Skip to main content

A multidimensional Hilbert-type integral inequality

Abstract

By applying the method of weight functions and the technique of real analysis, a multidimensional Hilbert-type integral inequality with multi-parameters and the best possible constant factor related to the gamma function is given. The equivalent forms and the reverses are obtained. We also consider the operator expressions and a few particular results related to the kernels of non-homogeneous and homogeneous.

1 Introduction

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p}=(\int_{0}^{\infty }f^{p}(x)\,dx)^{\frac{1}{p}}>0\), \(\|g\|_{q}>0\). We have the following well-known Hardy-Hilbert integral inequality (cf. [1]):

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\pi/p)}\|f\|_{p}\|g\|_{q}, $$
(1)

where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is best possible. If \(a_{m},b_{n}\geq0\), \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p}=(\sum_{m=1}^{\infty }a_{m}^{p})^{\frac{1}{p}}>0\), \(\|b\|_{q}>0\), then we still have the discrete variant of the above inequality with the same best constant \(\frac{\pi }{\sin(\pi/p)}\) as follows:

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(2)

Inequalities (1) and (2) are important in the analysis and its applications (cf. [16]).

In 1998, by introducing an independent parameter \(\lambda\in(0,1]\), Yang [7] gave an extension of (1) at \(p=q=2\) with the kernel \(\frac{1}{(x+y)^{\lambda}}\). In 2009 and 2011, Yang [3, 4] gave some best extensions of (1) and (2) as follows.

If \(\lambda_{1},\lambda_{2},\lambda\in\mathbf{R}\), \(\lambda _{1}+\lambda _{2}=\lambda\), \(k_{\lambda}(x,y)\) is a non-negative homogeneous function of degree −λ, with

$$ k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda}(t,1)t^{\lambda _{1}-1}\,dt \in \mathbf{R}_{+}, $$

\(\phi(x)=x^{p(1-\lambda_{1})-1}\), \(\psi(y)=y^{q(1-\lambda _{2})-1}\), \(f(x),g(y)\geq0\),

$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f;\|f \|_{p,\phi }:=\biggl(\int_{0}^{\infty} \phi(x)\bigl|f(x)\bigr|^{p}\,dx\biggr)^{\frac{1}{p}}< \infty \biggr\} , $$

\(g\in L_{q,\psi}(\mathbf{R}_{+})\), \(\|f\|_{p,\phi},\|g\|_{q,\psi}>0\), then we have the following inequality:

$$ \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y)\,dx\,dy< k( \lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(3)

where the constant factor \(k(\lambda_{1})\) is best possible. Moreover, if \(k_{\lambda}(x,y)\) stays finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1}(k_{\lambda}(x,y)y^{\lambda_{2}-1})\) is decreasing with respect to \(x>0\) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),

$$ a\in l_{p,\phi}= \Biggl\{ a;\|a\|_{p,\phi}:=\Biggl(\sum _{n=1}^{\infty}\phi (n)|a_{n}|^{p} \Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$

\(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi }>0\), we have

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(4)

where the constant factor \(k(\lambda_{1})\) is still best possible.

Clearly, for \(\lambda=1\), \(k_{1}(x,y)=\frac{1}{x+y}\), \(\lambda_{1}=\frac {1}{q}\), \(\lambda_{2}=\frac{1}{p}\), (3) reduces to (1), while (4) reduces to (2).

In 2006, Hong [8] first published a multidimensional Hilbert integral inequality by using the transfer formula, which is an extension of (3). Some other related results are given by [922], which provided some new methods to study these kinds of inequalities.

In this paper, by using the transfer formula and applying the method of weight functions and the technique of real analysis, we give a multidimensional Hilbert-type integral inequality with multi-parameters and the best possible constant factor related to the gamma function. The equivalent forms and the reverses are obtained. Furthermore, we also consider the operator expressions and a few particular results related to the kernels of non-homogeneous and homogeneous.

2 Some lemmas

If \(m,n\in\mathbf{N}\) (N is the set of positive integers), \(\alpha ,\beta >0\), we set

$$\begin{aligned}& \|x\|_{\alpha} := \Biggl( \sum_{k=1}^{m}|x_{k}|^{\alpha} \Biggr) ^{\frac{1}{\alpha}}\quad\bigl(x=(x_{1},\ldots,x_{m})\in \mathbf{R}^{m}\bigr),\\& \|y\|_{\beta} := \Biggl( \sum_{k=1}^{n}|y_{k}|^{\beta} \Biggr) ^{\frac {1}{\beta}}\quad\bigl(y=(y_{1},\ldots,y_{n})\in \mathbf{R}^{n}\bigr). \end{aligned}$$

Lemma 1

If \(s\in\mathbf{N}\), \(\gamma,M>0\), \(\Psi(u)\) is a non-negative measurable function in \((0,1]\), and

$$ D_{M}:= \Biggl\{ x\in\mathbf{R}_{+}^{s};0< u= \sum_{i=1}^{s} \biggl( \frac {x_{i}}{M} \biggr) ^{\gamma}\leq1 \Biggr\} , $$

then we have the following transfer formula (cf. [6]):

$$\begin{aligned} &\int\cdots\int_{D_{M}}\Psi \Biggl( \sum _{i=1}^{s} \biggl( \frac {x_{i}}{M} \biggr) ^{\gamma} \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma})}{\gamma^{s}\Gamma(\frac {s}{\gamma})}\int_{0}^{1} \Psi(u)u^{\frac{s}{\gamma}-1}\,du, \end{aligned}$$
(5)

where \(\Gamma(\cdot)\) is the gamma function defined by

$$ \Gamma(t):=\int_{0}^{\infty}e^{-v}v^{t-1}\,dv\quad(t>0). $$

In view of (5), since \(\mathbf{R}_{+}^{s}=\lim_{M\rightarrow \infty }D_{M}\), we have

$$\begin{aligned} &\int\cdots\int_{\mathbf{R}_{+}^{s}}\Psi \Biggl( \sum _{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma} \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{0}^{1} \Psi(u)u^{\frac {s}{\gamma }-1}\,du. \end{aligned}$$
(6)

