Research Article

On Interpolation Functions of the Generalized Twisted \((h,q)\)-Euler Polynomials

Kyoung Ho Park

Department of Mathematics, Sogang University, Seoul 121-742, South Korea

Correspondence should be addressed to Kyoung Ho Park, sagamath@yahoo.co.kr

Received 5 November 2008; Accepted 14 January 2009

Recommended by Vijay Gupta

The aim of this paper is to construct \(p\)-adic twisted two-variable Euler-\((h,q)\)-L-functions, which interpolate generalized twisted \((h,q)\)-Euler polynomials at negative integers. In this paper, we treat twisted \((h,q)\)-Euler numbers and polynomials associated with \(p\)-adic invariant integral on \(\mathbb{Z}_p\). We will construct two-variable twisted \((h,q)\)-Euler-zeta function and two-variable \((h,q)\)-L-function in Complex \(s\)-plane.

Copyright \(\odot\) 2009 Kyoung Ho Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Tsumura and Young treated the interpolation functions of the Bernoulli and Euler polynomials in [1, 2]. Kim and Simsek studied on \(p\)-adic interpolation functions of these numbers and polynomials [3–48]. In [49], Carlitz originally constructed \(q\)-Bernoulli numbers and polynomials. Many authors studied these numbers and polynomials [4, 28, 38, 41, 50]. After that, twisted \((h,q)\)-Bernoulli and Euler numbers(polynomial) s were studied by several authors [1–32, 32–65]. In [62], Whashington constructed one-variable \(p\)-adic-L-function which interpolates generalized classical Bernoulli numbers at negative integers. Fox introduced the two-variable \(p\)-adi L-functions [53]. Young defined \(p\)-adic integral representation for the two-variable \(p\)-adic L-functions [64]. Furthermore, Kim constructed the two-variable \(p\)-adic \(q\)-L-function, which is interpolation function of the generalized \(q\)-Bernoulli polynomials [8]. This function is the \(q\)-extension of the two-variable \(p\)-adic L-function. Kim constructed \(q\)-extension of the generalized formula for two-variable of Diamond and Ferrero and Greenberg formula for two-variable \(p\)-adic L-function in the terms of the \(p\)-adic gamma and log-gamma functions [8]. Kim and Rim introduced twisted \(q\)-Euler numbers and polynomials associated with basic twisted \(q\)-\(\ell\)-functions [28]. Also, Jang et al. investigated the \(p\)-adic analogue twisted \(q\)-\(\ell\)-function, which interpolates generalized twisted
q-Euler numbers $E_{n,q},\chi$ attached to Dirichlet’s character χ [55]. Kim et al. have studied two-variable p-adic L-functions, which interpolate the generalized Bernoulli polynomials at negative integers. In this paper, we will construct two-variable p-adic twisted Euler (h,q)-L-functions. This functions interpolation functions of the generalized twisted (h,q)-Euler polynomials.

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z},\mathbb{Z}_p,\mathbb{Q}_p$ and \mathbb{C}_p will respectively denote the ring of rational integers, the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p such that $|p|_p = p^{-\nu_p(p)} = p^{-1}$. If $s \in \mathbb{C}$, then $|q|_p < 1$. If $q \in \mathbb{C}_p$, we normally assume $|1 - q|_p < p^{-(1/(p-1))}$, so that $q^x = \exp(\log q)$ for $|x|_p \leq 1$. Throughout this paper we use the following notations (cf. [1–32, 32–48, 50, 51, 54–65]):

$$ [x]_q = [x : q] = \frac{1 - q^x}{1 - q}, \quad [x]_q = \frac{1 - (-q)^x}{1 + q}. \quad (1.1) $$

Hence, $\lim_{q \to 1} [x]_q = x$, for any x with $|x|_p \leq 1$ in the present p-adic case.

For d a fixed positive integer with $(p,d) = 1$, set

$$ X = X_d = \lim_{N \to \infty} \frac{\mathbb{Z}}{dp^NZ}, \quad X_1 = \mathbb{Z}_p, $$

$$ X^* = \bigcup_{0 < a < dp_1, (a,p) = 1} (a + dp\mathbb{Z}_p), \quad (1.2) $$

$$ a + dp^NZ = \{ x \in X \mid x \equiv a \pmod{dp^N} \}, $$

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a < dp^N$. The distribution is defined by

$$ \mu_q(a + dp^NZ_p) = \frac{q^a}{[dp^N]_q}. \quad (1.3) $$

We say that f is uniformly differential function at a point $a \in \mathbb{Z}_p$, and we write $f \in UD(\mathbb{Z}_p)$, if the difference quotients, $F_j(x,y) = (f(x) - f(y))/(x - y)$ have a limit $f'(a)$ as $(x,y) \to (a,a)$.

For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant q-integral on \mathbb{Z}_p is defined as [4, 18]

$$ I_q(f) = \int_{\mathbb{Z}_p} f(x)d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x)q^x. \quad (1.4) $$

The fermionic p-adic q-measures on \mathbb{Z}_p is defined as (cf. [14–16, 18, 22, 28])

$$ \mu_{-q}(a + dp^NZ_p) = \frac{(-q)^a}{[dp^N]_{-q}}, \quad (1.5) $$
for \(f \in UD(\mathbb{Z}_p) \). For \(f \in UD(\mathbb{Z}_p) \), the fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \) is defined as

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu(x) = \lim_{N \to \infty} \frac{1}{|pN|_q} \sum_{x=0}^{pN-1} f(x)(-q)^x,
\]

which has a sense as we see readily that the limit is convergent. For \(f \in UD(\mathbb{Z}_p, \mathbb{C}_p) \), we note that (cf. [14, 16, 18, 22, 28])

\[
\int_{\mathbb{Z}_p} f(x) d\mu_1(x) = \int_{\mathbb{Z}_p} f(x) d\mu_1(x).
\]

From the fermionic invariant integral on \(\mathbb{Z}_p \), we derive the following integral equation (cf. [14, 35]):

\[
I_{-1}(f_1) + I_{-1}(f) = 2f(0),
\]

where \(f_1(x) = f(x + 1) \).

