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1. Introduction

Let B be the open unit ball in Cn, ∂B = S its boundary, D the unit disk in C, dV the
normalized Lebesgue volume measure on B, dσ the normalized surface measure on S,
and H(B) the class of all functions analytic on B.

An analytic self-map ϕ : B→B induces the composition operator Cϕ on H(B), defined
by Cϕ( f )(z) = f (ϕ(z)) for f ∈ H(B). It is interesting to provide a functional theoretic
characterization of when ϕ induces a bounded or compact composition operator on var-
ious spaces. The book [1] contains a plenty of information on this topic. Let u be a fixed
analytic function on the open unit ball. Define a linear operator uCϕ, called a weighted
composition operator, by uCϕ f = u·( f ◦ϕ), where f is an analytic function on B. We can
regard this operator as a generalization of the multiplication operatorMu( f )= u f and a
composition operator.

A positive continuous function φ on [0,1) is called normal if there exist numbers s
and t, 0 < s < t, such that φ(r)/(1− r)s decreasingly converges to zero and φ(r)/(1− r)t

increasingly tends to∞, as r→1− (see, e.g., [2]).
For 0 < p <∞, 0 < q <∞, and a normal function φ, let H(p,q,φ) denote the space of

all f ∈H(B) such that
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‖ f ‖H(p,q,φ) =
(∫ 1

0
M

p
q ( f ,r)

φp(r)
1− r

dr

)1/p

<∞, (1.1)

whereMq( f ,r)= (
∫
S | f (rζ)|qdσ(ζ))1/q, 0≤ r < 1.

For 1≤ p <∞,H(p,q,φ), equippedwith the norm ‖·‖H(p,q,φ), is a Banach space.When
0 < p < 1, ‖ f ‖H(p,q,φ) is a quasinorm on H(p,q,φ), and H(p,q,φ) is a Frechet space but
not a Banach space. Note that if 0 < p = q <∞, then H(p, p,φ) becomes a Bergman-type
space, and if φ(r) = (1− r)(γ+1)/p, γ > −1, then H(p, p,φ) is equivalent to the classical
weighted Bergman space A

p
γ (B).

For α ≥ 0, we define the weighted space H∞
α (B) = H∞

α as the subspace of H(B) con-
sisting of all f such that ‖ f ‖H∞

α
= supz∈B(1−|z|2)α| f (z)| <∞. Note that for α= 0, H∞

α

becomes the space of all bounded analytic functions H∞(B). We also define a little ver-
sion of H∞

α , denoted by H∞
α,0(B), as the subset of H

∞
α consisting of all f ∈H(B) such that

lim|z|→1−0(1−|z|2)α| f (z)| = 0. It is easy to see that H∞
α,0 is a subspace of H

∞
α . Note also

that for α= 0, in view of the maximum modulus theorem, we obtain H∞
0,0 = {0}.

For the case of the unit disk, in [3], Ohno has characterized the boundedness and
compactness of weighted composition operators between H∞ and the Bloch space �
and the little Bloch space �0. In [4], Li and Stević extend the main results in [3] in the
settings of the unit ball. In [5], A. K. Sharma and S. D. Sharma studied the boundedness
and compactness of uCϕ :H∞

α (D)→A
p
γ (D) for the case of p ≥ 1. For related results in the

setting of the unit ball, see, for example, [1, 6, 7] and the references therein.
Here, we study the weighted composition operators between the mixed norm spaces

H(p,q,φ) and H∞
α (or H∞

α,0). As corollaries, we obtain the complete characterizations of
the boundedness and compactness of composition operators between Bergman spaces
and H∞.

In this paper, positive constants are denoted byC; they may differ from one occurrence
to the next. The notation a	 bmeans that there is a positive constant C such that a≤ Cb.
If both a	 b and b 	 a hold, then one says that a
 b.

2. Auxiliary results

In this section, we give some auxiliary results which will be used in proving the main
results of the paper. They are incorporated in the lemmas which follow.

