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1. Introduction

The following integral inequality which was first proved by Ostrowski in 1938 has received
considerable attention from many researchers [1–9].

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable in (a, b) and its
derivative f ′ : (a, b) → R is bounded on (a, b), that is, ‖f ′‖∞ := supt∈(a,b)|f ′(x)| < ∞. Then
for any x ∈ [a, b], the following inequality holds:

∣
∣
∣
∣
f(x) − 1

b − a

∫b

a

f(t)dt
∣
∣
∣
∣
≤
(

1
4
+
(x − (a + b)/2)2

(b − a)2

)

(b − a)‖f ′‖∞. (1.1)

The inequality is sharp in the sense that the constant 1/4 cannot be replaced by a smaller one.

In 1988, Hilger [10] developed the theory of time scales as a theory capable to contain
both difference and differential calculus in a consistent way. Since then, many authors have



2 Journal of Inequalities and Applications

studied the theory of certain integral inequalities on time scales. For example, we refer
the reader to [11–18]. In [15], Bohner and Matthews established the following so-called
Ostrowski inequality on time scales.

Theorem 1.2 (see [15, Theorem 3.5]). Let a, b, x, t ∈ T, a < b, and f : [a, b] → R be differentiable.
Then

∣
∣
∣
∣

∫b

a

fσ(t)Δt − f(x)(b − a)
∣
∣
∣
∣
≤ M(h2(x, a) + h2(x, b)), (1.2)

where hk(·, ·) is defined by Definition 2.9 below and M = supa<x<b|fΔ(x)|. This inequality is sharp
in the sense that the right-hand side of (1.1) cannot be replaced by a smaller one.

Liu andNgô then generalize the above Ostrowski inequality on time scales for k points
x1, x2, . . . , xk in [19]. They also extended the result by considering functions whose second
derivatives are bounded in [20]. They obtained the following theorem.

Theorem 1.3. Let a, b, x, t ∈ T, a < b, and f : [a, b] → R be a twice differentiable function on
(a, b) and fΔΔ : (a, b) → R bounded, that is,M := supa<t<b|fΔΔ(x)| < ∞. Then

∣
∣
∣
∣

∫b

a

fσ(t)Δt − fσ(x)(b − a) + (h2(x, a) − h2(x, b))fΔ(x)
∣
∣
∣
∣
≤ M(h3(x, a) − h3(x, b)). (1.3)

Theorem 1.3 may be thought of as a perturbed version of Theorem 1.2. In the present
paper we will first derive a perturbed Ostrowski-type inequality on time scales for k
points x1, x2, . . . , xk for functions whose second derivatives are bounded and then unify
corresponding continuous and discrete versions. We also point out some particular perturbed
integral inequalities on time scales for functions whose second derivatives are bounded as
special cases.

2. Time scales essentials

In this section, we briefly introduce the time scales theory and refer the reader to Hilger [10]
and the books [21–23] for further details (see also [19, 20]).

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real numbers.

Definition 2.2. For t ∈ T, one defines the forward jump operator σ : T → T by σ(t) = inf{s ∈ T :
s > t},while the backward jump operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}.

In this definition, we put inf ∅ = sup T (i.e., σ(t) = t if T has a maximum t) and
sup ∅ = inf T (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set. If σ(t) > t,
then we say that t is right-scattered, while if ρ(t) < t, then we say that t is left-scattered. Points
that are right-scattered and left-scattered at the same time are called isolated. If σ(t) = t and
t < sup T, then t is called right dense, and if ρ(t) = t and t > inf T, then t is called left dense.
Points that are both right dense and left dense are called dense.
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Definition 2.3. Let t ∈ T, then two mappings μ, ν : T → [0,+∞) satisfying

μ(t) := σ(t) − t, ν(t) := t − ρ(t) (2.1)

are called the graininess functions.

We now introduce the set T
κ which is derived from the time scales T as follows. If T

has a left-scattered maximum t, then T
κ := T − {t}, otherwise T

κ := T. Furthermore, for a
function f : T → R, we define the function fσ : T → R by fσ(t) = f(σ(t)) for all t ∈ T.

Definition 2.4. Let f : T → R be a function on time scales. Then for t ∈ T
κ, one defines fΔ(t)

to be the number, if one exists, such that for all ε > 0 there is a neighborhood U of t such that
for all s ∈ U

∣
∣fσ(t) − f(s) − fΔ(t)(σ(t) − s)

∣
∣ ≤ ε|σ(t) − s|. (2.2)

We say that f is Δ-differentiable on T
κ provided fΔ(t) exists for all t ∈ T

κ. We talk about the
second derivative fΔΔ provided fΔ is differentiable on T

κ2
= (Tκ)κ with derivative fΔΔ =

(fΔ)Δ : T
κ2 → R.