By (6), (i) for

$$\begin{aligned} &\bigl\{ x\in\mathbf{R}_{+}^{s};\|x \|_{\gamma}\geq1\bigr\} \\ &\quad=\lim_{M\rightarrow\infty} \Biggl\{ x\in\mathbf{R}_{+}^{s}; \frac{1}{M^{\gamma}}\leq u=\sum_{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma }\leq1 \Biggr\} , \end{aligned}$$

setting \(\Psi(u)=0\) (\(u\in(0,\frac{1}{M^{\gamma}})\)), it follows that

$$\begin{aligned} &\int\cdots\int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma }\geq 1\}}\Psi \Biggl( \sum _{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma } \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{\frac{1}{M^{\gamma }}}^{1} \Psi (u)u^{\frac{s}{\gamma}-1}\,du; \end{aligned}$$
(7)

(ii) for

$$\begin{aligned} &\bigl\{ x\in\mathbf{R}_{+}^{s};\|x \|_{\gamma}\leq1\bigr\} \\ &\quad=\lim_{M\rightarrow\infty} \Biggl\{ x\in\mathbf{R}_{+}^{s};0< u=\sum_{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma}\leq\frac{1}{M^{\gamma}} \Biggr\} , \end{aligned}$$

setting \(\Psi(u)=0\) (\(u\in(\frac{1}{M^{\gamma}},\infty)\)), we have

$$\begin{aligned} &\int\cdots\int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma }\leq 1\}}\Psi \Biggl( \sum _{i=1}^{s} \biggl( \frac{x_{i}}{M} \biggr) ^{\gamma } \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{0}^{\frac{1}{M^{\gamma }}} \Psi (u)u^{\frac{s}{\gamma}-1}\,du. \end{aligned}$$
(8)

Remark 1

For \(\delta\in\{-1,1\}\), \(s\in\mathbf{N}\), \(\gamma,M>0\), setting \(E_{\delta}:=\{u>0;u^{\delta}\geq\frac{1}{M^{\delta\gamma }}\}\), in view of (7) and (8), it follows that

$$\begin{aligned} &\int\cdots\int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma }^{\delta}\geq1\}}\Psi \Biggl( \sum _{i=1}^{s} \biggl( \frac {x_{i}}{M} \biggr) ^{\gamma} \Biggr)\,dx_{1}\cdots \,dx_{s} \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{E_{\delta}} \Psi(u)u^{\frac {s}{\gamma}-1}\,du. \end{aligned}$$
(9)

Lemma 2

For \(\delta\in\{-1,1\}\), \(s\in\mathbf{N}\), \(\gamma, \varepsilon>0\), we have

$$ \int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma}^{\delta}\geq 1\}}\|x\|_{\gamma}^{-s-\delta\varepsilon}\,dx= \frac{\Gamma^{s}(\frac {1}{\gamma})}{\varepsilon\gamma^{s-1}\Gamma(\frac{s}{\gamma})}. $$
(10)

Proof

By (9), for \(\delta\in\{-1,1\}\), it follows that

$$\begin{aligned} &\int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma}^{\delta}\geq 1\}}\|x\|_{\gamma}^{-s-\delta\varepsilon}\,dx \\ &\quad=\int\cdots\int_{\{x\in\mathbf{R}_{+}^{s};\|x\|_{\gamma}^{\delta }\geq 1\}} \Biggl\{ M \Biggl[ \sum _{i=1}^{s}\biggl(\frac{x_{i}}{M} \biggr)^{\gamma} \Biggr] ^{\frac{1}{\gamma}} \Biggr\} ^{-s-\delta\varepsilon}\,dx_{1} \cdots \,dx_{s} \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{s}\Gamma^{s}(\frac{1}{\gamma })}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{E_{\delta}} \bigl(Mu^{1/\gamma }\bigr)^{-s-\delta\varepsilon}u^{\frac{s}{\gamma}-1}\,du \\ &\quad=\lim_{M\rightarrow\infty}\frac{M^{-\delta\varepsilon}\Gamma^{s}( \frac{1}{\gamma})}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{E_{\delta }}u^{\frac{-\delta\varepsilon}{\gamma}-1}\,du\\ &\quad\overset{v=M^{\gamma}u}{=}\frac{M^{-\delta\varepsilon}\Gamma ^{s}(\frac{1}{\gamma})}{\gamma^{s}\Gamma(\frac{s}{\gamma})}\int_{\{ v>0;v^{\delta }\geq1\}} \bigl(M^{-\gamma}v\bigr)^{\frac{-\delta\varepsilon}{\gamma }-1}M^{-\gamma }\,dv\\ &\quad=\frac{\Gamma^{s}(\frac{1}{\gamma})}{\gamma^{s}\Gamma(\frac {s}{\gamma})}\int_{\{v>0;v^{\delta}\geq1\}}v^{\frac{-\delta\varepsilon}{\gamma }-1}\,dv= \frac{\Gamma^{s}(\frac{1}{\gamma})}{\varepsilon\gamma ^{s-1}\Gamma(\frac{s}{\gamma})}. \end{aligned}$$

Hence, we have (10). □

Definition 1

For \(m,n\in\mathbf{N}\), \(\alpha,\beta,\lambda _{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\eta>-1\), \(\delta \in\{-1,1\}\), \(x=(x_{1},\ldots,x_{m})\in\mathbf{R}_{+}^{m}\), \(y=(y_{1},\ldots,y_{n})\in\mathbf{R}_{+}^{n}\), we define two weight functions \(\omega(\lambda_{1},y)\) and \(\varpi(\lambda_{2},x)\) as follows:

$$\begin{aligned}& \omega(\lambda_{1},y) :=\|y\|_{\beta}^{\lambda_{2}}\int _{\mathbf {R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta }}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\frac{1}{ \|x\|_{\alpha}^{m-\delta\lambda_{1}}}\,dx, \end{aligned}$$
(11)
$$\begin{aligned}& \varpi(\lambda_{2},x) :=\|x\|_{\alpha}^{\delta\lambda_{1}}\int _{\mathbf{R}_{+}^{n}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta })|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\} )^{\lambda}}\frac{1}{\|y\|_{\beta}^{n-\lambda_{2}}}\,dy. \end{aligned}$$
(12)