Lemma 2.1. Assume that f ∈H(p,q,φ)(B). Then there is a positive constantC independent
of f such that

∣∣ f (z)∣∣≤ C
‖ f ‖H(p,q,φ)(

1−|z|)n/qφ(|z|) . (2.1)
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Proof. By the monotonicity of the integral means, the following asymptotic relations:

φ
(|z|)
 φ

(|w|), w ∈ B
(
z,3
(
1−|z|)/4),

1− r 
 1−|z|, r ∈ [(1+ |z|)/2,(3+ |z|)/4], (2.2)

and [8, Theorem 7.2.5], we have

‖ f ‖pH(p,q,φ) ≥
∫ (3+|z|)/4

(1+|z|)/2
M

p
q ( f ,r)

φp(r)
1− r

dr ≥M
p
q
(
f , (1+ |z|)/2)

∫ (3+|z|)/4

(1+|z|)/2
φp(r)
1− r

dr

≥ C
(
1−|z|)pn/qφp

(|z|)∣∣ f (z)∣∣p,
(2.3)

from which the result follows. �

Corollary 2.2. Assume that f ∈H(p,q,φ)(B). Then

lim
|z|→1−0

(
1−|z|)n/qφ(|z|)∣∣ f (z)∣∣= 0. (2.4)

Proof. It can be proved in a standard way (see, e.g., [9, Theorem 2]) that

lim
r→1−0

∥∥ f − fr
∥∥
H(p,q,φ) = 0, (2.5)

where fr(z)= f (rz), r ∈ (0,1). Also since f ∈H(p,q,φ), by the monotonicity of the in-
tegral means, we have fr ∈H(p,q,φ), for every r ∈ (0,1).

From this and by inequality (2.1), we have that for each r ∈ (0,1),

(
1−|z|)n/qφ(|z|)∣∣ f (z)∣∣≤ ∣∣ fr(z)∣∣(1−|z|)n/qφ(|z|)+C

∥∥ f − fr
∥∥
H(p,q,φ). (2.6)

From (2.5), we have that for every ε > 0 there is an r0 ∈ (0,1) such that

∥∥ f − fr
∥∥
H(p,q,φ) < ε, r ∈ [r0,1). (2.7)

If we take r = r0 in (2.6) and employ (2.7) and the normality of φ, the result follows. �

Lemma 2.3. For β >−1 andm> 1+β, one has

∫ 1

0

(1− r)β

(1− ρr)m
dr ≤ C(1− ρ)1+β−m, 0 < ρ < 1. (2.8)

The following criterion for compactness is followed by standard arguments.

Lemma 2.4. The operator uCϕ :H(p,q,φ)→H∞
α (orH∞

α →H(p,q,φ)) is compact if and only
if for any bounded sequence ( fk)k∈N in H(p,q,φ) (corresp. H∞

α ), which converges to zero
uniformly on compact subsets of B as k→∞, one has ‖uCϕ fk‖H∞

α
→0 as k→∞ (corresp.

‖uCϕ fk‖H(p,q,φ)→0 as k→∞).

In order to investigate the compactness of the operator uCϕ :H(p,q,φ)→H∞
α,0, we need

the following lemma which can be proved similar to [10, Lemma 1].
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Lemma 2.5. Assume that K ⊂H∞
α,0 is a closed bounded set. Then it is compact if and only if

lim|z|→1−0 sup f∈K (1−|z|2)α| f (z)| = 0.

3. The boundedness and compactness of uCϕ :H(p,q,φ)→H∞
α

In this section, we characterize the boundedness and compactness of the weighted com-
position operator uCϕ :H(p,q,φ)→H∞

α .

