Research Article

Further Results on the Reverse Order Law for \(\{1,3\}\)-Inverse and \(\{1,4\}\)-Inverse of a Matrix Product

Deqiang Liu and Hu Yang

College of Mathematics and Statistics, Chongqing University, Chongqing 400030, China

Correspondence should be addressed to Deqiang Liu, ldq7705@163.com

Received 28 October 2009; Accepted 16 April 2010

Academic Editor: Panayiotis Siafarikas

Both Djordjević (2007) and Takane et al. (2007) have studied the equivalent conditions for \(B\{1,3\}A\{1,3\} \subseteq (AB)\{1,3\} \) and \(B\{1,4\}A\{1,4\} \subseteq (AB)\{1,4\} \). In this note, we derive the necessary and sufficient conditions for \(B\{1,3\}A\{1,3\} \geq (AB)\{1,3\} \), \(B\{1,4\}A\{1,4\} \geq (AB)\{1,4\} \), \(B\{1,3\}A\{1,3\} = (AB)\{1,3\} \) and \(B\{1,4\}A\{1,4\} = (AB)\{1,4\} \).

1. Introduction

Let \(\mathbb{C}^{m \times n} \) denote the set of all \(m \times n \) matrices over the complex field \(\mathbb{C} \). For \(A \in \mathbb{C}^{m \times n} \), its range space, null space, rank, and conjugate transpose will be denoted by \(\mathcal{R}(A) \), \(\mathcal{N}(A) \), \(r(A) \), and \(A^* \), respectively. The symbol \(\dim \mathcal{R}(A) \) denotes the dimension of \(\mathcal{R}(A) \). The \(n \times n \) identity matrix is denoted by \(I_n \), and if the size is obvious from the context, then the subscript on \(I_n \) can be neglected.

For a matrix \(A \in \mathbb{C}^{m \times n} \), a generalized inverse \(X \) of \(A \) is a matrix which satisfies some of the following four Penrose equations:

\[
(1) \ AXA = A, \quad (2) \ XAX = X, \quad (3) \ (AX)^* = AX, \quad (4) \ (XA)^* = XA. \tag{1.1}
\]

Let \(\emptyset \neq \eta \subseteq \{1,2,3,4\} \). Then \(A\eta \) denotes the set of all matrices \(X \) which satisfy (i) for all \(i \in \eta \). Any matrix \(X \in A\eta \) is called an \(\eta \)-inverse of \(A \). One usually denotes any \(\{1\}\)-inverse of \(A \) by \(A^{(1)} \) or \(A^\dagger \), and any \(\{1,3\}\)-inverse of \(A \) by \(A^{(1,3)} \) which is also called a least squares g-inverses of \(A \). Any \(\{1,4\}\)-inverse of \(A \) is denoted by \(A^{(1,4)} \) which is also called a minimum norm g-inverses of \(A \). The unique \(\{1,2,3,4\}\)-inverse of \(A \) is denoted by \(A^* \), which is called the Moore-Penrose generalized inverse of \(A \). General properties of the above generalized inverses can be found in [1–3]. The research in this area is active, especially about the \(\{2\}\)-inverse and the reverse order law for generalized inverse; see [4–7].
There are very good results for the reverse order law for \(\{1\} \)-inverse and \(\{1,2\} \)-inverse of two-matrix or multi-matrix products, and Liu and Yang \([8]\) studied equivalent conditions for \(B[1,3,4]A[1,3,4] \subseteq (AB)[1,3,4] \), \(B[1,3,4]A[1,3,4] \supseteq (AB)[1,3,4] \), and \(B[1,3,4]A[1,3,4] = (AB)[1,3,4] \). Moreover, Wei and Guo \([9]\) derived the reverse order law for \(\{1,3\} \)-inverse and \(\{1,4\} \)-inverse of two-matrix products by using the product singular value decomposition (P-SVD). However, there is a fly in the ointment in Wei and Guo’s results. That is, those results contain the information of subblock produced by P-SVD. In other words, they are related to P-SVD. In order to overcome this shortcoming, two methods are employed. One is operator theory; the other is maximal and minimal rank of matrix expressions. Using these two different methods, both \([6,10]\) obtain

\[
B[1,3]A[1,3] \subseteq (AB)[1,3] \iff \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B),
\]

\[
B[1,4]A[1,4] \subseteq (AB)[1,4] \iff \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*).
\]