By (6), we find

$$\begin{aligned} \omega(\lambda_{1},y) &=\|y\|_{\beta}^{\lambda_{2}}\int _{\mathbf{R} _{+}^{m}}\frac{|\ln(\frac{\|y\|_{\beta}}{M^{\delta}[\sum_{i=1}^{m} ( \frac{x_{i}}{M} ) ^{\alpha}]^{\delta/\alpha}})|^{\eta}}{(\max \{M^{\delta}[\sum_{i=1}^{m} ( \frac{x_{i}}{M} ) ^{\alpha }]^{\delta/\alpha},\|y\|_{\beta}\})^{\lambda}} \\ &\hphantom{=}{}\times\frac{1}{M^{m-\delta\lambda_{1}}[\sum_{i=1}^{m} ( \frac {x_{i}}{M} ) ^{\alpha}]^{\frac{m-\delta\lambda_{1}}{\alpha }}}\,dx_{1}\cdots \,dx_{m} \\ &=\|y\|_{\beta}^{\lambda_{2}}\lim_{M\rightarrow\infty} \frac {M^{m}\Gamma ^{m}(\frac{1}{\alpha})}{\alpha^{m}\Gamma(\frac{m}{\alpha})} \\ &\hphantom{=}{}\times\int_{0}^{1}\frac{|\ln(\frac{\|y\|_{\beta}}{M^{\delta }u^{\delta /\alpha}})|^{\eta}}{(\max\{M^{\delta}u^{\delta/\alpha },\|y\|_{\beta }\})^{\lambda}} \frac{u^{\frac{m}{\alpha}-1}\,du}{M^{m-\delta\lambda _{1}}u^{\frac{m-\delta\lambda_{1}}{\alpha}}} \\ &=\|y\|_{\beta}^{\lambda_{2}}\lim_{M\rightarrow\infty} \frac {M^{\delta \lambda_{1}}\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m}\Gamma(\frac {m}{\alpha})}\int_{0}^{1}\frac{|\ln(\frac{\|y\|_{\beta}}{M^{\delta }u^{\delta /\alpha}})|^{\eta}u^{\frac{\delta\lambda_{1}}{\alpha}-1}}{(\max \{M^{\delta}u^{\delta/\alpha},\|y\|_{\beta}\})^{\lambda}}\,du \\ &\overset{v=M\|y\|^{\frac{-1}{\delta}}u^{1/\alpha}}{=}\frac{\Gamma ^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})}\int _{0}^{\infty }\frac{|\ln v^{\delta}|^{\eta}v^{\delta\lambda_{1}-1}}{(\max\{ v^{\delta },1\})^{\lambda}}\,dv. \end{aligned}$$
(13)

Setting \(t=v^{\delta_{1}}\) in (13), for \(\delta=\pm1\), by simplification, it follows that

$$\begin{aligned} \omega(\lambda_{1},y) &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})}\int_{0}^{\infty} \frac{|\ln t|^{\eta }t^{\lambda_{1}-1}}{(\max\{t,1\})^{\lambda}}\,dt \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggl[ \int_{0}^{1}(-\ln t)^{\eta}t^{\lambda _{1}-1}\,dt+\int_{1}^{\infty} \frac{(\ln t)^{\eta}t^{\lambda_{1}-1}}{t^{\lambda}}\,dt \biggr] \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})}\int_{0}^{1}(-\ln t)^{\eta}\bigl(t^{\lambda_{1}-1}+t^{\lambda _{2}-1}\bigr)\,dt \\ &\overset{u=-\ln t}{=}\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})}\int_{\infty}^{0}u^{\eta} \bigl[e^{-u(\lambda _{1}-1)}+e^{-u(\lambda_{2}-1)}\bigr]\bigl(-e^{-u}\bigr)\,du \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})}\int_{0}^{\infty} \bigl(e^{-\lambda_{1}u}+e^{-\lambda _{2}u}\bigr)u^{\eta }\,du \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac{1}{\lambda _{2}^{\eta}} \biggr) \int _{0}^{\infty}e^{-v}v^{(\eta+1)-1}\,dv \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})\Gamma(\eta+1)}{\alpha ^{m-1}\Gamma (\frac{m}{\alpha})} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac {1}{\lambda _{2}^{\eta}} \biggr) . \end{aligned}$$
(14)

Lemma 3

For \(m,n\in\mathbf{N}\), \(\alpha,\beta,\lambda _{1},\lambda _{2},\widetilde{\lambda}_{1},\widetilde{\lambda}_{2}>0\), \(\lambda _{1}+\lambda_{2}=\widetilde{\lambda}_{1}+\widetilde{\lambda }_{2}=\lambda\), \(\eta>-1\), \(\delta\in\{-1,1\}\), we have

$$\begin{aligned}& \omega(\lambda_{1},y) =K_{\alpha}(\lambda_{1}):= \frac{\Gamma^{m}( \frac{1}{\alpha})\Gamma(\eta+1)}{\alpha^{m-1}\Gamma(\frac {m}{\alpha})} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac{1}{\lambda_{2}^{\eta }} \biggr)\quad \bigl(y\in\mathbf{R}_{+}^{n}\bigr), \end{aligned}$$
(15)
$$\begin{aligned}& \varpi(\lambda_{2},x) =K_{\beta}(\lambda_{1}):= \frac{\Gamma ^{n}(\frac{1}{\beta})\Gamma(\eta+1)}{\beta^{n-1}\Gamma(\frac{n}{\beta})} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac{1}{\lambda_{2}^{\eta}} \biggr) \quad\bigl(x \in \mathbf{R}_{+}^{m}\bigr), \end{aligned}$$
(16)
$$\begin{aligned}& \begin{aligned}[b] w(\widetilde{\lambda}_{1},y) &:=\|y\|_{\beta}^{\widetilde{\lambda}_{2}} \int_{\{x\in\mathbf{R}_{+}^{m};\|x\|_{\alpha}^{\delta}\geq1\} }\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max \{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\frac{1}{\|x\|_{\alpha}^{m-\delta\widetilde{\lambda}_{1}}}\,dx \\ &=K_{\alpha}(\widetilde{\lambda}_{1}) \bigl(1- \theta_{\widetilde{\lambda} _{1}}(y)\bigr), \end{aligned} \end{aligned}$$
(17)
$$\begin{aligned}& \theta_{\widetilde{\lambda}_{1}}(y):=\frac{\widetilde{\lambda }_{1}^{-\eta }+\widetilde{\lambda}_{2}^{-\eta}}{\Gamma(\eta+1)}\int_{0}^{\|y\|_{\beta }^{-1}} \frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max \{t,1\})^{\lambda}}\,dt=O\bigl(\|y\|_{\beta}^{-\frac{\widetilde{\lambda }_{1}}{2}}\bigr) \quad\bigl(y\in \mathbf{R}_{+}^{n}\bigr). \end{aligned}$$
(18)

Proof

By (14), we have (15). By the same way, we can obtain (16).

