Skip to main content

On Fischer-type determinantal inequalities for accretive-dissipative matrices

Abstract

This paper aims to give some refinements of recent results on Fischer-type determinantal inequalities for accretive-dissipative matrices.

1 Introduction

Let \(M_{n} (C)\) be the set of \(n\times n\) complex matrices. For any \(A\in M_{n} (C)\), the conjugate transpose of A is denoted by \(A^{\ast}\). \(A\in M_{n} (C)\) is accretive-dissipative if it has the Hermitian decomposition

$$ A=B+iC,\qquad B=B^{\ast},\qquad C=C^{\ast}, $$
(1.1)

where both matrices B and C are positive definite. Conformally partition A, B, C as

$$ \left ( \textstyle\begin{array}{@{}c@{\quad}c@{}} {A_{11} } & {A_{12} } \\ {A_{21} } & {A_{22} } \end{array}\displaystyle \right )=\left ( \textstyle\begin{array}{@{}c@{\quad}c@{}} {B_{11} } & {B_{12} } \\ {B_{12}^{\ast}} & {B_{22} } \end{array}\displaystyle \right )+i\left ( \textstyle\begin{array}{@{}c@{\quad}c@{}} {C_{11} } & {C_{12} } \\ {C_{12}^{\ast}} & {C_{22} } \end{array}\displaystyle \right ), $$
(1.2)

such that all diagonal blocks are square. Say k and l (\(k,l>0\) and \(k+l=n\)) the order of \(A_{11}\) and \(A_{22}\), respectively, and let \(m=\min\{ k,l\}\). In this article, we always partition A as in (1.2).

If \(B=I_{n} \) in (1.1), then an accretive-dissipative matrix \(A\in M_{n} (C)\) is called a Buckley matrix.

Let \(A=\bigl({\scriptsize\begin{matrix} {A_{11} } & {A_{12} } \cr {A_{21} } & {A_{22} }\end{matrix}} \bigr)\in M_{n} (C)\). If \(A_{11} \) is invertible, then the Schur complement of \(A_{11} \) in A is denoted by \(A/A_{11} :=A_{22} -A_{21} A_{{11}}^{-1} A_{12} \). For a nonsingular matrix A, its condition number is denoted by \(k(A):=\sqrt{\frac{\lambda_{\mathrm{max}} (A^{\ast}A)}{\lambda _{\mathrm{min}} (A^{\ast}A)}} \), which is the ratio of the largest and the smallest singular value of A. For Hermitian matrices \(B,C\in M_{n} (C)\), we write \(B>(\ge )\, C\) to mean that \(B-C\) is Hermitian positive (semi)definite.

If \(A\in M_{n} (C)\) is positive definite, then the famous Fischer-type determinantal inequality ([1], p.478) states that

$$ \det A\le\det A_{11} \cdot\det A_{22} . $$
(1.3)

If \(A\in M_{n} (C)\) is accretive-dissipative, Ikramov [2] first proved the determinantal inequality

$$ \vert {\det A} \vert \le3^{m}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert . $$
(1.4)

If \(A\in M_{n} (C)\) is accretive-dissipative, Lin [3] proved the determinantal inequality

$$ \vert {\det A} \vert \le2^{\frac{3m}{2}}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert . $$
(1.5)

Recently, Fu and He ([4], Theorem 1) got a stronger result than (1.5) as follows.

Let \(A\in M_{n} (C)\) be accretive-dissipative and partitioned as in (1.2). Then

$$ \vert {\det A} \vert \le2^{\frac{m}{2}} \biggl[ {1+ \biggl( { \frac {1-k}{1+k}} \biggr)^{2}} \biggr]^{m}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} }\vert , $$
(1.6)

where \(k=\max(k(B),k(C))\).

For Buckley matrices, Ikramov [2] obtained the stronger bound

$$ \vert {\det A} \vert \le\biggl(\frac{1+\sqrt{17} }{4} \biggr)^{m}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert . $$
(1.7)

In this paper, we will give refinements of (1.6) and (1.7) in Section 2. Other related studies of the Fischer-type determinantal inequalities for accretive-dissipative matrices can be found in [5–7].

2 Main results

We begin this section with the following lemmas.

Lemma 1

([8], Property 6)

Let \(A\in M_{n} (C)\) be accretive-dissipative and partitioned as in (1.2). Then \(A/A_{11}\) is also accretive-dissipative.