These results are our hope because there is no information of the P-SVD in them. Note that \(\mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \) and \(\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \) are equivalent to \(r(B,A^*AB) = r(B) \) and \(r(A^*,BB^*A^*) = r(A) \), respectively. Therefore, these results are only related to the range space (or the rank) of \(A, A^*, B, B^* \) or their expressions. However, there are no analogs for \(B[1,3]A[1,3] \supseteq (AB)[1,3] \) and \(B[1,4]A[1,4] \supseteq (AB)[1,4] \). In this note, we derive the necessary and sufficient conditions for them. And after this we present a new equivalent conditions for \(B[1,3]A[1,3] = (AB)[1,3] \) and \(B[1,4]A[1,4] = (AB)[1,4] \), and this results are not related to P-SVD. To our knowledge, there is no article discussing these in the literature.

In this note we will need the following two lemmas.

Lemma 1.1 (see \([11,12]\)). Let \(A \in \mathbb{C}^{m \times n} \), \(B \in \mathbb{C}^{m \times k} \), \(X \in \mathbb{C}^{k \times l} \), \(C \in \mathbb{C}^{l \times n} \) and \(D \in \mathbb{C}^{l \times k} \). Then

1. \(r(A,B) = r(A) + r(B) - \dim \mathcal{R}(A) \cap \mathcal{R}(B) \);
2. \(r(BX) = r(X) - \dim \mathcal{N}(B) \cap \mathcal{R}(X) \);
3. \(r\begin{pmatrix} C \\ A \end{pmatrix} = r(A) + r\begin{pmatrix} C(I - A^\dagger A) \end{pmatrix} \);
4. \(\max_X r(A - BXC) = \min \left\{ r[A, B], r\begin{pmatrix} A \\ C \end{pmatrix} \right\} \);
5. \(\max_{A^{(1,3)}} r\left(D - CA^{(1,3)}B\right) = \min \left\{ r\begin{pmatrix} A^*A & A^*B \\ C & D \end{pmatrix} - r(A), r\begin{pmatrix} B \\ D \end{pmatrix} \right\} \);
6. \(\min_{A^{(1,3)}} r\left(D - CA^{(1,3)}B\right) = r\begin{pmatrix} A^*A & A^*B \\ C & D \end{pmatrix} + r\begin{pmatrix} B \\ D \end{pmatrix} - r\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \).
Lemma 1.2 (see [13]). Let \(A_{ij} \in \mathbb{C}^{m \times n_i} \) \((1 \leq i, j \leq 3)\) be given; \(X \in \mathbb{C}^{m_1 \times n_3} \) and \(Y \in \mathbb{C}^{m_3 \times n_1} \) are two arbitrary matrices. Then

\[
\min_{X,Y} r \begin{pmatrix} A_{11} & A_{12} & X \\ A_{21} & A_{22} & A_{23} \\ Y & A_{32} & A_{33} \end{pmatrix} = r(A_{21}, A_{22}, A_{23}) + r(A_{12}) + \max \left\{ r \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} - r \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix}, r \begin{pmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{pmatrix} - r(A_{22}, A_{23}) \right\}.
\]

(1.10)

2. Main Results

In this section, we first give the minimal rank of \(D - B^{(1,3)} A^{(1,3)} \) with respect to any \(B^{(1,3)} \) and \(A^{(1,3)} \). Secondly, the necessary and sufficient conditions for the inclusion \(B[1,3] A[1,3] \supseteq (AB)[1,3] \) are obtained by using our previous result. Finally, we also give the necessary and sufficient conditions for \(B[1,3] A[1,3] = (AB)[1,3] \), \(B[1,4] A[1,4] \supseteq (AB)[1,4] \), and \(B[1,4] A[1,4] = (AB)[1,4] \).