2. Twisted \((h, q)\)-Euler Numbers and Polynomials

In this section, we will treat some properties of twisted \((h, q)\)-Euler numbers and polynomials associated with \(p \)-adic invariant integral on \(\mathbb{Z}_p \). From now on, we take \(h \in \mathbb{Z} \) and \(q \in \mathbb{C}_p \) with \(|q - 1|_p < p^{-(1/(p-1))} \). Let \(\mathbb{C}_{pn} \) be the space of primitive \(p^n \)th root of unity,

\[
\mathbb{C}_{pn} = \{ w \in \mathbb{C}_p : w^{p^n} = 1 \}.
\]

Then, we denote

\[
T_p = \lim_{n \to \infty} \mathbb{C}_{pn} = \bigcup_{n \geq 0} \mathbb{C}_{pn}.
\]

Hence \(T_p \) is a \(p \)-adic locally constant space. For \(\xi \in T_p \), we denote by \(\phi_\xi : \mathbb{Z}_p \to \mathbb{C}_p \) defined by \(\phi_\xi(x) = \xi^x \), the locally constant function. If we take \(f(x) = \xi^x e^{\xi x} \), then we have (cf. [35])

\[
E_{n,\xi} = \int_{\mathbb{Z}_p} x^n \xi^x d\mu_1(x).
\]

By induction in (1.8), Kim constructed the following useful identity (cf. [14, 28]):

\[
I_{-1}(f_n) + (-1)^n I_{-1}(f) = 2 \sum_{\ell=0}^{n-1} (-1)^{n-1-\ell} f(\ell),
\]
where \(n \in \mathbb{N} \), \(f_n = f(x + n) \). From (2.4), if \(n \) is odd, then we have

\[
L_1(f_n) + L_1(f) = 2 \sum_{\ell=0}^{n-1} (-1)^{\ell} f(\ell). \tag{2.5}
\]

If we replace \(n \) by \(d \) (\(= \) odd) into (2.5), we obtain

\[
L_1(f_d) + L_1(f) = 2 \sum_{\ell=0}^{d-1} (-1)^{\ell} f(\ell). \tag{2.6}
\]

Let \(\xi \in T_p \). Let \(\chi \) be a Dirichlet’s character of conductor \(d \), which \(d \) is any multiple of \(p \) with \(p \equiv 1 \) (mod 2). By substituting \(f(x) = \chi(x)\xi^x e^{xt} \) into (2.6), we have

\[
L_1(\chi(x)\xi^x e^{xt}) = \sum_{n=1}^{\infty} E_{n,\xi,\chi} \frac{t^n}{n!}. \tag{2.7}
\]

Remark 2.1. In complex case, the generating function of the Euler numbers \(E_{n,\xi,\chi} \) is given by (cf. [28])

\[
2 \sum_{\ell=0}^{d-1} (-1)^{\ell} \chi(\ell)\xi^\ell e^{\ell t} = \sum_{n=0}^{\infty} E_{n,\xi,\chi} \frac{t^n}{n!}, \quad |t| < \frac{\pi}{d}. \tag{2.8}
\]

By using Taylor series of \(e^{xt} \), then we can define the generalized twisted Euler numbers \(E_{n,\xi,\chi} \) attached to \(\chi \) as follows (cf. [55]):

\[
E_{n,\xi,\chi} = \int_{\chi} \xi^n x^n \chi(x) d\mu_{-1}(x). \tag{2.9}
\]

In [8], \((h,q)\)-Euler numbers were defined by

\[
E_{n,q}^{(h,1)}(x) = \int_{\mathbb{Z}_p} q^{(h-1)r} [x + y]_q^n d\mu_{q^{-q}}(y), \tag{2.10}
\]

where \(h \in \mathbb{Z} \) and \(x \in \mathbb{Z}_p \). In particular, if we take \(x = 0 \), then \(E_{n,q}^{(h,1)}(0) = E_{n,q}^{(h,1)} \). These numbers are called \((h,q)\)-Euler numbers.

By using iterative method of \(p \)-adic invariant integral on \(\mathbb{Z}_p \) in the sense of fermionic, we define twisted \((h,q)\)-Euler numbers as follows (cf. [55]):

\[
E_{n,q}^{(h,1)}(x) = \int_{\mathbb{Z}_p} q^{(h-1)q} \phi(y) [x + y]_q^n d\mu_{q^{-q}}(y). \tag{2.11}
\]
For \(h \in \mathbb{Z} \) and \(n \in \mathbb{N} \), we have that (cf. [55])

\[
E^{(h,1)}_{n,q,t}(x) = \frac{1+q}{(1-q)^n} \sum_{i=0}^{n} \left(\begin{array}{c} n \\ i \end{array} \right) (-1)^i q^i \frac{1}{1+q^{h+i}},
\]
(2.12)

\[
E^{(h,1)}_{n,q,t}(x) = \frac{1+q}{1+q^d} \sum_{a=0}^{d-1} (-1)^a q^{ha} \xi^a E^{(h,1)}_{n,q,t} \left(\frac{x+a}{d} \right) [d]^n\xi,
\]
(2.13)

where \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod 2 \).