In view of (9) and (13), we find

$$\begin{aligned} w(\widetilde{\lambda}_{1},y) &=\|y\|_{\beta}^{\widetilde{\lambda}_{2}} \lim_{M\rightarrow\infty}\frac{M^{\delta\widetilde{\lambda}_{1}}\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m}\Gamma(\frac{m}{\alpha})} \int_{\{u>0;u^{\delta}\geq\frac{1}{M^{\delta\alpha}}\} }\frac{|\ln(\frac{\|y\|_{\beta}}{M^{\delta}u^{\delta/\alpha}})|^{\eta}u^{ \frac{\delta\widetilde{\lambda}_{1}}{\alpha}-1}}{(\max\{M^{\delta }u^{\delta/\alpha},\|y\|_{\beta}\})^{\lambda}}\,du \\ &\overset{v=M\|y\|^{\frac{-1}{\delta}}u^{\frac{1}{\alpha}}}{=}\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \int_{\{v>0;v^{\delta}\geq\|y\|_{\beta}^{-1}\}}\frac{|\ln v^{\delta }|^{\eta}v^{\delta\widetilde{\lambda}_{1}-1}}{(\max\{v^{\delta },1\})^{\lambda}}\,dv \\ &\overset{t=v^{\delta}}{=}\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})}\int_{\|y\|_{\beta}^{-1}}^{\infty } \frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max\{t,1\})^{\lambda}}\,dt \\ &=\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggl[ \int_{0}^{\infty} \frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}\,dt}{(\max\{t,1\})^{\lambda}}-\int_{0}^{\|y\|_{\beta }^{-1}}\frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}\,dt}{(\max \{t,1\})^{\lambda}} \biggr] \\ &=K_{\alpha}(\widetilde{\lambda}_{1}) \bigl(1- \theta_{\widetilde{\lambda} _{1}}(y)\bigr). \end{aligned}$$

Setting \(F(u):=\int_{0}^{u}\frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max\{t,1\})^{\lambda}}\,dt\) (\(u\in(0,\infty)\)), it follows that \(F(u)\) is continuous in \((0,\infty)\). Since

$$\begin{aligned} &\lim_{u\rightarrow0^{+}}\frac{1}{u^{\widetilde{\lambda}_{1}/2}}\int _{0}^{u}\frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max \{t,1\})^{\lambda}}\,dt \\ &\quad=\lim_{u\rightarrow0^{+}}\frac{2}{\widetilde{\lambda }_{1}u^{(\widetilde{\lambda}_{1}/2)-1}}\frac{|\ln u|^{\eta}u^{\widetilde{\lambda }_{1}-1}}{(\max\{u,1\})^{\lambda}}=\lim _{u\rightarrow0^{+}}\frac{2(-\ln u)^{\eta }u^{\widetilde{\lambda}_{1}/2}}{\widetilde{\lambda}_{1}}=0, \\ &\lim_{u\rightarrow\infty}\frac{1}{u^{\widetilde{\lambda}_{1}/2}}\int _{0}^{u}\frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max \{t,1\})^{\lambda}}\,dt=0, \end{aligned}$$

there exists a constant \(L>0\) such that

$$ 0< \int_{0}^{u}\frac{|\ln t|^{\eta}t^{\widetilde{\lambda}_{1}-1}}{(\max \{t,1\})^{\lambda}}\,dt\leq Lu^{\frac{\widetilde{\lambda}_{1}}{2}}\quad\bigl(u\in (0,\infty)\bigr). $$

Then we have

$$ 0< \theta_{\widetilde{\lambda}_{1}}(y)\leq\frac{\widetilde{\lambda}_{1}^{-\eta}+\widetilde{\lambda}_{2}^{-\eta}}{\Gamma(\eta+1)}L\|y \|_{\beta}^{-\frac{\widetilde{\lambda}_{1}}{2}}, $$

namely, \(\theta_{\widetilde{\lambda}_{1}}(y)=O(\|y\|_{\beta}^{-\frac{ \widetilde{\lambda}_{1}}{2}})\) (\(y\in\mathbf{R}_{+}^{n}\)). Hence, we have (17) and (18). □

Lemma 4

As the assumptions of Definition 1, if \(p\in\mathbf {R}\backslash\{0,1\}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x)=f(x_{1},\ldots ,x_{m})\geq0\), \(g(y)=g(y_{1},\ldots,y_{n})\geq0\), then (i) for \(p>1\), we have the following inequality:

$$\begin{aligned} J_{1}&:= \biggl\{ \int_{\mathbf{R}_{+}^{n}}\frac{\|y\|_{\beta}^{p\lambda _{2}-n}}{(\omega(\lambda_{1},y))^{p-1}} \biggl[ \int_{\mathbf {R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta }f(x)}{(\max \{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\leq \biggl[ \int_{\mathbf{R}_{+}^{m}}\varpi(\lambda _{2},x)\|x \|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}; \end{aligned}$$
(19)

(ii) for \(0< p<1\), or \(p<0\), we have the reverse of (19).