Lemma 2

([2], Lemma 1)

Let \(A\in M_{n} (C)\) be accretive-dissipative as in (1.1). Then

$$A^{-1}=E-iF, \qquad E=\bigl(B+CB^{-1}C\bigr)^{-1},\qquad F= \bigl(C+BC^{-1}B\bigr)^{-1}. $$

Lemma 3

([9], Lemma 3.2)

Let \(B,C\in M_{n} (C)\) be Hermitian and assume B is positive definite. Then

$$B+CB^{-1}C\ge2C. $$

Lemma 4

([10], (6))

Let \(B=\bigl( {\scriptsize\begin{matrix} {B_{11} } & {B_{12} }\cr {B_{12}^{\ast}} & {B_{22} }\end{matrix}} \bigr)\) be Hermitian positive definite. Then

$$B_{12}^{\ast}B_{11}^{-1} B_{12} \le \biggl( {\frac{1-k(B)}{1+k(B)}} \biggr)^{2}B_{22} . $$

Lemma 5

([3], Lemma 6)

Let \(B,C\in M_{n} (C)\) be positive semidefinite. Then

$$\bigl\vert {\det(B+iC)} \bigr\vert \le\det(B+C). $$

Lemma 6

([11], (1.2))

Let \(a,b>0\). Then

$$\biggl[1+\frac{(\ln a-\ln b)^{2}}{8}\biggr]\sqrt{ab} \le\frac{a+b}{2}. $$

Lemma 7

Let \(B,C\in M_{n} (C)\) be positive definite. Then

$$\det(B+C)\le r^{n}\bigl\vert {\det(B+iC)} \bigr\vert , $$

where \(r= \displaystyle{\max_{1\le j\le n}} \textstyle{\{\sqrt{1+\frac{2}{2+(\ln \lambda_{j} )^{2}}} \}}\), \(\lambda_{j} \) are the eigenvalues of \(B^{-1/2}CB^{-1/2}\), and \(B^{1/2}\) means the unique positive definite square root of B.

Proof

Letting \(a=\lambda_{j} \), \(b=\frac{1}{a} \) in Lemma 6 gives \(1+\lambda_{j}\le\sqrt{1+\frac{2}{2+(\ln\lambda_{j})^{2}}} \vert {1+i\lambda_{j} } \vert \), \(j = 1, \ldots,n\). Then

$$\begin{aligned} \det(B+C) =& \det B\cdot\det\bigl(I+B^{-1/2}CB^{-1/2}\bigr) \\ =& \det B\cdot\prod_{j=1}^{n} {(1+ \lambda_{j} )} \\ \le& \det B\cdot\prod_{j=1}^{n} {\biggl( \sqrt{1+\frac{2}{2+(\ln\lambda_{j} )^{2}}} \vert {1+i\lambda_{j} } \vert \biggr)} \\ \le& \det B\cdot\prod_{j=1}^{n} {\bigl(r \vert {1+i\lambda_{j} } \vert \bigr)} \\ =& r^{n}\det B\cdot\bigl\vert {\det\bigl(I+iB^{-1/2}CB^{-1/2} \bigr)} \bigr\vert \\ =& r^{n}\bigl\vert {\det(B+iC)} \bigr\vert . \end{aligned}$$

This completes the proof. □

Theorem 1

Let \(A\in M_{n} (C)\) be accretive-dissipative and partitioned as in (1.2). Then

$$ \vert {\det A} \vert \le \biggl[ {1+ \biggl( { \frac{1-k}{1+k}} \biggr)^{2}} \biggr]^{m}r^{m} \vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert , $$
(2.1)

where \(r= \displaystyle{\max_{1\le j\le n}} \textstyle{\{\sqrt{1+\frac{2}{2+(\ln \lambda_{j} )^{2}}} \}}\), \(\lambda_{j} \) are the eigenvalues of \(B^{-1/2}CB^{-1/2}\), \(B^{1/2}\) means the unique positive definite square root of B, and \(k=\max(k(B),k(C))\).