Let \(F^{(h,1)}_{q,t} (t, x) \) be the generating function of \(E^{(h,1)}_{n,q,t}(x) \) in complex plane as follows (cf. [55]):

\[
F^{(h,1)}_{q,t}(t, x) = (1 + q) \sum_{n=0}^{\infty} (-1)^n q^{-n} t^n e^{[n+x]_q} = \sum_{n=0}^{\infty} E^{(h,1)}_{n,q,t}(x) \frac{t^n}{n!}.
\]
(2.14)

Let \(\chi \) be the Dirichlet’s character with conductor \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod 2 \). Then the generalized twisted \((h, q)\)-Euler polynomials attached to \(\chi \) is given by as follows:

For \(n \in \mathbb{Z}_q = \mathbb{N} \cup \{0\} \),

\[
E^{(h,1)}_{n,q,t,\chi}(x) = \int_{\chi} \chi(y) q^{(-1)^n y} [x+y]_q^n d_{\mu,q}(y),
\]
(2.15)

where \(h \in \mathbb{Z}, d \) is any multiple of \(p \) with \(p \equiv 1 \pmod 2 \) and \(x \in \mathbb{C}_p \).

Then the distribution relation of the generalized twisted \((h, q)\)-Euler polynomials is given by as follows (cf. [14]):

\[
E^{(h,1)}_{n,q,t,\chi}(x) = \frac{1+q}{1+q^d} \sum_{a=1}^{d} \chi(a)(-1)^a q^{ha} \xi^a E^{(h,1)}_{n,q,t} \left(\frac{x+a}{d} \right) [d]^n\xi.
\]
(2.16)

3. Two-Variable Twisted \((h, q)\)-Euler-Zeta Function and \((h, q)\)-L-Function

In this section, we will construct two-variable twisted \((h, q)\)-Euler-zeta function and two-variable \((h, q)\)-L-function in Complex s-plane. We assume \(q \in \mathbb{C} \) with \(|q| < 1\).

Firstly, we consider twisted \(q \)-Euler numbers and polynomials in \(\mathbb{C} \) as follows (cf. [55]):

\[
F^{(h,1)}_{q,t}(t, x) = (1 + q) \sum_{n=0}^{\infty} (-1)^n q^{-n} t^n e^{[n+x]_q} = \sum_{n=0}^{\infty} E^{(h,1)}_{n,q,t}(x) \frac{t^n}{n!},
\]
(3.1)
where \(q, x \in \mathbb{C}, r \in \mathbb{Z}^* = \mathbb{N} \cup \{0\} \) and \(\zeta \) is rth root of unity. In particular, if we take \(x = 0 \), then we have \(E_{n,q,\zeta}^{(h,1)}(0) = E_{n,q,\zeta}^{(h,1)} \). These numbers are called twisted Euler numbers. By using derivative operator, we have \(\left(\frac{d^k}{dt^k} \right) F_{q,\zeta}(t, x) \bigg|_{t=0} = E_{n,q,\zeta}^{(h,1)}(x) \).

From (3.1), we can define Hurwitz-type twisted \((h, q)\)-Euler-zeta function as follows (cf. [55]):

\[
\xi_{E,q,\zeta}(s, x) = (1 + q) \sum_{k=0}^{\infty} \frac{(-1)^k q^k \xi^k}{[x + k]^q},
\]

where \(q \in \mathbb{C}, |q| < 1, s \in \mathbb{C}, h \in \mathbb{Z} \) and \(x \in \mathbb{R}, 0 < x \leq 1 \). Note that if \(x = 1 \) in (3.2), then we see that the twisted \((h, q)\)-Euler-zeta function is defined by (cf. [28, 55])

\[
\xi_{E,q,\zeta}(s) = (1 + q) \sum_{k=1}^{\infty} \frac{(-1)^k q^k \xi^k}{[k]^q}, \quad s \in \mathbb{C}, \text{Re}(s) > 1.
\]

For \(n \in \mathbb{N} \), we know (cf. [28])

\[
\xi_{E,q,\zeta}^{(h,1)}(-n, x) = E_{\eta,n,q,\zeta}^{(h,1)}(x).
\]

From now on, we will define the two-variable \((h, q)\)-functions \(L_{E,q,\zeta}^{(h,1)}(s, x : \chi) \) which interpolates the generalized \((h, q)\)-Euler polynomials.

Definition 3.1. Let \(\chi \) be the Dirichlet’s character with conductor \(d \) with \(d \equiv 1 (\text{mod} \ 2) \). For \(s \in \mathbb{C}, h \in \mathbb{Z} \) and \(x \in \mathbb{R}, 0 < x \leq 1 \), we define

\[
L_{E,q,\zeta}^{(h,1)}(s, x : \chi) = (1 + q) \sum_{n=0}^{\infty} \frac{\chi(n)(-1)^n q^n \xi^n}{[n + x]^q}.
\]