Lemma 2.1. Let \(A \in \mathbb{C}^{m \times n} \), \(B \in \mathbb{C}^{n \times k} \) and \(D \in \mathbb{C}^{k \times m} \). Then

\[
\min_{B^{(1,3)},A^{(1,3)}} r(D - B^{(1,3)} A^{(1,3)}) = r \left(B^* BD + B^* A^* A \right) - \min \left\{ r \begin{pmatrix} B^* \\ A \end{pmatrix}, r \begin{pmatrix} B D \\ A^* \end{pmatrix} - r \begin{pmatrix} D \\ A^* \end{pmatrix} + n \right\}.
\]

(2.1)

Proof. The expression of \((1,3) \)-inverses of \(A \) can be written as \(A^{(1,3)} = A^\dagger + F_A V \), where \(F_A = I - A^\dagger A \) and the matrix \(V \) is arbitrary; see [1]. By combining this fact with elementary block matrix operations, it follows that

\[
r \left(D - B^{(1,3)} A^{(1,3)} \right) = r \left(\begin{pmatrix} B^\dagger + F_B \tilde{V} \end{pmatrix} \left(A^\dagger + F_A V \right) - D \right)
\]

\[
= r \begin{pmatrix} 0 & 0 & 0 & 0 & I_n & V \\ 0 & 0 & -I_m & 0 & 0 & I_m \\ 0 & 0 & 0 & I_n & F_A & 0 \\ -B^\dagger & F_B & -D & 0 & 0 & 0 \\ I_n & 0 & A^\dagger & I_n & 0 & 0 \\ \tilde{V} & I_k & 0 & 0 & 0 & 0 \end{pmatrix} - k - m - 3n.
\]

(2.2)
Applying (1.10) to (2.2) gives

\[
\min_{B(1,3), A(1,3)} r\left(D - B(1,3) A(1,3)\right) = r\left(F_B, B^\dagger A^\dagger - D, -B^\dagger F_A\right) \\
+ \max \left\{-r\left(F_B, B^\dagger F_A\right), r\left(-D_0 A^\dagger, F_A\right) - r\left(F_B, -D_0 A^\dagger, -F_A\right)\right\}.
\]

(2.3)

By using the elementary block matrix operations, the rank of the first partitioned matrix in the right-hand side of (2.3) is simplified as follows:

\[
r\left(F_B, B^\dagger A^\dagger - D, -B^\dagger F_A\right) \\
= r \left(\begin{array}{cccccc}
-B^\dagger & F_B & -D & 0 \\
I_n & 0 & A^\dagger & -F_A
\end{array}\right) - n \\
= r \left(\begin{array}{cccccc}
B^\dagger & 0 & 0 & 0 & 0 & 0 \\
B^\dagger & -B^\dagger & I_k & -B^\dagger B & -D & 0 & 0 \\
0 & I_n & 0 & A^\dagger & -I_n + A^\dagger A & A^\dagger \\
0 & 0 & 0 & 0 & 0 & A^\dagger
\end{array}\right) - n - r\left(A^\dagger\right) - r\left(B^\dagger\right) \\
= r \left(\begin{array}{cccc}
B^\dagger B \quad B^\dagger B \quad 0 & 0 & 0 \\
B^\dagger & 0 & I_k & -D & 0 & 0 \\
0 & I_n & 0 & -I_n & A^\dagger \\
0 & 0 & 0 & -A^\dagger & -A^\dagger A & A^\dagger
\end{array}\right) - n - r\left(A\right) - r\left(B\right) \\
= r \left(\begin{array}{cc}
B^\dagger B D & B^\dagger \\
A^\dagger & A^\dagger A
\end{array}\right) + k - r\left(A\right) - r\left(B\right).
\]

(2.4)

Using the formula \(r(AB) \leq \min\{r(A), r(B)\}\) together with the fact that

\[
\left(\begin{array}{cc}
B^* B & 0 \\
0 & A^* A
\end{array}\right) \left(\begin{array}{cc}
B^\dagger B D & B^\dagger \\
A^\dagger & A^\dagger A
\end{array}\right) = \left(\begin{array}{cc}
B^* B D & B^* \\
A^* & A^* A
\end{array}\right),
\]

\[
\left(\begin{array}{cc}
B^\dagger B^\dagger & 0 \\
0 & A^\dagger \left(A^\dagger\right)^*\end{array}\right) \left(\begin{array}{cc}
B^* B D & B^* \\
A^* & A^* A
\end{array}\right) = \left(\begin{array}{cc}
B^\dagger B D & B^\dagger \\
A^* & A^* A
\end{array}\right)
\]