Proof

By Lemma 2 and Lemma 3, we have

$$\begin{aligned} A/A_{11} =& A_{22} -A_{21} A_{11}^{-1} A_{12} \\ =& B_{22} +iC_{22} -\bigl(B_{12}^{\ast}+iC_{12}^{\ast}\bigr) (B_{11} +iC_{11} )^{-1}(B_{12} +iC_{12} ) \\ =& B_{22} +iC_{22} -\bigl(B_{12}^{\ast}+iC_{12}^{\ast}\bigr) (E_{k} -iF_{k} ) (B_{12} +iC_{12}) \end{aligned}$$

with

$$ E_{k} =\bigl(B_{11} +C_{11} B_{11}^{-1} C_{11} \bigr)^{-1}\le \frac {1}{2}C_{11}^{-1} , \qquad F_{k} = \bigl(C_{11} +B_{11} C_{11}^{-1} B_{11} \bigr)^{-1}\le\frac {1}{2}B_{11}^{-1} . $$
(2.2)

Set \(A/A_{11} =R+iS\) with \(R=R^{\ast}\) and \(S=S^{\ast}\). By Lemma 1, we obtain

$$\begin{aligned}& R=B_{22} -B_{12}^{\ast}E_{k} B_{12} +C_{12}^{\ast}E_{k} C_{12} -B_{12}^{\ast}F_{k} C_{12} -C_{12}^{\ast}F_{k} B_{12} , \\& S=C_{22} +B_{12}^{\ast}F_{k} B_{12} -C_{12}^{\ast}F_{k} C_{12} -C_{12}^{\ast}E_{k} B_{12} -B_{12}^{\ast}E_{k} C_{12} . \end{aligned}$$

It can be proved that

$$\begin{aligned}& \pm\bigl(B_{12}^{\ast}F_{k} C_{12} +C_{12}^{\ast}F_{k} B_{12} \bigr)\le B_{12}^{\ast}F_{k} B_{12} +C_{12}^{\ast}F_{k} C_{12} , \\& \pm\bigl(C_{12}^{\ast}E_{k} B_{12} +B_{12}^{\ast}E_{k} C_{12} \bigr)\le C_{12}^{\ast}E_{k} C_{12} +B_{12}^{\ast}E_{k} B_{12} . \end{aligned}$$

Thus,

$$ R+S\le B_{22} +2B_{12}^{\ast}F_{k} B_{12} +C_{22} +2C_{12}^{\ast}E_{k} C_{12} . $$
(2.3)

As B, C are positive definite, by Lemma 4, we have

$$ B_{12}^{\ast}B_{11}^{-1} B_{12} \le \biggl( {\frac{1-k(B)}{1+k(B)}} \biggr)^{2}B_{22} , \qquad C_{12}^{\ast}C_{11}^{-1} C_{12} \le \biggl( {\frac{1-k(C)}{1+k(C)}} \biggr)^{2}C_{22} . $$
(2.4)

Without loss of generality, we assume \(m=l\), then

$$\begin{aligned} \bigl\vert {\det(A/A_{11} )} \bigr\vert =& \bigl\vert { \det(R+iS)} \bigr\vert \\ \le& \det(R+S) \quad (\mbox{by Lemma 5}) \\ \le& \det\bigl(B_{22} +2B_{12}^{\ast}F_{k} B_{12} +C_{22} +2C_{12}^{\ast}E_{k} C_{12}\bigr) \quad (\mbox{by (2.3)}) \\ \le& \det\bigl(B_{22} +B_{12}^{\ast}B_{11}^{-1} B_{12} +C_{22} +C_{12}^{\ast}C_{11}^{-1} C_{12} \bigr) \quad (\mbox{by (2.2)}) \\ \le& \det \biggl\{ { \biggl[ {1+ \biggl( {\frac{1-k(B)}{1+k(B)}} \biggr)^{2}} \biggr]B_{22} + \biggl[ {1+ \biggl( { \frac{1-k(C)}{1+k(C)}} \biggr)^{2}} \biggr]C_{22} } \biggr\} \quad (\mbox{by (2.4)}) \\ \le& \biggl[ {1+ \biggl( {\frac{1-k}{1+k}} \biggr)^{2}} \biggr]^{m}\det ( {B_{22} +C_{22} } ) \\ \le& \biggl[ {1+ \biggl( {\frac{1-k}{1+k}} \biggr)^{2}} \biggr]^{m}r^{m}\bigl\vert {\det ( {B_{22} +iC_{22} } )} \bigr\vert \quad (\mbox{by Lemma 7}) \\ =& \biggl[ {1+ \biggl( {\frac{1-k}{1+k}} \biggr)^{2}} \biggr]^{m}r^{m}\vert {\det A_{22} } \vert , \end{aligned}$$

where \(k=\max(k(B),k(C))\).