By substituting \(n = a + jd, d \equiv 1 (\text{mod} \ 2), 1 \leq a \leq d \) and \(n = 0, 1, 2, \ldots \) into (3.5), then using (3.2), we have

\[
L_{E,q,\zeta}^{(h,1)}(s, x : \chi)(1 + q) \sum_{a=1}^{d} \sum_{j=0}^{\infty} \frac{\chi(a)(a + jd)(-1)^{a+jd} q^{(a+jd)\xi} [a + jd + x]^q}{[a + jd + x]^q} = (1 + q) \sum_{a=1}^{d} \sum_{j=0}^{\infty} \frac{\chi(a)(a + jd)(-1)^{a+jd} q^{(a+jd)\xi} [a + jd + x]^q}{[a + jd + x]^q},
\]

Thus, we see the function \(L_{E,q,\zeta}^{(h,1)}(s, x : \chi) \) which interpolates the generalized \((h, q)\)-Euler polynomials as follows.
Theorem 3.2. For $s \in \mathbb{C}$, $h \in \mathbb{Z}$, let χ be the Dirichlet’s character with conductor d with $d \equiv 1 \pmod{2}$. Then one has

$$L_{E,q,h}^{(s)}(s, x : \chi) = \frac{1 + q}{1 + q^d} \sum_{a=1}^{d} \chi(a) (-1)^{a} q^{rac{ha}{d}} \mathcal{B}_{E,q,h}^{(s)} \left(s, \frac{a + x}{d} \right) [d]_{q}^{-s}.$$ \hspace{1cm} (3.7)

By substituting $s = -n$ with $n > 0$, into (3.7), we obtain

$$L_{E,q,h}^{(s)}(-n, x : \chi) = \frac{1 + q}{1 + q^d} \sum_{a=1}^{d} \chi(a) (-1)^{a} q^{rac{ha}{d}} \mathcal{B}_{E,q,h}^{(s)} \left(-n, \frac{a + x}{d} \right) [d]_{q}^{n}$$

$$= \frac{1 + q}{1 + q^d} \sum_{a=1}^{d} \chi(a) (-1)^{a} q^{rac{ha}{d}} \mathcal{B}_{E,q,h}^{(s)} \left(\frac{a + x}{d} \right) [d]_{q}^{n}$$

$$= E_{n,q,h}^{(s)} (x),$$

where $d \equiv 1 \pmod{2}$, $d \in \mathbb{N}$.

Thus, we have the following theorem.

Theorem 3.3. For $n \in \mathbb{N}$, let χ be the Dirichlet’s character with conductor d with $d \equiv 1 \pmod{2}$. Then one has

$$L_{E,q,h}^{(s)}(-n, x : \chi) = E_{n,q,h}^{(s)} (x).$$ \hspace{1cm} (3.9)

Remark 3.4. If we take $x = 1$ in (3.5), then we have (cf. [28, 55])

$$L_{E,q,h}^{(s)}(s, \chi) = (1 + q) \sum_{n=1}^{\infty} \chi(n) (-1)^{n} q^{rac{hn}{d}} [n]_{q}^{s}, \quad \text{for } s \in \mathbb{C}. \hspace{1cm} (3.10)$$

From (3.9) and (3.10), we have the following corollary.

Corollary 3.5. Let χ be the Dirichlet’s character with conductor d with $d \equiv 1 \pmod{2}$. Then one has

$$E_{n,q,h}^{(s)} (x) = \frac{1 + q}{1 + q^d} \sum_{a=1}^{d} \chi(a) (-1)^{a} q^{rac{ha}{d}} \mathcal{B}_{n,q,h}^{(s)} \left(\frac{a + x}{d} \right) [d]_{q}^{n}. \hspace{1cm} (3.11)$$

Secondly, we will define two-variable twisted Euler (h, q)-L-function as follows.

Definition 3.6. Let χ be the Dirichlet’s character with conductor d with $d \equiv 1 \pmod{2}$, $d \in \mathbb{N}$. For $s \in \mathbb{C}$, $h \in \mathbb{Z}$, $x \in \mathbb{R}$, $0 < x \leq 1$ and ξ' with $\xi' \neq 1$, we define

$$L_{E,q,h}^{(s)}(s, x : \chi) = (1 + q) \sum_{k=0}^{\infty} \chi(k) (-1)^{k} q^{rac{hk}{d}} [k + x]_{q}^{s}. \hspace{1cm} (3.12)$$
We consider the well-known identity (cf. [44, 65])

$$\frac{1}{(1-x)^s} = \sum_{j=0}^{\infty} \binom{s+j-1}{j} x^j.$$ \hfill (3.13)

By using (3.12), we define two-variable twisted Euler \((h,q)\)-\(L\)-function as follows:

$$L_{E,q,h}^{(h,1)}(s, x : \chi) = (1+q)(1-q)^s \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{s+j-1}{j} \chi(k)(-1)^k q^k h_{q,k+j+kx}. \hfill (3.14)$$

We will investigate the relations between \(L_{E,q,h}^{(h,1)}(s, x : \chi)\) and \(L_{E,q,h}^{(h,1)}(s, \chi)\) as follows.

Substituting \(k = a+jd, a = 1, 2, \ldots, d\) with \(d \equiv 1 \pmod{2}, j = 0, 1, 2, \ldots, \) into (3.12), we have

$$L_{E,q,h}^{(h,1)}(s, x : \chi) = (1+q) \sum_{a=1}^{d} \sum_{j=0}^{\infty} \chi(a+jd)(-1)^{a+jd} q^{h(a+jd)} \frac{\sum_{j=0}^{\infty} \chi(j) q^j}{[a+jd+x]_q^s}, \hfill (3.15)$$

Thus we obtain the following theorem.