Definition 2.5. A mapping f : T → R is called rd-continuous (denoted by f ∈ Crd) provided
that it satisfies

(1) f is continuous at each right-dense point of T;

(2) the left-sided limit lims→ t−f(s) = f(t−) exists at each left-dense point t of T.

Remark 2.6. It follows from Theorem 1.74 of Bohner and Peterson [21] that every rd-
continuous function has an antiderivative.

Definition 2.7. A function F : T → R is called a Δ-antiderivative of f : T → R provided
FΔ(t) = f(t) holds for all t ∈ T

κ. Then the Δ-integral of f is defined by

∫b

a

f(t)Δt = F(b) − F(a). (2.3)

Proposition 2.8. Let f, g be rd-continuous, a, b, c ∈ T, and α, β ∈ R. Then

(1)
∫b

a(αf(t) + βg(t))Δt = α
∫b

a f(t)Δt + β
∫b

a g(t)Δt,

(2)
∫b

a f(t)Δt = − ∫a

b f(t)Δt,

(3)
∫b

a f(t)Δt =
∫c

a f(t)Δt +
∫b

c f(t)Δt,

(4)
∫b

a f(t)g
Δ(t)Δt = (fg)(b) − (fg)(a) − ∫b

a f
Δ(t)g(σ(t))Δt,

(5)
∫a

a f(t)Δt = 0,

(6) If f(t) ≥ 0 for all a ≤ t < b then
∫b

a f(t)Δt ≥ 0.
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Definition 2.9. Let hk : T
2 → R, k ∈ N0 be defined by

h0(t, s) = 1 ∀s, t ∈ T (2.4)

and then recursively by

hk+1(t, s) =
∫ t

s

hk(τ, s)Δτ ∀s, t ∈ T. (2.5)

Remark 2.10. It follows from Proposition 2.8(6) that if s ≤ t, then hk+1(t, s) ≥ 0 for all t, s ∈ T

and all k ∈ N.

Remark 2.11. If we let hΔ
k (t, s) denote for each fixed s the derivative of hk(t, s) with respect to

t, then

hΔ
k (t, s) = hk−1(t, s), for k ∈ N, t ∈ T

κ. (2.6)

3. The perturbed Ostrowski inequality on time scales

Our main result reads as follows .

Theorem 3.1. Suppose that

(1) a, b ∈ T, Ik : a = x0 < x1 < · · · < xk−1 < xk = b is a division of the interval [a, b] for
x0, x1, . . . , xk ∈ T;

(2) αi ∈ T (i = 0, . . . , k + 1) is “k + 2” points so that α0 = a, αi ∈ [xi−1, xi] (i = 1, . . . , k) and
αk+1 = b;

(3) f : [a, b] → R is a twice differentiable function on (a, b) and fΔΔ : (a, b) → R is
bounded, that is,M := supa<t<b|fΔΔ(t)| < ∞.

Then

∣
∣
∣
∣
∣

∫b

a

fσ(t)Δt −
k∑

i=0

(αi+1 − αi)fσ(xi) +
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)
)

∣
∣
∣
∣
∣

≤ M
k−1∑

i=0

(h3(xi+1, αi+1) − h3(xi, αi+1)).

(3.1)

To prove Theorem 3.1, we need the following generalized montgomery identity for
twice differentiable function. This is motivated by the ideas of Sofo and Dragomir in [24],
where the continuous version of a perturbed Ostrowski inequality for twice differentiable
mappings was proved.
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Lemma 3.2 (generalized montgomery identity). Under the assumptions of Theorem 3.1,

k∑

i=0

(αi+1 − αi)fσ(xi) =
∫b

a

fσ(t)Δt −
∫b

a

K(t, Ik)fΔΔΔt

+
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)
)

,

(3.2)

where

K(t, Ik) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

h2(t, α1), t ∈ [a, x1),
h2(t, α2), t ∈ [x1, x2),
...

h2(t, αk−1), t ∈ [xk−2, xk−1),
h2(t, αk), t ∈ [xk−1, b].