(2.5)

means that

\[
r\left(\begin{array}{cc}
B^\dagger B D & B^\dagger \\
A^\dagger & A^\dagger A
\end{array}\right) = r\left(\begin{array}{cc}
B^* B D & B^* \\
A^* & A^* A
\end{array}\right).
\]

(2.6)
Substituting (2.6) into (2.4) yields

\[
\begin{aligned}
 r(F_B, B^\dagger A^\dagger - D, -B^\dagger F_A) &= r\left(\begin{bmatrix} B^* BD \\ A^* & B^* \\ A^* A \end{bmatrix} \right) + k - r(A) - r(B).
\end{aligned}
\]

Similarly, we obtain

\[
\begin{aligned}
 r(F_B, B^\dagger F_A) &= r\left(\begin{bmatrix} B^* \\ A \end{bmatrix} \right) + k - r(A) - r(B), \\
 r\left(\begin{bmatrix} -D & 0 \\ A^\dagger & -F_A \end{bmatrix} \right) &= r\left(\begin{bmatrix} A^* \\ D \end{bmatrix} \right) + n - r(A), \\
 r\left(\begin{bmatrix} F_B & -D & 0 \\ 0 & A^\dagger & -F_A \end{bmatrix} \right) &= r\left(\begin{bmatrix} BD \\ A^* \end{bmatrix} \right) + n + k - r(A) - r(B).
\end{aligned}
\]

It is always true that \(R(I - A^\dagger A) = \mathcal{A}(A) \). Therefore,

\[
r(F_A) = r\left(I - A^\dagger A \right) = n - r(A).
\]

Substituting (2.7)–(2.9) into (2.3) yields (2.1). \(\square \)

Theorem 2.2. Let \(A \in \mathbb{C}^{m \times n} \) and \(B \in \mathbb{C}^{n \times k} \). Then the following statements are equivalent:

1. \(B\{1,3\}A\{1,3\} \supseteq (AB)\{1,3\} \);
2. \(r(A^* AB, B) + r(A) = r(AB) + \min\{ r(A^*, B), \max\{ n + r(A) - m, n + r(B) - k \} \} \).

Proof. We know that \(B\{1,3\}A\{1,3\} \supseteq (AB)\{1,3\} \) is equivalent to saying that for an arbitrary \((AB)\{1,3\}^{-1} \)-inverse \((AB)^{(1,3)}\), there are \((1,3) \)-inverses \(A^{(1,3)} \) and \(B^{(1,3)} \) satisfying \(B^{(1,3)} A^{(1,3)} = (AB)^{(1,3)} \). That is,

\[
B\{1,3\}A\{1,3\} \supseteq (AB)\{1,3\} \iff \max_{(AB)^{(1,3)}, A^{(1,3)}} \min_{B^{(1,3)}} r\left((AB)^{(1,3)} - B^{(1,3)} A^{(1,3)} \right) = 0.
\]

By using the formula (2.1), we get

\[
\begin{aligned}
 \min_{B^{(1,3)}, A^{(1,3)}} r\left((AB)^{(1,3)} - B^{(1,3)} A^{(1,3)} \right) &= r\left(\begin{bmatrix} B^* B (AB)^{(1,3)} \\ A^* \\ A^* A \end{bmatrix} \right) - \min\left(r\left(\begin{bmatrix} B^* \\ A^* \\ A^* A \end{bmatrix} \right), r\left(B (AB)^{(1,3)} \right) - r\left(\begin{bmatrix} (AB)^{(1,3)} \\ A^* \end{bmatrix} \right) + n \right).
\end{aligned}
\]
Using the formulas (1.9) and (1.8) together with elementary block matrix operations, the maximal and minimal ranks of first partitioned matrix in the right-hand side of (2.11) are as follows:

\[
\begin{align*}
\min_{(AB)^{(1,3)}} \ r \left(\begin{array}{cc} B^* B (AB)^{(1,3)} & B^* \\ A^* & A^* A \end{array} \right) &= \min_{(AB)^{(1,3)}} \left[r \left(\begin{array}{cc} 0 & B^* \\ A^* & A^* A \end{array} \right) - \left(-B^* B \right) (AB)^{(1,3)} (I, 0) \right] \\
&= r \left(\begin{array}{ccc} B^* A^* A & B^* A^* & 0 \\ -B^* B & 0 & B^* \\ 0 & A^* A & A^* A \end{array} \right) + r \left(\begin{array}{cc} I & 0 \\ 0 & B^* \\ A^* A & A^* A \end{array} \right) - r \left(\begin{array}{cc} AB & 0 & 0 \\ 0 & I & 0 \\ -B^* B & 0 & B^* \\ 0 & A^* A & A^* A \end{array} \right) \\
&= r \left(\begin{array}{c} B^* A^* A \\ B^* \end{array} \right) + r(A) - r(AB) = \max_{(AB)^{(1,3)}} r \left(\begin{array}{cc} B^* B (AB)^{(1,3)} & B^* \\ A^* & A^* A \end{array} \right).
\end{align*}
\]

Therefore, for an arbitrary \([1, 3]\)-inverse \((AB)^{(1,3)}\),

\[
\begin{align*}
 r \left(\begin{array}{cc} B^* B (AB)^{(1,3)} & B^* \\ A^* & A^* A \end{array} \right) &= r \left(\begin{array}{c} B^* A^* A \\ B^* \end{array} \right) + r(A) - r(AB).
\end{align*}
\]

Using formulas (1.6) and (1.5), we get

\[
\begin{align*}
 r \left(\begin{array}{c} (AB)^{(1,3)} \\ A^* \end{array} \right) - r \left(\begin{array}{c} (AB)^{(1,3)} \\ A^* \end{array} \right) &= r \left[B (AB)^{(1,3)} (I - AA^t) \right] - r \left[(AB)^{(1,3)} (I - AA^t) \right] \\
&= - \dim \mathcal{N}(B) \cap \mathcal{R} \left[(AB)^{(1,3)} (I - AA^t) \right].
\end{align*}
\]

Substituting (2.13) and (2.14) into (2.11) produces

\[
\begin{align*}
\min_{(AB)^{(1,3)}, (A)^{(1,3)}} r \left[(AB)^{(1,3)} - B^{(1,3)} A^{(1,3)} \right] &= r \left(\begin{array}{c} B^* A^* A \\ B^* \end{array} \right) + r(A) - r(AB) \\
&\quad - \min \left\{ r \left(\begin{array}{c} B^* \\ A \end{array} \right), n - \dim \mathcal{N}(B) \cap \mathcal{R} \left[(AB)^{(1,3)} (I - AA^t) \right] \right\}.
\end{align*}
\]
Furthermore, we have

\[
\max_{(AB)^{(1,3)} B^{(1,3)}, A^{(1,3)}} \min r \left[(AB)^{(1,3)} - B^{(1,3)} A^{(1,3)} \right] = r(B^* A^* A) + r(A) - r(AB) - \min \left\{ r(B^*), n - a \right\},
\]

where \(a = \max_{(AB)^{(1,3)}} \dim \mathcal{A}(B) \cap \mathcal{R}[(AB)^{(1,3)} (I - AA^\dagger)]. \)

Next, we want to prove that \(a \) is equal to \(\min\{k - r(B), \ m - r(A)\}. \) First observe that \(a \leq \min\{k - r(B), \ m - r(A)\} \) since \(a \leq \dim \mathcal{A}(B) = k - r(B) \) and \(a \leq \max_{(AB)^{(1,3)}} r[(AB)^{(1,3)} (I - AA^\dagger)] \leq r(I - AA^\dagger) = \dim \mathcal{A}(A^*). \) Therefore, \(a = \min\{k - r(B), \ m - r(A)\} \) holds if and only if there is a \(\{1, 3\}\)-inverse \((AB)^{(1,3)}\) such that

\[
\dim \mathcal{A}(B) \cap \mathcal{R}[(AB)^{(1,3)} (I - AA^\dagger)] = \min\{k - r(B), m - r(A)\}.
\]