Theorem 3.7. For \(s \in \mathbb{C}\) with \(h \in \mathbb{Z}\), let \(\chi\) be the Dirichlet character with conductor \(d\) with \(d \equiv 1 \pmod{2}\) and \(x \in \mathbb{R}, 0 < x \leq 1, \xi^r = 1\) with \(\xi \neq 1\). Then one has

$$L_{E,q,h}^{(h,1)}(s, x : \chi) = \frac{1+q}{1+qd} \sum_{a=1}^{d} \chi(a)(-1)^a q^{h(a)} \frac{\varepsilon_{E,q,h}^{(h,1)}(s, a+x/d) [d]_q^{-s}}{d}. \hfill (3.16)$$

By substituting \(s = -n\) with \(n \in \mathbb{N}\) into (3.16) and using (3.4), we can obtain

$$L_{E,q,h}^{(h,1)}(-n, x : \chi) = \frac{1+q}{1+qd} \sum_{a=1}^{d} \chi(a)(-1)^a q^{h(a)} \frac{\varepsilon_{E,q,h}^{(h,1)}(-n, a+x/d) [d]_q^n}{d}. \hfill (3.17)$$

Thus, we see that the function \(L_{E,q,h}^{(h,1)}(s, x : \chi)\) interpolates generalized \((h,q)\)-Euler polynomials attached to \(\chi\) at negative integer values of \(s\) as followsings.

Theorem 3.8. For \(n \in \mathbb{N}\), let \(\chi\) be the Dirichlet’s character with odd conductor \(d\). Then one has

$$L_{E,q,h}^{(h,1)}(-n, x : \chi) = E_{n,q,h,\chi}^{(h,1)}(x). \hfill (3.18)$$

Note that if we take \(x = 1\), then Theorem 3.8 reduces to Theorem 3.3.
Let \(a\) and \(F\) be integers with \(F \equiv 1 \pmod{2}\) and \(0 < a < F\). For \(s \in \mathbb{C}\), we define partial \((h,q)\)-Hurwitz type zeta function \(H_{E,q}^{(h,1)}(s,a,x \mid F)\) as follows:

\[
H_{E,q}^{(h,1)}(s,a,x \mid F) = \sum_{m=a \pmod{F}}^{\infty} \frac{(-1)^{m} a^{h} m^{s} j}{[m + x]_{q}^{s}}.
\] (3.19)

By substituting \(m = a + jF\), we have

\[
H_{E,q}^{(h,1)}(s,a,x \mid F) = \sum_{j=0}^{\infty} \frac{(-1)^{a+jF} q^{h(a+jF)} x^{a+jF}}{[a+jF+x]_{q}^{s}}
\] \[= (-1)^{a} q^{a} x^{a} [F]_{q}^{-s} \sum_{j=0}^{\infty} \frac{(-1)^{jF} (qF)^{j} (q^{F})^{j}}{[((a+x)/F) + j]_{q}^{s}}
\] \[= [F]_{q}^{-s} \frac{(-1)^{a} q^{a} x^{a} s_{(h,1)}^{(h,1)}(s,a+x|F)}{1 + q^{F}}.
\] (3.20)

By substituting \((3.2)\), for \(s = -n\), we get

\[
H_{E,q}^{(h,1)}(s,a,x \mid F) = [F]_{q}^{-n} \frac{(-1)^{a} q^{a} x^{a}}{1 + q^{F}} E_{n,q}^{(h,1)}(a+x|F).
\] (3.21)

Equation (3.20) means that the function \(H_{E,q}^{(h,1)}(s,a,x \mid F)\) interpolates \(E_{n,q}^{(h,1)}(s,a,x \mid F)\) polynomials at negative integers.

From (3.16) and (3.20), we have the following theorem.

Theorem 3.9. For \(s \in \mathbb{C}\), \(\zeta \equiv 1 \pmod{2}\), let \(\chi \) be the Dirichlet’s character with conductor \(d \in \mathbb{N}\) with \(d \equiv 1 \pmod{2}\) and \(x \in \mathbb{R}\), \(0 < x \leq 1\), \(F\) is any multiple of \(d\). Then one has

\[
L_{E,q}^{(h,1)}(s,x : \chi) = (1 + q^{F}) \frac{1}{\chi(a)} \sum_{a=1}^{F} \chi(a)(-1)^{a} H_{E,q}^{(h,1)}(s,a,x \mid F).
\] (3.22)

Remark 3.10. If we take \(s = 0\) in (3.22), then we have

\[
L_{E,q}^{(h,1)}(s,x : \chi) = (1 + q^{F}) \frac{1}{\chi(a)} \sum_{a=1}^{F} \chi(a)(-1)^{a} H_{E,q}^{(h,1)}(s,a,x \mid F)
\] \[= \frac{1}{1 + q^{F}} \sum_{a=1}^{F} \chi(a)(-1)^{a} q^{a} x^{a} \xi_{0,q}^{(h,1)}(a+x|F).
\] (3.23)

From (2.12), if we take \(s = 0\), then we have the following corollary.
Corollary 3.11. For \(s \in \mathbb{C}, \, q^r = 1 \) with \(\xi \neq 1 \), let \(\chi \) be the Dirichlet’s character with conductor \(d \in \mathbb{N} \) with \(d \equiv 1 \) (mod 2) and \(x \in \mathbb{R}, \, 0 < x \leq 1 \), \(F \) is any multiple of \(d \). Then one has

\[
L_{E,q,d}^{(h,1)}(0, x : \chi) = \frac{(1 + q^2)^2}{(1 + q)(1 + \xi q^2)} \sum_{a=1}^{F} \chi(a)(-1)^a q^a \xi^a.
\] (3.24)