Theorem 3.1. Suppose that ϕ is an analytic self-map of the unit ball, u∈H(B), 0 < p, q <
∞, and φ is normal on [0,1). Then, uCϕ :H(p,q,φ)→H∞

α is bounded if and only if

sup
z∈B

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q <∞. (3.1)

Proof. Suppose that the condition (3.1) holds. Then for arbitrary z∈B and f ∈H(p,q,φ),
by Lemma 2.1 we have

(
1−|z|2)α∣∣(uCϕ f

)
(z)
∣∣≤ C

(
1−|z|2)α|u(z)|(

1−∣∣ϕ(z)∣∣2)n/qφ(∣∣ϕ(z)∣∣)‖ f ‖H(p,q,φ). (3.2)

Taking the supremum in (3.2) over B and then using condition (3.1), we obtain that the
operator uCϕ :H(p,q,φ)→H∞

α is bounded.
Conversely, suppose that uCϕ :H(p,q,φ)→H∞

α is bounded. For fixed w ∈ B, take

fw(z)=
(
1−|w|2)t+1

φ
(|w|)(1−〈z,w〉)n/q+t+1 . (3.3)

By [8, Lemma 1.4.10], since φ is normal, and by Lemma 2.3, we obtain

∥∥ fw∥∥pH(p,q,φ)

=
∫ 1

0
M

p
q
(
fw,r

)φp(r)
1− r

dr ≤ C
∫ 1

0

(
1−|w|2)p(t+1)

φp
(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr

≤ C

⎛
⎝∫ |w|

0

(
1−|w|2)p(t+1)

φp
(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr+
∫ 1

|w|

(
1−|w|2)p(t+1)

φp
(|w|)(1− r|w|)p(t+1)

φp(r)
1− r

dr

⎞
⎠

≤ C
(
1−|w|2)p

∫ |w|
0

(1− r)pt−1(
1− r|w|)p(t+1) dr +C

(
1−|w|2)p

∫ 1

|w|
(1− r)ps−1(

1− r|w|)p(t+1) dr ≤ C.

(3.4)

Therefore fw ∈H(p,q,φ), and moreover supw∈B‖ fw‖H(p,q,φ) ≤ C. Hence we have

(
1−|z|2)α∣∣u(z) fw(ϕ(z))∣∣≤ ∥∥uCϕ fw

∥∥
H∞

α
≤ C

∥∥ fw∥∥H(p,q,φ)

∥∥uCϕ

∥∥≤ C
∥∥uCϕ

∥∥ (3.5)

for every z ∈ B, and w ∈ B. From this with w = ϕ(z), (3.1) follows. �



Stevo Stević 5

Theorem 3.2. Suppose that ϕ is an analytic self-map of the unit ball, u∈H(B), 0 < p, q <
∞, φ is normal on [0,1), and uCϕ :H(p,q,φ)→H∞

α is bounded. Then uCϕ :H(p,q,φ)→H∞
α

is compact if and only if

lim
|ϕ(z)|→1

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q = 0. (3.6)

Proof. First assume that condition (3.6) holds. Assume that ( fk)k∈N is a sequence in
H(p,q,φ) with supk∈N‖ fk‖H(p,q,φ) ≤ L and suppose that fk→0 uniformly on compact
subsets of B as k→∞.We prove that ‖uCϕ fk‖H∞

α
→0 as k→∞.

First note that since uCϕ(H(p,q,φ))⊆H∞
α , for f ≡ 1∈H(p,q,φ), we obtain uCϕ(1)=

u∈H∞
α . From (3.6), we have that for every ε > 0, there is a constant δ ∈ (0,1) such that

δ < |ϕ(z)| < 1 implies that

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q < ε/L. (3.7)

Let δB = {w ∈ B : |w| ≤ δ}. From (3.7), since φ is normal, and using the estimate in
Lemma 2.1, we have that

∥∥uCϕ fk
∥∥
H∞

α

≤ sup
ϕ(z)∈δB

(
1−|z|2)α∣∣u(z) fk(ϕ(z))∣∣+ sup

δ<|ϕ(z)|<1

(
1−|z|2)α∣∣u(z) fk(ϕ(z))∣∣

≤ ‖u‖H∞
α
sup
w∈δB

∣∣ fk(w)∣∣+ sup
δ<|ϕ(z)|<1

C
(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q

∥∥ fk∥∥H(p,q,φ)

≤ ‖u‖H∞
α
sup
w∈δB

| fk(w)|+Cε.