Proof

(i) For \(p>1\), by Hölder’s inequality with weight (cf. [23]), it follows that

$$\begin{aligned} &\int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha }^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta }\})^{\lambda}}f(x)\,dx \\ &\quad=\int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha }^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta }\})^{\lambda}} \biggl[ \frac{\|x\|_{\alpha}^{(m-\delta\lambda _{1})/q}}{\|y\|_{\beta}^{(n-\lambda_{2})/p}}f(x) \biggr] \biggl[ \frac {\|y\|_{\beta }^{(n-\lambda_{2})/p}}{\|x\|_{\alpha}^{(m-\delta\lambda _{1})/q}} \biggr]\,dx \\ &\quad\leq \biggl[ \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta }/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta },\|y\|_{\beta}\})^{\lambda}} \frac{\|x\|_{\alpha}^{(m-\delta\lambda _{1})(p-1)}}{\|y\|_{\beta}^{n-\lambda_{2}}}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\ &\qquad{}\times \biggl[ \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta }/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta },\|y\|_{\beta}\})^{\lambda}} \frac{\|y\|_{\beta}^{(n-\lambda _{2})(q-1)}}{\|x\|_{\alpha}^{m-\delta\lambda_{1}}}\,dx \biggr] ^{\frac{1}{q}} \\ &\quad=\bigl(\omega(\lambda_{1},y)\bigr)^{\frac{1}{q}}\|y \|_{\beta}^{\frac{n}{p}-\lambda_{2}} \\ &\qquad{}\times \biggl[ \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta }/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta },\|y\|_{\beta}\})^{\lambda}} \frac{\|x\|_{\alpha}^{(m-\delta\lambda _{1})(p-1)}}{\|y\|_{\beta}^{n-\lambda_{2}}}f^{p}(x)\,dx \biggr] ^{\frac {1}{p}}. \end{aligned}$$
(20)

Then by Fubini’s theorem (cf. [24]), we have

$$\begin{aligned} J_{1} \leq& \biggl\{ \int_{\mathbf{R}_{+}^{m}} \biggl[ \int _{\mathbf{R}_{+}^{i_{0}}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta })|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\frac{\|x\|_{\alpha}^{(m-\delta\lambda_{1})(p-1)}}{\|y\|_{\beta }^{n-\lambda _{2}}}f^{p}(x)\,dx \biggr]\,dy \biggr\} ^{\frac{1}{p}} \\ =& \biggl\{ \int_{\mathbf{R}_{+}^{m}} \biggl[ \int_{\mathbf {R}_{+}^{n}} \frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max \{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\frac {\|x\|_{\alpha }^{(m-\delta\lambda_{1})(p-1)}}{\|y\|_{\beta}^{n-\lambda _{2}}}\,dy \biggr] f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \\ =& \biggl[ \int_{\mathbf{R}_{+}^{m}}\varpi(\lambda_{2},x)\|x \|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$
(21)

Hence, (19) follows.

(ii) For \(0< p<1\), or \(p<0\), by the reverse Hölder inequality with weight (cf. [23]), we obtain the reverse of (20). Then by Fubini’s theorem, we still can obtain the reverse of (19). □

Lemma 5

As the assumptions of Lemma 4, then (i) for \(p>1\), we have the following inequality equivalent to (19):

$$\begin{aligned} I :=&\int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{m}} \frac{|\ln (\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{ \|x\|_{\alpha }^{\delta},\|y\|_{\beta}\})^{\lambda}}f(x)g(y)\,dx\,dy \\ \leq& \biggl[ \int_{\mathbf{R}_{+}^{m}}\varpi(\lambda _{2},x) \|x\|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\ &{}\times \biggl[ \int_{\mathbf{R}_{+}^{n}}\omega(\lambda _{1},y) \|y\|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}; \end{aligned}$$
(22)

(ii) for \(0< p<1\), or \(p<0\), we have the reverse of (22) equivalent to the reverse of (19).

Proof

(i) For \(p>1\), by Hölder’s inequality (cf. [23]), it follows that

$$\begin{aligned} I =&\int_{\mathbf{R}_{+}^{n}}\frac{\|y\|_{\beta}^{\frac {n}{q}-(n-\lambda _{2})}}{(\omega(\lambda_{1},y))^{\frac{1}{q}}} \biggl[ \int _{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta }}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda }}f(x)\,dx \biggr] \\ &{}\times\bigl[ \bigl(\omega(\lambda_{1},y)\bigr)^{\frac{1}{q}}\|y \|_{\beta }^{(n-\lambda_{2})-\frac{n}{q}}g(y) \bigr]\,dy \\ \leq&J_{1} \biggl[ \int_{\mathbf{R}_{+}^{n}}\omega(\lambda _{1},y)\|y\|_{\beta}^{q(n-\lambda_{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(23)

Then by (19) we have (22).

On the other hand, assuming that (22) is valid, we set

$$ g(y):=\frac{\|y\|_{\beta}^{p\lambda_{2}-n}}{(\omega(\lambda _{1},y))^{p-1}} \biggl[ \int_{\mathbf{R}_{+}^{m}} \frac{|\ln(\|y\|_{\beta }/\|x\|_{\alpha }^{\delta})|^{\eta}f(x)}{(\max\{\|x\|_{\alpha}^{\delta },\|y\|_{\beta }\})^{\lambda}}\,dx \biggr] ^{p-1},\quad y\in\mathbf{R}_{+}^{n}. $$

Then it follows that

$$ J_{1}^{p}=\int_{\mathbf{R}_{+}^{n}}\omega( \lambda_{1},y)\|y\|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy. $$

If \(J_{1}=0\), then (19) is trivially valid; if \(J_{1}=\infty\), then by (21), (19) keeps the form of equality (=∞). Suppose that \(0< J_{1}<\infty\). By (22), we have

$$\begin{aligned} 0 < &\int_{\mathbf{R}_{+}^{n}}\omega(\lambda_{1},y)\|y \|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy=J_{1}^{p}=I \\ \leq& \biggl[ \int_{\mathbf{R}_{+}^{m}}\varpi(\lambda _{2},x) \|x\|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\ &{}\times \biggl[ \int_{\mathbf{R}_{+}^{n}}\omega(\lambda _{1},y) \|y\|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}<\infty. \end{aligned}$$

Dividing out \(J_{1}^{p-1}\) in the above inequality, it follows that

$$\begin{aligned} J_{1} =& \biggl[ \int_{\mathbf{R}_{+}^{n}}\omega(\lambda _{1},y)\|y\|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{p}} \\ \leq& \biggl[ \int_{\mathbf{R}_{+}^{m}}\varpi(\lambda _{2},x) \|x\|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}, \end{aligned}$$

and then (19) follows. Hence, (19) and (22) are equivalent.