Suppose that \(m - r(A) \leq k - r(B). \) Also note that \(r[(AB)^{(1,3)} (I - AA^\dagger)] \leq m - r(A) \) for arbitrary \(\{1, 3\}\)-inverses \((AB)^{(1,3)}\). Therefore, for some \((AB)^{(1,3)}\), (2.17) holds if and only if there is a \(\{1, 3\}\)-inverse \((AB)^{(1,3)}\) such that \(\mathcal{R}[(AB)^{(1,3)} (I - AA^\dagger)] \subseteq \mathcal{A}(B) \) and \(r[(AB)^{(1,3)} (I - AA^\dagger)] = m - r(A) \) hold—that is,

\[
\min_{(AB)^{(1,3)}} r \left[\begin{pmatrix} B \\ I \end{pmatrix} (AB)^{(1,3)} (I - AA^\dagger) - \begin{pmatrix} 0 \\ C \end{pmatrix} \right] = 0,
\]

where \(C \) is any \(k \times m \) matrix and \(r(C) = m - r(A). \) It follows from the formula (1.7) that \(\max_X r(I - B^\dagger B)X(I - AA^\dagger) = \min\{r(I - B^\dagger B), \ r(I - AA^\dagger)\} = m - r(A) \). Therefore, there is a matrix \(X_0 \) satisfying \(r(I - B^\dagger B)X_0(I - AA^\dagger) = m - r(A) \). Let \(C = (I - B^\dagger B)X_0(I - AA^\dagger). \) It is always true that \(r(C) = m - r(A), \ BC = 0, \) and \(B^* A^* (I - AA^\dagger) = 0. \) Use these equations together with the formula (1.9) to conclude that (2.18) holds. Therefore, if \(m - r(A) \leq k - r(B) \), then there is a \(\{1, 3\}\)-inverse \((AB)^{(1,3)}\) such that (2.17) holds.

On the other hand, suppose that \(m - r(A) > k - r(B). \) Also note that \(\dim \mathcal{A}(B) = k - r(B). \) Therefore, for some \((AB)^{(1,3)}\) (2.17) holds if and only if there is a \(\{1, 3\}\)-inverse \((AB)^{(1,3)}\) such that \(\mathcal{A}(B) = \mathcal{R}(I - B^\dagger B) \subseteq \mathcal{R}[(AB)^{(1,3)} (I - AA^\dagger)] \) holds, that is,

\[
\min_{(AB)^{(1,3)}} r \left[I - B^\dagger B - (AB)^{(1,3)} (I - AA^\dagger) \right] X = 0,
\]

(2.19)
where X is some $m \times k$ matrix. Use the formula (1.9) to find that

$$
\min_{(AB)^{(1,3)}} r \left[I - B^t B - (AB)^{(1,3)} (I - AA^t) X \right]
= r \left(B^* A^* AB \right) - r \left((I - AA^t) X \right)
= r \left((I - AA^t) X \right) - r \left((I - AA^t) X \right)
= r \left(X^* (I - AA^t) , I - B^t B \right) - r \left(X^* (I - AA^t) \right).
$$

(2.20)

We know from (2.20) that (2.19) holds if and only if there is an $m \times k$ matrix X such that $\mathcal{R}(I - B^t B) \subseteq \mathcal{R}(X^*(I - AA^t))$. In fact, note that $r(I - B^t B) = \dim \mathcal{N}(B) = k - r(B)$ and $r(I - A^t A) = \dim \mathcal{N}(A^*) = m - r(A)$, and let $P_1, P_2, Q_1,$ and Q_2 be nonsingular matrices such that $I - B^t B = P_1 \begin{pmatrix} k-r(B) & 0 \\ 0 & 0 \end{pmatrix} Q_1$ and $I - A^t A = P_2 \begin{pmatrix} k-r(A) & 0 \\ 0 & 0 \end{pmatrix} Q_2$. Using this together with $m - r(A) > k - r(B)$ means that if $X^* = P_1 P_2^{-1}$, then $\mathcal{R}(I - B^t B) \subseteq \mathcal{R}(X^*(I - AA^t))$. Therefore, if $m - r(A) > k - r(B)$, then there is a $\{1,3\}$-inverse $(AB)^{(1,3)}$ such that (2.17) holds.

In summary, there is a $\{1,3\}$-inverse $(AB)^{(1,3)}$ such that (2.17) holds. That is, $a = \min\{k - r(B), m - r(A)\}$. Apply this to (2.16) to obtain that

$$
\max_{(AB)^{(1,3)}} \min_{B^{(1,3)}, A^{(1,3)}} r \left[(AB)^{(1,3)} - B^{(1,3)} A^{(1,3)} \right] = r(A^* AB, B) + r(A) - r(AB)
- \min\{r(A^*, B), \max\{n + r(B) - k, n + r(A) - m\}\}
$$

(2.21)

Noting that (2.10) and letting the right-hand side in (2.21) be equal to zero, then the equivalence between (1) and (2) follows immediately.