(3.8)

Since δB is compact and by the assumption, it follows that limk→∞ supw∈δB| fk(w)| = 0.
Using this fact and letting k→∞ in (3.8), we obtain that limsupk→∞‖uCϕ fk‖H∞

α
≤ Cε.

Since ε is an arbitrary positive number, it follows that the last limit is equal to zero. There-
fore by Lemma 2.4, the operator uCϕ :H(p,q,φ)→H∞

α is compact.
Conversely, suppose that uCϕ :H(p,q,φ)→H∞

α is compact. Let (zk)k∈N be a sequence
in B such that |ϕ(zk)|→1 as k→∞. If such a sequence does not exist, condition (3.6) is
automatically satisfied. Let fk(z)= fϕ(zk)(z), k ∈N, where fw is defined in (3.3). We know
that supk∈N‖ fk‖H(p,q,φ) ≤ C and fk converges to 0 uniformly on compacts of B as k→∞.
Since uCϕ is compact, we have limk→∞‖uCϕ fk‖H∞

α
= 0. From this and since

(
1−|zk|2

)α∣∣u(zk)∣∣
φ
(∣∣ϕ(zk)∣∣)(1−∣∣ϕ(zk)∣∣2)n/q ≤ sup

z∈B

(
1−|z|2)α∣∣u(z)∣∣∣∣ fk(ϕ(z))∣∣= ∥∥uCϕ fk

∥∥
H∞

α
,

(3.9)

condition (3.6) holds, finishing the proof of the theorem. �
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From Theorems 3.1 and 3.2, we easily obtain the following corollaries.

Corollary 3.3. Suppose that ϕ is an analytic self-map of the unit ball, 0 < p, q <∞, and
φ is normal on [0,1). Then the following statements hold true.

(a) The composition operator Cϕ :H(p,q,φ)→H∞
α is bounded if and only if

sup
z∈B

(
1−|z|2)α

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q <∞. (3.10)

(b) If Cϕ :H(p,q,φ)→H∞
α is bounded, then Cϕ :H(p,q,φ)→H∞

α is compact if and only
if

lim
|ϕ(z)|→1

(
1−|z|2)α

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q = 0. (3.11)

Corollary 3.4. Suppose that ϕ is an analytic self-map of the unit ball, u ∈ H(B), and
0 < p <∞. Then the following statements hold true.

(a) uCϕ :Ap→H∞
α is bounded if and only if

sup
z∈B

(
1−|z|2)α∣∣u(z)∣∣(
1−∣∣ϕ(z)∣∣2)(n+1)/p <∞. (3.12)

(b) If uCϕ : Ap→H∞
α is bounded, then uCϕ : Ap→H∞

α is compact if and only if

lim
|ϕ(z)|→1

(
1−|z|2)α∣∣u(z)∣∣(
1−∣∣ϕ(z)∣∣2)(n+1)/p = 0. (3.13)

In particular, Cϕ :Ap→H∞ is bounded if and only if supz∈B|ϕ(z)| < 1.

Recall that the β-Bloch space �β(B) = �β is the space of all f ∈ H(B) such that

‖ f ‖�β = | f (0)|+ supz∈B(1−|z|2)β|� f (z)| <∞, where � f (z)=∑n
j=1zj(∂ f /∂zj)(z) (see

[6]), and the little β-Bloch space �
β
0(B) = �

β
0 is the space of all f ∈ H(B) such that

lim|z|→1(1−|z|2)β|� f (z)| = 0. Using the following well-known asymptotic relationship:
‖ f ‖H∞

α

 ‖ f ‖�α+1 , α > 0, we obtain that the next results hold true.

Corollary 3.5. Suppose that ϕ is an analytic self-map of the unit ball, u ∈ H(B), 0 <
p, q <∞, and φ is normal on [0,1). Then the following statements hold true.

(a) uCϕ :H(p,q,φ)→�β, β > 1, is bounded if and only if

sup
z∈B

(
1−|z|2)β−1∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q <∞. (3.14)

(b) If uCϕ :H(p,q,φ)→�β, β > 1, is bounded, then uCϕ :H(p,q,φ)→�β is compact if
and only if

lim
|ϕ(z)|→1

(
1−|z|2)β−1∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q = 0. (3.15)
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4. The boundedness and compactness of uCϕ :H(p,q,φ)→H∞
α,0

In this section, we study the boundedness and compactness of the operator uCϕ :H(p,q,
φ)→H∞

α,0.