4. \(p \)-Adic Twisted Two-Variable Euler \((h, q)\)-L-Functions

In [62], Washington constructed one-variable \(p \)-adic-L-function which interpolates generalized classical Bernoulli numbers negative integers. Kim [22] investigated the \(p \)-adic analogues of two-variables Euler \(q \)-L-function. In this section, we will construct \(p \)-adic twisted two-variable Euler-(\(h, q) \)-L-functions, which interpolate generalized twisted \((h, q)\)-Euler polynomials at negative integers. Our notations and methods are essentially due to Kim and Washington (cf. [22, 62]). We assume that \(q \in \mathbb{C}_p \) with \(|1 - q|_p < p^{-(1/(p-1))} \), so that \(q^x = \exp(x \log q) \). Let \(p \) be an odd prime number. Let \(\omega \) denote the Teichmüller character having conductor \(p \). For an arbitrary character \(\chi \), we define \(\chi_n = \chi \omega^n \), where \(n \in \mathbb{Z} \), in the sense of the product of characters. Let \(\langle a \rangle = \langle a : q \rangle = \omega^{-1}(a)[a]_q = [a]_q/\omega(a) \). Then \(\langle a \rangle \equiv 1 \) (mod \(p^{1/(1/(p-1))} \)). Hence we see that

\[
\langle a + pt \rangle = \omega^{-1}(a + pt)[a + pt]_q
= \omega^{-1}(a)[a]_q + \omega^{-1}(a)q^a[p]_q
\equiv 1 \text{ (mod } p^{1/(1/(p-1))}\text{)},
\] (4.1)

where \(t \in \mathbb{C}_p \) with \(|t|_p \leq 1 \), \((a, p) = 1 \).

We denote the subset \(D \) of \(\mathbb{C}_p^* \) by (cf. [62])

\[
D = \{ s \in \mathbb{C}_p : |s|_p \leq p^{1-(1/(p-1))} \}. \tag{4.2}
\]

Let

\[
A_j(x) = \sum_{j=0}^{\infty} a_{n,j} x^n, \quad a_{n,j} \in \mathbb{C}_p, \, j = 0, 1, 2, \ldots, \tag{4.3}
\]

be a sequence of power series, each of which converges in a fixed subset \(D \) such that

(1) \(a_{n,j} \to a_{n,0} \) as \(j \to \infty \) for all \(n, j \) and

(2) for each \(s \in D \) and \(\epsilon > 0 \), there exists \(n_0 = n_0(s, \epsilon) \) such that

\[
\left| \sum_{p \geq n_0} a_{n,j} s^n \right|_p < \epsilon, \quad \text{for } \forall j. \tag{4.4}
\]

Then \(\lim_{j \to \infty} A_j(s) = A_0(s) \) for all \(s \in D \) (cf. [2, 22, 50, 51, 60, 62]).
Let \(\chi \) be the Dirichlet’s character with conductor \(d \) with \(d \equiv 1 \pmod{2} \) and let \(F \) be a positive multiple of \(p \) and \(d \).

Now we set

\[
L^{(h,1)}_{E,p,q,\xi}(s, x : \chi) = \frac{1 + q}{1 + q^d} \sum_{a=1, p \nmid a}^{F} \chi(a)(-1)^a \xi^a \langle a + pt \rangle^{-s}
\]

\[
\cdot \sum_{j=0}^{\infty} \left(-s \right)^j E^{(h,1)}_{j, q^f, \xi^j} q^{j(a+pt)} \left[\frac{F}{a + pt} \right]_{q^f}^j.
\]

Then \(L^{(h,1)}_{E,p,q,\xi}(s, x : \chi) \) is analytic for \(t \in \mathbb{C}_p \) with \(|t|_p \leq 1 \), when \(s \in D \). For \(t \in \mathbb{C}_p \) with \(|t|_p \leq 1 \), we have

\[
\sum_{j=0}^{\infty} \left(-s \right)^j E^{(h,1)}_{j, q^f, \xi^j} q^{j(a+pt)} \left[\frac{F}{a + pt} \right]_{q^f}^j
\]

is analytic for \(s \in D \). It readily follows that

\[
\langle a + pt \rangle^s = \omega^{-s}(a) [a + pt]^s_1 = \langle a \rangle^s \sum_{m=0}^{\infty} \left(\frac{s}{m} \right) \left(q^f [a]_q^{-1} [pt]_q \right)^m
\]

is analytic for \(s \in \mathbb{C}_p \) with \(|t|_p \leq 1 \) when \(s \in D \). Thus we see that

\[
L^{(h,1)}_{E,p,q,\xi}(0, x : \chi) = \frac{1 + q}{2} \sum_{a=1}^{F} (-1)^a \chi(n(a)) \xi^a.
\]

Let \(n \in \mathbb{Z}_+ \) and fixed \(t \in \mathbb{C}_p \) with \(|t|_p \leq 1 \). Then we have that

\[
E^{(h,1)}_{n \chi, \xi}(pt) = [F]^n_{q^f} \frac{1 + q^p}{1 + q^{E/p}} \sum_{a=0}^{F} \chi(n(a)) (-1)^a \xi^a E^{(h,1)}_{n \chi, \xi} \left(\frac{a + pt}{F} \right).
\]