(ii) For \(0< p<1\), or \(p<0\), by the same way, we have the reverse of (22) equivalent to the reverse of (19). □

3 Main results and operator expressions

Setting functions

$$ \Phi(x):=\|x\|_{\alpha}^{p(m-\delta\lambda_{1})-m},\qquad \Psi (y):=\|y\|_{\beta}^{q(n-\lambda_{2})-n}\quad \bigl(x\in\mathbf{R}_{+}^{m},y\in \mathbf{R}_{+}^{n} \bigr), $$

we have the following.

Theorem 1

Suppose that \(m,n\in\mathbf{N}\), \(\alpha,\beta ,\lambda _{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\eta>-1\), \(\delta \in \{-1,1\}\), \(p\in\mathbf{R}\backslash\{0,1\}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x)=f(x_{1},\ldots,x_{m})\geq0\), \(g(y)=g(y_{1},\ldots,y_{n})\geq 0\),

$$\begin{aligned}& 0 < \|f\|_{p,\Phi}= \biggl[ \int_{\mathbf{R}_{+}^{m}}\|x \|_{\alpha }^{p(m-\delta\lambda_{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}< \infty,\\& 0 <\|g\|_{q,\Psi}= \biggl[ \int_{\mathbf{R}_{+}^{n}}\|y \|_{\beta }^{q(n-\lambda_{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}< \infty. \end{aligned}$$

(i) For \(p>1\), we have the following equivalent inequalities with the best possible constant factor \(K(\lambda_{1})\):

$$\begin{aligned}& I=\int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{m}} \frac{|\ln (\|y\|_{\beta }/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta },\|y\|_{\beta}\})^{\lambda}}f(x)g(y)\,dx\,dy< K(\lambda_{1})\|f\|_{p,\Phi }\|g \|_{q,\Psi}, \end{aligned}$$
(24)
$$\begin{aligned}& \begin{aligned}[b] J &:= \biggl\{ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\beta}^{p\lambda _{2}-n} \biggl[ \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha }^{\delta })|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\} )^{\lambda}}f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &< K(\lambda_{1})\|f\|_{p,\Phi}, \end{aligned} \end{aligned}$$
(25)

where we define the constant factor as follows:

$$\begin{aligned} K(\lambda_{1}) :=&\bigl(K_{\beta}(\lambda_{1}) \bigr)^{\frac{1}{p}}\bigl(K_{\alpha }(\lambda_{1}) \bigr)^{\frac{1}{q}} \\ =& \biggl( \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac {n}{\beta})} \biggr) ^{\frac{1}{p}} \biggl( \frac{\Gamma^{m}(\frac{1}{\alpha })}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac{1}{\lambda_{2}^{\eta}} \biggr) \Gamma (\eta +1). \end{aligned}$$

(ii) For \(0< p<1\), or \(p<0\), we still have the equivalent reverses of (24) and (25) with the same best constant factor \(K(\lambda_{1})\).

Proof

(i) For \(p>1\), by the conditions, we can prove that (20) takes the form of strict inequality. Otherwise, if (20) takes the form of equality for \(y\in\mathbf{R}_{+}^{n}\), then there exist constants A and B, which are not all zero, satisfying

$$ A\frac{\|x\|_{\alpha}^{(m-\delta\lambda_{1})(p-1)}}{\|y\|_{\beta }^{n-\lambda_{2}}}f^{p}(x)=B\frac{\|y\|_{\beta}^{(n-\lambda _{2})(q-1)}}{\|x\|_{\alpha}^{m-\delta\lambda_{1}}} \quad\mbox{a.e. in }x\in \mathbf {R}_{+}^{m}. $$
(26)

If \(A=0\), then \(B=0\), which is impossible; if \(A\neq0\), then (26) reduces to

$$ \|x\|_{\alpha}^{p(m-\delta\lambda_{1})-m}f^{p}(x)=\frac{B\|y\|_{\beta }^{q(n-\lambda_{2})}}{A\|x\|_{\alpha}^{m}}\quad \mbox{a.e. in }x\in \mathbf{R}_{+}^{i_{0}}, $$

which contradicts the fact that \(0<\|f\|_{p,\Phi}<\infty\). In fact, by (9), it follows that \(\int_{\mathbf{R}_{+}^{m}}\|x\|_{\alpha }^{-m}\,dx=\infty \). Hence, (20) takes the form of strict inequality. So does (19). By (15) and (16), we have (25).

In view of (23) (putting \(\omega(\lambda_{1},y)=1\)), we still have

$$ I\leq J \biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\beta}^{q(n-\lambda _{2})-n}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. $$
(27)

Then by (27) and (25), we have (24). It is evident that by Lemma 5 and the assumptions, (24) and (25) are also equivalent.

For \(0<\varepsilon<\frac{p\lambda_{1}}{2}\), we set \(\widetilde{f}(x)\), \(\widetilde{g}(y)\) as follows:

$$\begin{aligned}& \widetilde{f}(x):=\left \{ \begin{array}{@{}l@{\quad}l} 0,& 0< \|x\|_{\alpha}^{\delta}<1, \\ \|x\|_{\alpha}^{\delta(\lambda_{1}-\frac{\varepsilon}{p})-m}, &\|x\|_{\alpha}^{\delta}\geq1,\end{array} \right . \\& \widetilde{g}(y):=\left \{ \begin{array}{@{}l@{\quad}l} 0,& 0<\|y\|_{\beta}<1, \\ \|y\|_{\beta}^{(\lambda_{2}-\frac{\varepsilon}{q})-n},& \|y\|_{\beta }\geq 1.\end{array} \right . \end{aligned}$$

Then, for \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon }{p}\in(\frac{\lambda_{1}}{2},\lambda)\) (\(\subset(0,\lambda)\)), by (10) we find