Theorem 4.1. Suppose that ϕ is an analytic self-map of the unit ball, u∈H(B), 0 < p, q <
∞, and φ is normal on [0,1). Then uCϕ :H(p,q,φ)→H∞

α,0 is bounded if and only if condition
(3.1) holds and u∈H∞

α,0.

Proof. First assume that the operator uCϕ :H(p,q,φ)→H∞
α,0 is bounded. Then from the

proof of Theorem 3.1, it follows that (3.1) holds. Clearly uCϕ(1)= u∈H∞
α,0.

Now assume that condition (3.1) holds and u ∈H∞
α,0. Then in view of Theorem 3.1 ,

we have that the operator uCϕ :H(p,q,φ)→H∞
α is bounded. Hence it is enough to prove

that uCϕ( f )∈H∞
α,0 for every f ∈H(p,q,φ).

From (2.4), we have that for every ε > 0 there is a δ ∈ (0,1) such that for δ < |z| < 1,

∣∣ f (z)∣∣ < ε(
1−|z|2)n/qφ(|z|) . (4.1)

On the other hand, since u∈H∞
α,0, for the above chosen ε, there is r ∈ (δ,1) such that

for r < |z| < 1,

(
1−|z|2)α∣∣u(z)∣∣ < ε

(
1− δ2

)n/q
φ(δ). (4.2)

From (4.1), we have that

(
1−|z|2)α∣∣u(z)∣∣∣∣ f (ϕ(z))∣∣≤ ε

(
1−|z|2)α∣∣u(z)∣∣(

1−∣∣ϕ(z)∣∣2)n/qφ(∣∣ϕ(z)∣∣) , (4.3)

for r < |z| < 1 and δ < |ϕ(z)| < 1.
On the other hand, combining (3.2) and (4.2), and using the fact that φ is normal, we

have

(
1−|z|2)α∣∣(uCϕ f

)
(z)
∣∣≤ C

(
1− δ2

)s(
1−|z|2)α∣∣u(z)∣∣(

1−∣∣ϕ(z)∣∣2)n/q+sφ(δ) ‖ f ‖H(p,q,φ) ≤ Cε‖ f ‖H(p,q,φ),

(4.4)

when r < |z| < 1 and |ϕ(z)| ≤ δ. From (3.1), (4.3), and (4.4), the result follows. �

Theorem 4.2. Suppose that ϕ is an analytic self-map of the unit ball, u∈H(B), 0 < p, q <
∞, φ is normal on [0,1), and uCϕ :H(p,q,φ)→H∞

α is bounded. Then uCϕ :H(p,q,φ)→H∞
α,0

is compact if and only if

lim
|z|→1

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q = 0. (4.5)

Proof. Taking supremum in (3.2) over the unit ball in H(p,q,φ), using (4.5), and apply-
ing Lemma 2.5, we obtain that uCϕ :H(p,q,φ)→H∞

α,0 is compact.
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Assume now that uCϕ : H(p,q,φ)→H∞
α,0 is compact. Then by Theorem 3.2, we have

that condition (3.6) holds, which implies that for every ε > 0 there is an r ∈ (0,1) such
that for r < |ϕ(z)| < 1,

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q < ε. (4.6)

On the other hand, we know that u ∈ H∞
α,0. Hence there is a σ ∈ (0,1) such that for

σ < |z| < 1,

(
1−|z|2)α∣∣u(z)∣∣ < ε

(
1− r2

)n/q
φ(r). (4.7)

Hence if |ϕ(z)| ≤ r and σ < |z| < 1, then from (4.7) and since φ is normal, we get

(
1−|z|2)α∣∣u(z)∣∣

φ
(∣∣ϕ(z)∣∣)(1−∣∣ϕ(z)∣∣2)n/q <

(
1− r2

)s(
1−|z|2)α∣∣u(z)∣∣

φ(r)
(
1−∣∣ϕ(z)∣∣2)n/q+s < ε. (4.8)

From (4.8), and since for σ < |z| < 1 and r < |ϕ(z)| < 1, (4.6) holds, we get (4.5). �

5. The boundedness and compactness of uCϕ :H∞
α →H(p,q,φ)

In this section, we characterize the boundedness and compactness of the operator uCϕ :
H∞

α →H(p,q,φ).