It is obvious that $B\{1,3\}A\{1,3\} = (AB)\{1,3\}$ if and only if $B\{1,3\}A\{1,3\} \subseteq (AB)\{1,3\}$ and $B\{1,3\}A\{1,3\} \supseteq (AB)\{1,3\}$. Also note Theorem 2.2 and formula (1.2). It is easy to obtain the following theorem.

Theorem 2.3. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times k}$. Then the following statements are equivalent:

1. $B\{1,3\}A\{1,3\} = (AB)\{1,3\}$;
2. $r(B, A^* AB) = r(B)$ and $r(A) + r(B) = r(AB) + \min\{r(A^*, B), \max\{n + r(B) - k, n + r(A) - m\}\}$.

The following theorems can be obtained by applying Theorem 2.2 or Theorem 2.3 to the product $B^* A^*$ and using the fact that $X \in D\{1,3\}$ if and only if $X^* \in D^*\{1,4\}$.
Theorem 2.4. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times k}$. Then the following statements are equivalent:

2. $r(BB^*A^*, A^*) + r(B) + r(AB) = r(AB) + \min \{r(A^*, B), \max \{n + r(A) - m, n + r(B) - k\}\}$.

Theorem 2.5. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times k}$. Then the following statements are equivalent:

2. $r(BB^*A^*, A^*) = r(A) + r(B) = r(AB) + \min \{r(A^*, B), \max \{n + r(A) - m, n + r(B) - k\}\}$.

3. Examples

In this section, we give two examples. The first example comes from [14], and they verify that $B[1,2,3]A[1,2,3] \subseteq (AB)[1,2,3]$. However, this example does not only satisfy this result. In Example 3.1, we know that this example satisfies Theorems 2.3 and 2.5, and so we have $B[1,3]A[1,3] = (AB)[1,3]$ and $B[1,4]A[1,4] = (AB)[1,4]$. In this example, we will verify these results. Secondly, we give another example which only satisfies $B[1,3]A[1,3] \supset (AB)[1,3]$ and $B[1,4]A[1,4] \supset (AB)[1,4]$.

Example 3.1. Let

\[
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}. \tag{3.1}
\]

It is easy to obtain that

\[
r(B, A^*AB) = r(A^*, BB^*A^*) = r(B) = r(A) = r(B, A^*) = 2. \tag{3.2}
\]

From Theorems 2.3 and 2.5, we can conclude that

\[
B[1,3]A[1,3] = (AB)[1,3], \quad B[1,4]A[1,4] = (AB)[1,4]. \tag{3.3}
\]

Now we verify this statement. Since

\[
A[1,3] = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ a_1 & a_2 & a_3 \\ -a_1 - a_2 + \frac{1}{2} - a_3 + \frac{1}{2} \end{pmatrix} \mid a_1, a_2, a_3 \in \mathbb{C} \right\},
\]

\[
B[1,3] = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & \frac{1}{2} \\ a_4 & a_5 & a_6 \end{pmatrix} \mid a_4, a_5, a_6 \in \mathbb{C} \right\},
\]
we easily find that

\[
B[1,3]A[1,3] = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ a & b & c \end{pmatrix} \mid a_i \in \mathbb{C}, \ i = 1,2,\ldots,6 \right\},
\]

where \(a = a_4 + a_1 a_5 - a_1 a_6, b = a_2 a_5 - a_2 a_6 + (1/2)a_6, \) and \(c = a_3 a_5 - a_3 a_6 + (1/2)a_6. \) It is obvious that \(B[1,3]A[1,3] \subseteq (AB)[1,3]. \) If \(a_1 = a_2 = 0, \ a_3 = 1, \ a_4 = a_7, \ a_5 = a_8 + a_9, \) and \(a_6 = 2a_8, \) then we have \(a = a_7, \ b = a_8, \) and \(c = a_9, \) that is, \(B[1,3]A[1,3] \supseteq (AB)[1,3]. \) Therefore, \(B[1,3]A[1,3] = (AB)[1,3]. \)