The proof is completed by noting \(\vert {\det A} \vert =\vert {\det A_{11} } \vert \cdot \vert {\det(A/A_{11} )} \vert \). □

Remark 1

Because of \(r\le\sqrt{2}\), inequality (2.1) is a refinement of inequality (1.6).

Theorem 2

Let \(A\in M_{n} (C)\) be accretive-dissipative and partitioned as in (1.2) with \(B_{12} =0\). Then

$$ \vert {\det A} \vert \le \biggl( {\frac{\sqrt{17} +1}{4}} \biggr)^{m}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert . $$
(2.5)

Proof

Compute

$$\begin{aligned} \vert {\det A} \vert =& \bigl\vert {\det(B+iC)} \bigr\vert \\ =& \det B\cdot\bigl\vert {\det\bigl(I+iB^{-1/2}CB^{-1/2}\bigr)} \bigr\vert \\ \le& \biggl( {\frac{\sqrt{17} +1}{4}} \biggr)^{m}\det B\cdot\bigl\vert {\det\bigl(I_{k} +iB_{{11}}^{-1/2} C_{11} B_{{11}}^{-1/2} \bigr)} \bigr\vert \\ &{}\cdot\bigl\vert {\det \bigl(I_{l} +iB_{{22}}^{-1/2} C_{22} B_{{22}}^{-1/2} \bigr)} \bigr\vert \quad (\mbox{by (1.7)}) \\ =& \biggl( {\frac{\sqrt{17} +1}{4}} \biggr)^{m}\bigl\vert { \det(B_{11} +iC_{11} )} \bigr\vert \cdot\bigl\vert { \det(B_{22} +iC_{22} )} \bigr\vert \\ =& \biggl( {\frac{\sqrt{17} +1}{4}} \biggr)^{m}\vert {\det A_{11} } \vert \cdot \vert {\det A_{22} } \vert . \end{aligned}$$

This completes the proof. □

Remark 2

It is clear that inequality (2.5) is an extension of inequality (1.7).

References

  1. Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, London (1985)

    Book  MATH  Google Scholar 

  2. Ikramov, KD: Determinantal inequalities for accretive-dissipative matrices. J. Math. Sci. (N.Y.) 121, 2458-2464 (2004)

    Article  MathSciNet  Google Scholar 

  3. Lin, M: Fischer type determinantal inequalities for accretive-dissipative matrices. Linear Algebra Appl. 438, 2808-2812 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fu, X, He, C: On some Fischer-type determinantal inequalities for accretive-dissipative matrices. J. Inequal. Appl. 2013, 316 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lin, M: Reversed determinantal inequalities for accretive-dissipative matrices. Math. Inequal. Appl. 12, 955-958 (2012)

    Google Scholar 

  6. Drury, SW, Lin, M: Reversed Fischer determinantal inequalities. Linear Multilinear Algebra 62, 1069-1075 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yang, J: Some determinantal inequalities for accretive-dissipative matrices. J. Inequal. Appl. 2013, 512 (2013)

    Article  Google Scholar 

  8. George, A, Ikramov, KD: On the properties of accretive-dissipative matrices. Math. Notes 77, 767-776 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhan, X: Computing the extremal positive definite solutions of a matrix equation. SIAM J. Sci. Comput. 17, 1167-1174 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, F: Equivalence of the Wielandt inequality and the Kantorovich inequality. Linear Multilinear Algebra 48, 275-279 (2001)

    Article  MATH  Google Scholar 

  11. Zou, L, Jiang, Y: Improved arithmetic-geometric mean inequality and its application. J. Math. Inequal. 9, 107-111 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their heartfelt thanks to the referees for their detailed and helpful suggestions for revising the manuscript. At the same time, we are grateful to Prof. Xiaorong Gan for her fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xue.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Hu, X. On Fischer-type determinantal inequalities for accretive-dissipative matrices. J Inequal Appl 2015, 194 (2015). https://doi.org/10.1186/s13660-015-0721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0721-5

MSC

Keywords