$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{f}\|_{p,\Phi}\|\widetilde{g}\|_{q,\Psi}&= \biggl( \int_{\{ x\in \mathbf{R}_{+}^{m};\|x\|_{\alpha}^{\delta}\geq1\}}\|x\|_{\alpha }^{-m-\delta\varepsilon}\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{\{y\in\mathbf{R}_{+}^{n};\|y\|_{\beta}\geq 1\}}\|y\|_{\beta}^{-n-\varepsilon}\,dy \biggr) ^{\frac{1}{q}} \\ &=\frac{1}{\varepsilon} \biggl( \frac{\Gamma^{m}(\frac{1}{\alpha })}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{p}} \biggl( \frac {\Gamma ^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta})} \biggr) ^{ \frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] 0 &\leq\int_{\{y\in\mathbf{R}_{+}^{n};\|y\|_{\beta}\geq1\} }\|y\|_{\beta }^{-n-\varepsilon}O \bigl(\|y\|_{\beta}^{-\frac{\widetilde{\lambda}_{1}}{2}}\bigr)\,dy \\ &\leq L_{1}\int_{\{y\in\mathbf{R}_{+}^{n};\|y\|_{\beta}\geq 1\}}\|y\|_{\beta}^{-n-(\varepsilon+\frac{\widetilde{\lambda }_{1}}{2})}\,dy=\frac{L_{1}\Gamma^{n}(\frac{1}{\beta})}{(\varepsilon+\frac{\widetilde {\lambda}_{1}}{2})\beta^{n-1}\Gamma(\frac{n}{\beta})} \\ &\leq\frac{L_{1}\Gamma^{n}(\frac{1}{\beta})}{(\varepsilon+\frac {\lambda _{1}}{4})\beta^{n-1}\Gamma(\frac{n}{\beta})}< \infty\quad(L_{1}>0), \end{aligned} \end{aligned}$$

and then by (17) and (18) it follows that

$$\begin{aligned} \widetilde{I} :=&\int_{\mathbf{R}_{+}^{n}}\int_{\mathbf {R}_{+}^{m}} \frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max \{\|x\|_{\alpha}^{\delta},\|y\|_{\beta}\})^{\lambda}}\widetilde {f}(x)\widetilde{g}(y)\,dx\,dy \\ =&\int_{\{y\in\mathbf{R}_{+}^{n};\|y\|_{\beta}\geq1\}}\|y\|_{\beta }^{-n-\varepsilon}w( \widetilde{\lambda}_{1},y)\,dy \\ =&K_{\alpha}(\widetilde{\lambda}_{1})\int_{\{y\in\mathbf{R}_{+}^{n};\|y\|_{\beta}\geq1\}} \|y\|_{\beta}^{-n-\varepsilon} \bigl( 1-O\bigl(\|y\|_{\beta}^{-\frac{\widetilde{\lambda}_{1}}{2}} \bigr) \bigr)\,dy \\ =&\frac{1}{\varepsilon}K_{\alpha}(\widetilde{\lambda}_{1}) \biggl( \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta})}-\varepsilon O_{\lambda_{1}}(1) \biggr) . \end{aligned}$$

If there exists a constant \(K\leq K(\lambda_{1})\), such that (24) is valid when replacing \(K(\lambda_{1})\) by K, then in particular we have

$$\begin{aligned} &\frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac {m}{\alpha })}\Gamma(\eta+1) \biggl( \frac{1}{\widetilde{\lambda}_{1}^{\eta }}+ \frac{1}{\widetilde{\lambda}_{2}^{\eta}} \biggr) \biggl( \frac{\Gamma ^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta})}-\varepsilon O_{\lambda _{1}}(1) \biggr) \\ &\quad\leq\varepsilon\widetilde{I}< \varepsilon K\|\widetilde{f}\|_{p,\Phi } \|\widetilde{g}\|_{q,\Psi}=K \biggl( \frac{\Gamma^{m}(\frac{1}{\alpha})}{ \alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{p}} \biggl( \frac{\Gamma^{n}(\frac{1}{\beta})}{\beta^{n-1}\Gamma(\frac{n}{\beta })} \biggr) ^{\frac{1}{q}}, \end{aligned}$$

and then \(K(\lambda_{1})\leq K(\varepsilon\rightarrow0^{+})\). Hence \(K=K(\lambda_{1})\) is the best possible constant factor of (24).

By the equivalency, we can prove that the constant factor \(K(\lambda_{1})\) in (25) is best possible. Otherwise, we would reach a contradiction by (27) that the constant factor \(K(\lambda_{1})\) in (24) is not best possible.

(ii) For \(0< p<1\), or \(p<0\), by the same way, we still can obtain the equivalent reverses of (24) and (25) with the same best constant factor. □

As the assumptions of Theorem 1, for \(p>1\), in view of \(J< K(\lambda _{1})\|f\|_{p,\Phi}\), we give the following definition.

Definition 2

We define a multidimensional Hilbert-type integral operator

$$ T:\mathbf{L}_{p,\Phi}\bigl(\mathbf{R}_{+}^{m}\bigr) \rightarrow\mathbf{L}_{p,\Psi ^{1-p}}\bigl(\mathbf{R}_{+}^{n} \bigr) $$

as follows:

For \(f\in\mathbf{L}_{p,\Phi}(\mathbf{R}_{+}^{m})\), there exists a unique representation \(Tf\in\mathbf{L}_{p,\Psi^{1-p}}(\mathbf{R}_{+}^{n})\), satisfying

$$ (Tf) (y):=\int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta }/\|x\|_{\alpha }^{\delta})|^{\eta}}{(\max\{\|x\|_{\alpha}^{\delta},\|y\|_{\beta }\})^{\lambda}}f(x)\,dx\quad\bigl(y\in \mathbf{R}_{+}^{n}\bigr). $$
(28)

For \(g\in\mathbf{L}_{q,\Psi}(\mathbf{R}_{+}^{n})\), we define the following formal inner product of Tf and g as follows:

$$ (Tf,g):=\int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{m}} \frac{|\ln (\|y\|_{\beta}/\|x\|_{\alpha}^{\delta})|^{\eta}}{(\max\{ \|x\|_{\alpha }^{\delta},\|y\|_{\beta}\})^{\lambda}}f(x)g(y)\,dx\,dy. $$
(29)

Then by Theorem 1, for \(p>1\), \(0<\|f\|_{p,\Phi},\|g\|_{q,\Psi}<\infty\), we have the following equivalent inequalities:

$$\begin{aligned}& (Tf,g) < K(\lambda_{1})\|f\|_{p,\Phi}\|g\|_{q,\Psi}, \end{aligned}$$
(30)
$$\begin{aligned}& \|Tf\|_{p,\Psi^{1-p}} < K(\lambda_{1})\|f\|_{p,\Phi}. \end{aligned}$$
(31)