If \(\chi(n(p)) \neq 0 \), then \((p, d_{\chi}) = 1\), so \(F/p \) is a multiple of \(d_{\chi} \). Therefore, we have

\[
\chi(n(p))[p]_{n \chi, \xi} E^{(h,1)}_{n \chi, \xi}(t)
\]

\[
= \chi(n(p))[p]_{n \chi, \xi} \left([F]^n_{q^f} \frac{1 + q^p}{1 + q^{E/p}} \sum_{a=0}^{F/p-1} \chi(n(a)) (-1)^a \xi^a E^{(h,1)}_{n \chi, \xi} \left(\frac{a + pt}{F/p} \right) \right)
\]

\[
= [F]^n_{q^f} \frac{1 + q^p}{1 + q^{F/p}} \sum_{a=0}^{F} \chi(n(a)) (-1)^a \xi^a E^{(h,1)}_{n \chi, \xi} \left(\frac{a + pt}{F} \right).}
\]
Then we note that
\[
\frac{1 + q}{1 + q^p} x_n(p)[p]_q^n E^{(h,1)}_{n,q^a q^b, x_n} (t) = \frac{1 + q}{1 + q^p} \left[F \right]_q^n \sum_{a=0 \atop p|a}^F x_n(a)(-1)^{a} q^{a} E^{(h,1)}_{n,q^a q^b} \left(\frac{a + pt}{F} \right).
\]
(4.11)

The difference of these equations yields
\[
E^{(h,1)}_{n,q^a q^b, x_n} (pt) - \frac{1 + q}{1 + q^p} x_n(p)[p]_q^n E^{(h,1)}_{n,q^a q^b, x_n} (t) = \frac{1 + q}{1 + q^p} \left[F \right]_q^n \sum_{a=0 \atop p|a}^F x_n(a)(-1)^{a} q^{a} E^{(h,1)}_{n,q^a q^b} \left(\frac{a + pt}{F} \right).
\]
(4.12)

Using distribution for \((h,q)\)-Euler polynomials, we easily see that
\[
E^{(h,1)}_{n,q^a q^b} \left(\frac{a + pt}{F} \right) = \left[F \right]_q^n \sum_{k=0}^n \binom{n}{k} q^{(a+pt)k} \sum_{a=0 \atop p|a}^F x_n(a)(-1)^{a} q^{a} E^{(h,1)}_{n,q^a q^b} \left(\frac{a + pt}{F} \right).
\]
(4.13)

Since \(x_n(a) = \chi(a) \omega^n(a)\), for \((a, p) = 1\), and \(t \in \mathbb{C}_p\), with \(|t|_p \leq 1\), we have
\[
E^{(h,1)}_{n,q^a q^b, x_n} (pt) - \frac{1 + q}{1 + q^p} x_n(p)[p]_q^n E^{(h,1)}_{n,q^a q^b, x_n} (t)
\]
\[
= \frac{1 + q}{1 + q^p} \sum_{a=0 \atop p|a}^F x_n(a)(-1)^{a} q^{a} E^{(h,1)}_{n,q^a q^b} \left(\frac{a + pt}{F} \right)
\]
\[
= \frac{1 + q}{1 + q^p} \sum_{a=0 \atop p|a}^F x_n(a)(-1)^{a} q^{a} (a + pt)^n \sum_{k=0}^n \binom{n}{k} q^{(a+pt)k} \left[\frac{F}{a + pt} \right]_q^{k} E^{(h,1)}_{k,q^a q^b}.
\]
(4.14)

From (4.5)–(4.14), we can derive that
\[
E^{(h,1)}_{n,q^a q^b, x_n} (pt) - \frac{1 + q}{1 + q^p} x_n(p)[p]_q^n E^{(h,1)}_{n,q^a q^b, x_n} (t) = L^{(h,1)}_{E,p,q^b} (-n, t : \chi).
\]
(4.15)

Therefore we obtain the following theorem.

Theorem 4.1. Let \(F\) be a positive integral multiple of \(p\) and \(d (= d_{\chi})\) with \(F \equiv 1 \pmod{2}\), and let
\[
L^{(h,1)}_{E,p,q^b}\left(s, t : \chi\right) = \frac{1 + q}{1 + q^d} \sum_{a=1, \atop p|a}^F \chi(a)(-1)^{a} q^{a} (a + pt)^{-s} \sum_{m=0}^{\infty} \left(\frac{-s}{m} \right) q^{(a+pt)m} \left[\frac{F}{a + pt} \right]_q^{m} E^{(h,1)}_{m,q^a q^b}.
\]
(4.16)
Furthermore, for each $n \in \mathbb{Z}_+$, we have
\begin{equation}
L_{E,p,q,h}^{(h_1)}(-n,t : \chi) = E_{n,q,h}^{(h_1)}(pt) - \frac{1 + q^n}{1 + q^n} \chi_n(p)[p]_q^n E_{n,q,h}^{(h_1)}(t) \tag{4.17}
\end{equation}

Thus we note that $L_{E,p,q,h}^{(h_1)}(s,0 : \chi) = L_{E,p,q,h}^{(h_1)}(s,\chi)$ for all $s \in D$, where $L_{E,p,q,h}^{(h_1)}(s,\chi)$ is twisted p-adic Euler (h,q)-L-function, (cf. [15, 22]).

We now generalized to two-variable p-adic Euler (h,q)-L-function, $L_{E,p,q,h}^{(h_1)}(s,t : \chi)$ which is first defined by the interpolation function
\begin{equation}
H_{E,p,q,h}^{(h_1)}(s,a,x | F) = \frac{(-1)^a}{1 + q^a} q^h \xi^a (a + pt)^{-s} \sum_{j=0}^{\infty} \left(\begin{array}{c} -s \\ j \end{array} \right) q^j (a + pt) \left(\frac{[F]_q}{[a + pt]_q} \right)^j E_{n,q,h}^{(h_1)}(t), \tag{4.18}
\end{equation}

for $s \in \mathbb{Z}_+$.