Theorem 5.1. Suppose that ϕ is an analytic self-map of the unit ball, u∈H(B), 0 < p, q <
∞, and φ is normal on [0,1). Then uCϕ : H∞→H(p,q,φ) is bounded if and only if uCϕ :
H∞→H(p,q,φ) is compact if and only if u∈H(p,q,φ).

Proof. First note that every compact operator is bounded. Second, since f (z)≡ 1∈H∞,
from the boundedness of uCϕ :H∞→H(p,q,φ), we have uCϕ(1)= u∈H(p,q,φ). Hence
we should only prove that u ∈H(p,q,φ) implies the compactness of the operator uCϕ :
H∞→H(p,q,φ). To this end, note that ‖uCϕ( f )‖H(p,q,φ) ≤ ‖ f ‖∞‖u‖H(p,q,φ), for every f ∈
H∞, which implies the boundedness of the operator uCϕ :H∞→H(p,q,φ).

Now assume that ( fk)k∈N is a sequence in H∞ such that supk∈N‖ fk‖∞ ≤ L <∞ and
fk→0 uniformly on compacts of B. We show that limk→∞‖uCϕ( fk)‖H(p,q,φ) = 0. Let

Ik(r)=
(∫

S

∣∣u(rζ) fk(ϕ(rζ))∣∣qdσ(ζ)
)p/q

, k ∈N. (5.1)

Then since ϕ ∈ H(B), we have that the set ϕ(rS) is compact for every r ∈ [0,1). Hence
u(rζ) fk(ϕ(rζ))→0 uniformly on S, and consequently limk→∞Ik(r)= 0, for every r ∈ [0,1).
On the other hand, it is clear that Ik(r) ≤ LpM

p
q (u,r) = g(r), r ∈ [0,1), and since u ∈

H(p,q,φ), it follows that g ∈ �1([0,1),(φp(r)/(1 − r))dr). Hence by employing the
Lebesgue dominated convergence theorem, we have

lim
k→∞

∥∥uCϕ
(
fk
)∥∥p

H(p,q,φ) = lim
k→∞

∫ 1

0
Ik(r)

φp(r)
1− r

dr =
∫ 1

0
lim
k→∞

Ik(r)
φp(r)
1− r

dr = 0. (5.2)

By Lemma 2.4, the compactness of uCϕ :H∞→H(p,q,φ) follows. �
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The case α > 0 is somewhat complicated and we do not have an equivalent condition
for the boundedness of uCϕ :H∞

α →H(p,q,φ) at the moment. Using the argument in the
proof of Theorem 5.1 and the family of test functions fw(z) = (1−〈z,w〉)−α, w ∈ B, we
get the following result. We omit the details of the proof.

Theorem 5.2. Suppose that ϕ is an analytic self-map of the unit ball, u ∈ H(B), 0 < α,
p, q <∞, and φ is normal on [0,1). Then the following statements hold true.

(a) If uCϕ :H∞
α →H(p,q,φ) is bounded, then

sup
w∈B

∫ 1

0

(∫
S

∣∣u(rζ)∣∣q∣∣1− 〈ϕ(rζ),w〉∣∣qα dσ(ζ)
)p/q

φp(r)
1− r

dr <∞. (5.3)

(b) The operator uCϕ :H∞
α →H(p,q,φ) is compact if

∫ 1

0

(∫
S

∣∣u(rζ)∣∣q(
1−∣∣ϕ(rζ)∣∣2)qα dσ(ζ)

)p/q
φp(r)
1− r

dr <∞. (5.4)
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