(3.3)

Proof. Integrating by parts and applying Proposition 2.8(4) , we have

∫b

a

K(t, Ik)fΔΔ(t)Δt

=
k−1∑

i=0

∫xi+1

xi

K(t, Ik)fΔΔ(t)Δt

=
k−1∑

i=0

∫xi+1

xi

h2(t, αi+1)fΔΔ(t)Δt

=
k−1∑

i=0

(∫αi+1

xi

h2(t, αi+1)fΔΔ(t)Δt +
∫xi+1

αi+1

h2(t, αi+1)fΔΔ(t)Δt

)

=
k−1∑

i=0

(

h2(αi+1, αi+1)fΔ(αi+1) − h2(xi, αi+1)fΔ(xi) −
∫αi+1

xi

fΔ(σ(t))hΔ
2 (t, αi+1)Δt

+ h2(xi+1, αi+1)fΔ(xi+1) − h2(αi+1, αi+1)fΔ(αi+1) −
∫xi+1

αi+1

fΔ(σ(t))hΔ
2 (t, αi+1)Δt

)

=
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)

−
∫αi+1

xi

fΔ(σ(t))(t − αi+1)Δt −
∫xi+1

αi+1

fΔ(σ(t))(t − αi+1)Δt

)

=
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi) + fσ(xi)(xi − αi+1)

+
∫αi+1

x1

fσ(t)Δt − fσ(xi+1)(xi+1 − αi+1) +
∫xi+1

αi+1

fσ(t)Δt

)
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=
∫b

a

fσ(t)Δt +
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)
)

+ fσ(a)(a − α1)

+
k−1∑

i=1

fσ(xi)(xi − αi+1) − fσ(b)(b − αk) −
k−2∑

i=0

fσ(xi+1)(xi+1 − αi+1)

=
∫b

a

fσ(t)Δt −
k∑

i=0

fσ(xi)(αi+1 − αi) +
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)
)

,

(3.4)

that is, (3.2) holds.

Proof of Theorem 3.1. By applying Lemma 3.2, we get

∣
∣
∣
∣
∣

∫b

a

fσ(t)Δt −
k∑

i=0

(αi+1 − αi)fσ(xi) +
k−1∑

i=0

(

h2(xi+1, αi+1)fΔ(xi+1) − h2(xi, αi+1)fΔ(xi)
)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫b

a

K(t, Ik)fΔΔ(t)Δt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

k−1∑

i=0

∫xi+1

xi

K(t, Ik)fΔΔ(t)Δt

∣
∣
∣
∣
∣

≤
k−1∑

i=0

∫xi+1

xi

|K(t, Ik)||fΔΔ(t)|Δt ≤ M
k−1∑

i=0

∫xi+1

xi

|h2(t, αi+1)|Δt

= M
k−1∑

i=0

(∫αi+1

xi

(∫αi+1

t

(αi+1 − τ)Δτ

)

Δt +
∫xi+1

αi+1

h2(t, αi+1)Δt

)

= M
k−1∑

i=0

(∫αi+1

xi

h2(t, αi+1)Δt +
∫xi+1

αi+1

h2(t, αi+1)Δt

)

= M
k−1∑

i=0

(h3(xi+1, αi+1) − h3(xi, αi+1)).

(3.5)

The proof is complete.

If we apply the the inequality (3.1) to different time scales, we will get some well-
known and some new results.

Corollary 3.3 (continuous case). Let T = R. Then our delta integral is the usual Riemann integral
from calculus. Hence,

h2(t, s) =
(t − s)2

2
, ∀t, s ∈ R. (3.6)
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This leads us to state the following inequality:

∣
∣
∣
∣
∣

∫b

a

f(t)Δt −
k∑

i=0

(αi+1 − αi)f(xi) +
1
2

k−1∑

i=0

(

(xi+1 − αi+1)
2f ′(xi+1) − (xi − αi+1)

2f ′(xi)
)

∣
∣
∣
∣
∣

≤ M

6

k−1∑

i=0

(

(xi+1 − αi+1)
3 − (xi − αi+1)

3),

(3.7)

whereM = supa<x<b|f ′′(x)|.

Remark 3.4. The inequality (3.7) is exactly the generalized Ostrowski inequality shown in
[24].

Corollary 3.5 (discrete case). Let T = Z, a = 0, b = n. Suppose that

(1) Ik : 0 = j0 < j1 < · · · < jk−1 < jk = n is a division of [0, n] ∩ Z for j0, k1, . . . , jk ∈ Z;

(2) pi ∈ Z (i = 0, . . . , k + 1) is “k + 2” points so that p0 = 0, pi ∈ [ji−1, ji] ∩ Z (i = 1, . . . , k)
and pk+1 = n;

(3) f(k) = xk.