From (4.18), we have that
\begin{align}
H_{E,p,q,h}^{(h_1)}(-n,a,x | F) &= \frac{(-1)^a}{1 + q^a} q^h \xi^a (a + pt)^n \sum_{j=0}^{\infty} \left(\begin{array}{c} n \\ j \end{array} \right) q^j (a + pt) \left(\frac{[F]_q}{[a + pt]_q} \right)^j E_{n,q,h}^{(h_1)}(t) \\
&= \frac{(-1)^a}{1 + q^a} q^h \xi^a \omega^{-n}(a) [F]_q^n E_{n,q,h}^{(h_1)} \left(\frac{a}{F} \right) \\
&= \omega^{-n}(a) H_{E,q,h}^{(h_1)}(-n,a,x | F). \tag{4.19}
\end{align}

By using the definition of $H_{E,p,q,h}^{(h_1)}(s,a,x | F)$, we can express $L_{E,p,q,h}^{(h_1)}(s,t : \chi)$ for all $a \in \mathbb{Z}_+$, $(a,p) = 1$ and $t \in \mathbb{C}_p$ with $|t| \leq 1$ as follows:
\begin{equation}
L_{E,p,q,h}^{(h_1)}(s,t : \chi) = \sum_{a=1, p|a}^{F} \chi(a) H_{E,p,q,h}^{(h_1)}(s,a + pt | F). \tag{4.20}
\end{equation}

We know that $H_{E,p,q,h}^{(h_1)}(s,a + pt | F)$ is analytic for $t \in \mathbb{C}_p$, $|t| \leq 1$, when $s \in D$. The value of $(\partial/\partial s)L_{E,p,q,h}^{(h_1)}(s,t : \chi)$ is the coefficients of s in the expansion of $L_{E,p,q,h}^{(h_1)}(s,t : \chi)$ at $s = 0$. Using the Taylor expansion at $s = 0$, we see that
\begin{equation}
(a + pt)^{-s} = 1 - s \log(a + pt) + \cdots, \quad \left(\begin{array}{c} -s \\ m \end{array} \right) = \frac{(-1)^m}{m} s + \cdots. \tag{4.21}
\end{equation}
The p-adic logarithmic function, \log_p, is the unique function $\mathbb{C}_p^* \rightarrow \mathbb{C}_p$ that satisfies

\[
\log_p(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n, \quad |x|_p < 1,
\]
\[
\log_p(xy) = \log_p(x) + \log_p(y), \quad \forall x, y \in \mathbb{C}_p^*,
\] (4.22)
\[
\log_p(p) = 0.
\]

By employing these expansion and some algebraic manipulations, we evaluate the derivative $(\partial / \partial s) L_{E,p,q,a}^{(h,1)} (0, t : \chi)$. It follows from the definition of $L_{E,p,q,a}^{(h,1)} (s, t : \chi)$ that

\[
L_{E,p,q,a}^{(h,1)} (s, t : \chi) = \frac{1 + q}{1 + q^F} \sum_{\substack{a=1 \atop p|a}}^{F} \chi(a) (1 - \frac{a}{p})^s (a + pt)^{-s}
\]
\[
\times \sum_{m=0}^{\infty} \left(-\frac{s}{m} \right) q^m \left(\frac{F}{a + pt} \right)^m E_{m,q,a}^{(h,1)}.
\] (4.23)

Thus, we have

\[
\left. \frac{\partial}{\partial s} L_{E,p,q,a}^{(h,1)} (s, t : \chi) \right|_{s=0} = \frac{1 + q}{1 + q^F} \sum_{\substack{a=1 \atop p|a}}^{F} \chi(a) (1 - \frac{a}{p})^s
\]
\[
\times \left(-\log(a + pt) \right) L_{E,0,q,a}^{(h,1)} + \sum_{m=1}^{\infty} \left(-\frac{s}{m} \right) q^m \left(\frac{F}{a + pt} \right)^m E_{m,q,a}^{(h,1)}.
\] (4.24)

Since $\omega(a)$ is a root of unity for $(a, p) = 1$, we have

\[
\log_p(a + pt) = \log_p(a + pt) + \log_p \omega^{-1}(a) = \log_p(a + pt).
\] (4.25)

Thus we have the following theorem.

Theorem 4.2. Let χ be a primitive Dirichlet’s character with odd conductor d, $d \in \mathbb{N}$ and let F be a odd positive integral multiple of p and d. Then for any $t \in \mathbb{C}_p$ with $|t| \leq 1$, one has

\[
\left. \frac{\partial}{\partial s} L_{E,p,q,a}^{(h,1)} (s, t : \chi) \right|_{s=0} = \frac{1 + q}{1 + q^F} \sum_{\substack{a=1 \atop p|a}}^{F} \chi(a) (1 - \frac{a}{p})^s \sum_{m=1}^{\infty} \left(-\frac{s}{m} \right) q^m \left(\frac{F}{a + pt} \right)^m E_{m,q,a}^{(h,1)}
\]
\[
- \frac{1 + q}{2} \sum_{\substack{a=1 \atop p|a}}^{F} \chi(a) (1 - \frac{a}{p})^s \log(a + pt).
\] (4.26)
References

