevier, Heidelberg (2005)

    MATH  Google Scholar 

  27. Elbert, A: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30, 158-180 (1979)

    Google Scholar 

  28. Eliason, SB: A Lyapunov inequality for a certain non-linear differential equation. J. Lond. Math. Soc. 2, 461-466 (1970)

    MATH  MathSciNet  Google Scholar 

  29. Eliason, SB: Lyapunov type inequalities for certain second order functional differential equations. SIAM J. Appl. Math. 27(1), 180-199 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guseinov, GS, Kaymakcalan, B: Lyapunov inequalities for discrete linear Hamiltonian systems. Comput. Math. Appl. 45, 1399-1416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guseinov, GS, Zafer, A: Stability criteria for linear periodic impulsive Hamiltonian systems. J. Math. Anal. Appl. 35, 1195-1206 (2007)

    Article  MathSciNet  Google Scholar 

  32. Jiang, L, Zhou, Z: Lyapunov inequality for linear Hamiltonian systems on time scales. J. Math. Anal. Appl. 310, 579-593 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kayar, Z, Zafer, A: Stability criteria for linear Hamiltonian systems under impulsive perturbations. Appl. Math. Comput. 230, 680-686 (2014)

    Article  Google Scholar 

  34. Pachpatte, BG: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195, 527-536 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pachpatte, BG: Lyapunov type integral inequalities for certain differential equations. Georgian Math. J. 4(2), 139-148 (1997)

    Article  MathSciNet  Google Scholar 

  36. Panigrahi, S: Lyapunov-type integral inequalities for certain higher order differential equations. Electron. J. Differ. Equ. 2009, 28 (2009)

    MathSciNet  Google Scholar 

  37. Parhi, N, Panigrahi, S: On Lyapunov-type inequality for third-order differential equations. J. Math. Anal. Appl. 233(2), 445-460 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Parhi, N, Panigrahi, S: Lyapunov-type inequality for higher order differential equations. Math. Slovaca 52(1), 31-46 (2002)

    MATH  MathSciNet  Google Scholar 

  39. Tiryaki, A, Unal, M, Cakmak, D: Lyapunov-type inequalities for nonlinear systems. J. Math. Anal. Appl. 332, 497-511 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Unal, M, Cakmak, D, Tiryaki, A: A discrete analogue of Lyapunov-type inequalities for nonlinear systems. Comput. Math. Appl. 55, 2631-2642 (2008)

    Article  MathSciNet  Google Scholar 

  41. Unal, M, Cakmak, D: Lyapunov-type inequalities for certain nonlinear systems on time scales. Turk. J. Math. 32, 255-275 (2008)

    MathSciNet  Google Scholar 

  42. Yang, X: On Lyapunov-type inequality for certain higher-order differential equations. Appl. Math. Comput. 134, 307-317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang, X: Lyapunov-type inequality for a class of even-order differential equations. Appl. Math. Comput. 215, 3884-3890 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tiryaki, A: Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 5(2), 231-248 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was carried out when the second author was on academic leave, visiting TAMUK (Texas A&M University-Kingsville) and he wishes to thank TAMUK. This work is partially supported by TUBITAK (The Scientific and Technological Research Council of Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P Agarwal.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R.P., Özbekler, A. Lyapunov type inequalities for even order differential equations with mixed nonlinearities. J Inequal Appl 2015, 142 (2015). https://doi.org/10.1186/s13660-015-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0633-4

MSC

Keywords