Then,

∣
∣
∣
∣
∣

n∑

j=1

xj −
k∑

i=0

(pi+1 − pi)xji+1 +
k−1∑

i=0

(

h2(ji+1, pi+1)Δxji+1 − h2(ji, pi+1)Δxji

)

∣
∣
∣
∣
∣

≤ M
k−1∑

i=0

(h3(ji+1, pi+1) − h3(ji, pi+1))

(3.8)

for all i = 1, n, where

M = sup
1≤i≤n−1

∣
∣Δ2xi

∣
∣, hk(t, s) =

(
t − s
k

)

(3.9)

for all t, s ∈ Z.

Corollary 3.6 (quantum calculus case). Let T = qN0 , q > 1, a = qm, b = qn with m < n. Suppose
that

(1) Ik : qm = qj0 < qj1 < · · · < qjk−1 < qjk = qn is a division of [qm, qn] ∩ qN0 for j0, j1, . . . , jk ∈
N0;

(2) qpi ∈ qN0 (i = 0, . . . , k + 1) is “k + 2” points so that qp0 = qm, qpi ∈ [qji−1 , qji] ∩ qN0 (i =
1, . . . , k) and qpk+1 = qm;

(3) f : [qm, qn] → R is differentiable.
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Then,

∣
∣
∣
∣
∣

∫qn

qm
f(qt)Δt −

k∑

i=0

(qpi+1 − qpi)f(qji+1)

+
k−1∑

i=0

(

h2(qji+1 , qpi+1)
f(qji+1+1) − f(qji+1)

(q − 1)qji+1
− h2(qji , qpi)

f(qji+1) − f(qji)
(q − 1)qji

)
∣
∣
∣
∣
∣

≤ M
k−1∑

i=0

(h3(qji+1 , qpi+1) − h3(qji , qpi+1)),

(3.10)

where

M = sup
qm<t<qn

∣
∣
∣
∣

f(q2t) − (q + 1)f(qt) + qf(t)

q(q − 1)2t2

∣
∣
∣
∣
, hk(t, s) =

k−1∏

ν=0

t − qνs
∑ν

μ=0q
μ
, ∀t, s ∈ qN0 .

(3.11)

4. Some particular perturbed integral inequalities on time scales

In this section, we point out some particular perturbed integral inequalities on time scales
for functions whose second derivatives are bounded as special cases, such as perturbed
rectangle inequality on time scales, perturbed trapezoid inequality on time scales, perturbed
mid-point inequality on time scales, perturbed Simpson inequality on time scales, perturbed
averaged mid-point-trapezoid inequality on time scales, and others. Throughout this section,
we always assume that a, b ∈ T with a > b and f : [a, b] → R is differentiable. We denote

M = sup
a<x<b

∣
∣fΔΔ(x)

∣
∣ < ∞. (4.1)

Proposition 4.1. Suppose that α ∈ [a, b] ∩ T. Then one has the perturbed rectangle inequality on
time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − ((α − a)fσ(a) + (b − α)fσ(b)) +
(

h2(b, α)fΔ(b) − h2(a, α)fΔ(a)
)
∣
∣
∣
∣

≤ M(h3(b, α) − h3(a, α)).

(4.2)

Proof. We choose x0 = a, x1 = b, α0 = a, α1 = α ∈ [a, b] and α2 = b in Theorem 3.1 to get the
result.

Remark 4.2. (a) If we choose α = b in (4.2), we get the perturbed left rectangle inequality on
time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − (b − a)fσ(a) − h2(a, b)fΔ(a)
∣
∣
∣
∣
≤ −Mh3(a, b). (4.3)
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(b) If we choose α = a in (4.2), we get the perturbed right rectangle inequality on time
scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − (b − a)fσ(b) + h2(b, a)fΔ(b)
∣
∣
∣
∣
≤ Mh3(b, a). (4.4)

(c) If we choose α = (a + b)/2 in (4.2), we get the perturbed trapezoid inequality on
time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − fσ(a) + fσ(b)
2

(b − a) +
(

h2

(

b,
a + b

2

)

fΔ(b) − h2

(

a,
a + b

2

)

fΔ(a)
)∣
∣
∣
∣

≤ M

(

h3

(

b,
a + b

2

)

− h3

(

a,
a + b

2

))

.