It follows that T is bounded with

$$ \|T\|:=\sup_{f(\neq\theta)\in\mathbf{L}_{p,\Phi}(\mathbf {R}_{+}^{m})}\frac{\|Tf\|_{p,\Psi^{1-p}}}{\|f\|_{p,\Phi}}\leq K( \lambda_{1}). $$

Since the constant factor \(K(\lambda_{1})\) in (31) is best possible, we have

$$\begin{aligned} \|T\| =&K(\lambda_{1})= \biggl( \frac{\Gamma^{n}(\frac{1}{\beta })}{\beta ^{n-1}\Gamma(\frac{n}{\beta})} \biggr) ^{\frac{1}{p}} \biggl( \frac {\Gamma ^{m}(\frac{1}{\alpha})}{\alpha^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac{1}{\lambda_{1}^{\eta}}+\frac{1}{\lambda _{2}^{\eta}} \biggr) \Gamma(\eta+1). \end{aligned}$$
(32)

4 Some corollaries

We also set functions

$$ \widetilde{\Phi}(x):=\|x\|_{\alpha}^{p(m-\lambda_{2})-m},\qquad\widehat { \Phi}(x):=\|x\|_{\alpha}^{p(m-\lambda_{1})-m}\quad\bigl(x\in \mathbf{R}_{+}^{m}\bigr). $$

For \(\delta=-1\) in Theorem 1, setting \(F(x)=\|x\|_{\alpha }^{\lambda }f(x)\), by simplification, we have the following.

Corollary 1

Suppose that \(m,n\in\mathbf{N}\), \(\alpha,\beta ,\lambda _{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\eta>-1\), \(p\in \mathbf{R}\backslash\{0,1\}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(F(x)=F(x_{1},\ldots,x_{m})\geq0\), \(g(y)=g(y_{1},\ldots,y_{n})\geq 0\), \(0<\|F\|_{p,\widetilde{\Phi}},\|g\|_{q,\Psi}<\infty\). (i) For \(p>1\), we have the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factor \(K(\lambda_{1})\):

$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{m}} \frac{|\ln (\|x\|_{\alpha }\|y\|_{\beta})|^{\eta}}{(\max\{1,\|x\|_{\alpha}\|y\|_{\beta }\})^{\lambda}}F(x)g(y)\,dx\,dy< K(\lambda_{1})\|F\|_{p,\widetilde{\Phi}}\|g \|_{q,\Psi}, \end{aligned}$$
(33)
$$\begin{aligned}& \biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\beta}^{p\lambda_{2}-n} \biggl( \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|x\|_{\alpha}\|y\|_{\beta})|^{\eta }F(x)}{(\max\{1,\|x\|_{\alpha}\|y\|_{\beta}\})^{\lambda}}\,dx \biggr) ^{p}\,dy \biggr] ^{\frac{1}{p}}< K(\lambda_{1})\|F \|_{p,\widetilde{\Phi}}; \end{aligned}$$
(34)

(ii) for \(0< p<1\), or \(p<0\), we still have the equivalent reverses of (33) and (34) with the same best constant factor \(K(\lambda_{1})\).

For \(\delta=1\) in Theorem 1, we have the following.

Corollary 2

Suppose that \(m,n\in\mathbf{N}\), \(\alpha,\beta ,\lambda _{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\eta>-1\), \(p\in \mathbf{R}\backslash\{0,1\}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x)=f(x_{1},\ldots,x_{m})\geq0\), \(g(y)=g(y_{1},\ldots,y_{n})\geq 0\), \(0<\|f\|_{p,\widehat{\Phi}},\|g\|_{q,\Psi}<\infty\). (i) For \(p>1\), we have the following equivalent inequalities with the homogeneous kernel of degreeλ and the best possible constant factor \(K(\lambda _{1})\):

$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{m}} \frac{|\ln (\|y\|_{\beta }/\|x\|_{\alpha})|^{\eta}}{(\max\{\|x\|_{\alpha},\|y\|_{\beta }\})^{\lambda}}f(x)g(y)\,dx\,dy< K(\lambda_{1})\|f\|_{p,\widehat{\Phi}}\|g \|_{q,\Psi}, \end{aligned}$$
(35)
$$\begin{aligned}& \biggl\{ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\beta}^{p\lambda_{2}-n} \biggl[ \int_{\mathbf{R}_{+}^{m}}\frac{|\ln(\|y\|_{\beta}/\|x\|_{\alpha })|^{\eta }f(x)}{(\max\{\|x\|_{\alpha},\|y\|_{\beta}\})^{\lambda}}\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}}< K(\lambda_{1})\|f \|_{p,\widehat{\Phi}}; \end{aligned}$$
(36)

(ii) for \(0< p<1\), or \(p<0\), we still have the equivalent reverses of (35) and (36) with the same best constant factor \(K(\lambda_{1})\).

References

  1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  2. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Book  MATH  Google Scholar 

  3. Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah (2009)

    Google Scholar 

  4. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011)

    Google Scholar 

  5. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  6. Yang, BC: Hilbert-type integral operators: norms and inequalities. In: Pardalos, PM, Georgiev, PG, Srivastava, HM (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities, pp. 771-859. Springer, New York (2012)

    Chapter  Google Scholar 

  7. Yang, BC: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hong, Y: On multiple Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Appl. 2006, Article ID 94960 (2006)

    Google Scholar 

  9. Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005)

    MATH  Google Scholar 

  11. Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, 546829 (2009)

    MathSciNet  Google Scholar 

  14. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, 28582 (2006)

    Google Scholar 

  15. Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005)

    MathSciNet  Google Scholar 

  17. Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007)

    Article  MathSciNet  Google Scholar 

  18. Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011)

    MathSciNet  Google Scholar 

  19. Rassias, MT, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013)

    Article  MathSciNet  Google Scholar 

  20. Rassias, MT, Yang, BC: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yang, BC, Chen, Q: A multidimensional discrete Hilbert-type inequality. J. Math. Inequal. 8(2), 267-277 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)

    Google Scholar 

  24. Kuang, JC: Introduction to Real Analysis. Hunan Education Press, Changsha (1996)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61370186), and 2012 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University (No. 2012KJCX0079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bicheng Yang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. ZH participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Yang, B. A multidimensional Hilbert-type integral inequality. J Inequal Appl 2015, 151 (2015). https://doi.org/10.1186/s13660-015-0673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0673-9

MSC

Keywords