(4.5)

Proposition 4.3. Suppose that x ∈ [a, b] ∩ T, α1 ∈ [a, x] ∩ T and α2 ∈ [x, b] ∩ T. Then one has the
perturbed inequality on time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − (

(α1 − a)fσ(a) + (α2 − α1)fσ(x) + (b − α2)fσ(b)
)

+
(

h2(x, α1)fΔ(x) − h2(a, α1)fΔ(a) + h2(b, α2)fΔ(b) − h2(x, α2)fΔ(x)
)
∣
∣
∣
∣

≤ M(h3(x, α1) − h3(a, α1) + h3(b, α2) − h3(x, α2)).

(4.6)

Remark 4.4. If we choose α1 = a and α2 = b in Proposition 4.3, we get exactly Theorem 1.3.
Therefore, Theorem 3.1 is a generalization of Theorem 4 in [20]. If we choose x = (a + b)/2 in
(3.1), we get the perturbed mid-point inequality on time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − fσ

(
a + b

2

)

(b − a) +
(

h2

(
a + b

2
, a

)

− h2

(
a + b

2
, b

))

fΔ
(
a + b

2

)∣
∣
∣
∣

≤ M

(

h3

(
a + b

2
, a

)

− h3

(
a + b

2
, b

))

.

(4.7)

Corollary 4.5. Suppose that x ∈ [(5a+b)/6, (a+5b)/6]∩T, α1 = (5a+b)/6 and α2 = (a+5b)/6.
Then one has the perturbed inequality on time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − b − a

3

[
fσ(a) + fσ(b)

2
+ 2fσ(x)

]

+
(

h2

(

x,
5a+b
6

)

fΔ(x)−h2

(

a,
5a + b

6

)

fΔ(a)+h2

(

b,
a + 5b

6

)

fΔ(b)−h2

(

x,
a + 5b

6

)

fΔ(x)
)∣
∣
∣
∣

≤ M

(

h3

(

x,
5a + b

6

)

− h3

(

a,
5a + b

6

)

+ h3

(

b,
a + 5b

6

)

− h3

(

x,
a + 5b

6

))

.

(4.8)



10 Journal of Inequalities and Applications

Remark 4.6. If we choose x = (a + b)/2 in (4.8), we get the perturbed Simpson inequality on
time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − b − a

3

[
fσ(a) + fσ(b)

2
+ 2fσ

(
a + b

2

)]

+
[

h2

(
a + b

2
,
5a + b

6

)

fΔ
(
a + b

2

)

− h2

(

a,
5a + b

6

)

fΔ(a)

+ h2

(

b,
a + 5b

6

)

fΔ(b) − h2

(
a + b

2
,
a + 5b

6

)

fΔ
(
a + b

2

)]∣
∣
∣
∣

≤ M

(

h3

(
a + b

2
,
5a + b

6

)

− h3

(

a,
5a + b

6

)

+ h3

(

b,
a + 5b

6

)

− h3

(
a + b

2
,
a + 5b

6

))

.

(4.9)

Corollary 4.7. Suppose that (a + b)/2 ∈ T, α1 ∈ [a, (a + b)/2] ∩ T and α2 ∈ [(a + b)/2, b] ∩ T.
Then one has the perturbed inequality on time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt −
(

(α1 − a)fσ(a) + (α2 − α1)fσ

(
a + b

2

)

+ (b − α2)fσ(b)
)

+
(

h2

(
a + b

2
, α1

)

fΔ
(
a + b

2

)

− h2(a, α1)fΔ(a) + h2(b, α2)fΔ(b) − h2

(
a + b

2
, α2

)

fΔ
(
a + b

2

))∣
∣
∣
∣

≤ M

(

h3

(
a + b

2
, α1

)

− h3(a, α1) + h3(b, α2) − h3

(
a + b

2
, α2

))

.

(4.10)

Remark 4.8. If we choose α1 = (3a + b)/4 and α2 = (a + 3b)/4 in (4.10), we get the perturbed
averaged mid-point-trapezoid inequality on time scales

∣
∣
∣
∣

∫b

a

fσ(t)Δt − b − a

2

[
fσ(a) + fσ(b)

2
+ fσ

(
a + b

2

)]

+
(

h2

(
a + b

2
,
3a + b

4

)

fΔ
(
a + b

2

)

− h2

(

a,
3a + b

4

)

fΔ(a)

+ h2

(

b,
a + 3b

4

)

fΔ(b) − h2

(
a + b

2
,
a + 3b

4

)

fΔ
(
a + b

2

))∣
∣
∣
∣

≤ M

(

h3

(
a + b

2
,
3a + b

4

)

− h3

(

a,
3a + b

4

)

+ h3

(

b,
a + 3b

4

)

− h3

(
a + b

2
,
a + 3b

4

))

.

(4.11)
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