On the other hand, since

\[
A[1,4] = \left\{ \begin{pmatrix} 1 & a_1 & -a_1 \\ 0 & a_2 & -a_2 + \frac{1}{2} \\ 0 & -a_3 + \frac{1}{2} & a_3 \end{pmatrix} \mid a_1, a_2, a_3 \in \mathbb{C} \right\},
\]

\[
B[1,4] = \left\{ \begin{pmatrix} 1 & a_4 & -a_4 \\ -1 & a_5 & 1 - a_5 \\ 0 & a_6 & -a_6 \end{pmatrix} \mid a_4, a_5, a_6 \in \mathbb{C} \right\},
\]

\[
(AB)[1,4] = \left\{ \begin{pmatrix} 1 & a_7 & -a_7 \\ -1 & a_8 & -a_8 + \frac{1}{2} \\ 0 & a_9 & -a_9 \end{pmatrix} \mid a_7, a_8, a_9 \in \mathbb{C} \right\},
\]

we easily see that

\[
B[1,4]A[1,4] = \left\{ \begin{pmatrix} 1 & d & -d \\ -1 & e & -e + \frac{1}{2} \\ 0 & f & -f \end{pmatrix} \mid a_i \in \mathbb{C}, \ i = 1,2,\ldots,6 \right\},
\]

where \(d = a_1 - (1/2)a_4 + a_2 a_4 + a_3 a_4, \ e = (1/2) - a_1 - a_3 - (1/2)a_5 + a_2 a_5 + a_3 a_5, \) and \(f = a_2 a_6 + a_3 a_6 - (1/2)a_6. \) It is obvious that \(B[1,4]A[1,4] \subseteq (AB)[1,4]. \) If \(a_1 = a_7, \ a_2 = a_7 + a_8 + a_9, \ a_3 = 1/2 - a_7 - a_8, \ a_4 = a_5 = 0 \) and \(a_6 = 1, \) then we have \(d = a_7, \ e = a_8, \) and \(f = a_9, \) that is, \(B[1,4]A[1,4] \supseteq (AB)[1,4]. \) Therefore, \(B[1,4]A[1,4] = (AB)[1,4]. \)
Example 3.2. Let

\[
A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\] (3.8)

It is easy to obtain that

\[
\begin{align*}
& r(A) = r(B) = r(AB) = 2, \\
& r(B, A^*AB) = r(A^*, BB^*A^*) = r(B, A^*) = 3.
\end{align*}
\] (3.9)

From Theorems 2.2 and 2.4, we can find that

\[
B\{1, 3\} A\{1, 3\} \supseteq (AB)\{1, 3\}, \quad B\{1, 4\} A\{1, 4\} \supseteq (AB)\{1, 4\}.
\] (3.10)

Furthermore, note that \(r(B, A^*AB) = r(A^*, BB^*A^*) = 3 \neq r(B) = r(A) = 2\). Using Theorems 2.3 and 2.5, we can conclude that

\[
B\{1, 3\} A\{1, 3\} \supset (AB)\{1, 3\}, \quad B\{1, 4\} A\{1, 4\} \supset (AB)\{1, 4\}.
\] (3.11)

Now we verify this statement. Since

\[
A\{1, 3\} = \begin{cases}
\begin{pmatrix} 1 & 0 & 0 \\ a_1 & a_2 & a_3 \\ -a_1 -a_2 + \frac{1}{2} -a_3 + \frac{1}{2} \\ a_4 & a_5 & a_6 \end{pmatrix} & | a_1, a_2, \ldots, a_6 \in \mathbb{C}
\end{cases},
\]

\[
B\{1, 3\} = \begin{cases}
\begin{pmatrix} 2 & 1 & 1 \\ \frac{3}{3} & \frac{3}{3} & \frac{1}{3} \\ -1 & 1 & 0 \\ \frac{3}{3} & \frac{3}{3} & 0 \end{pmatrix} & | a_7, a_8, a_9, a_{10} \in \mathbb{C}
\end{cases},
\] (3.12)

\[
(AB)\{1, 3\} = \begin{cases}
\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ a_{11} & a_{12} & a_{13} \end{pmatrix} & | a_{11}, a_{12}, a_{13} \in \mathbb{C}
\end{cases}.
\]
we easily get that

\[
B_{1,3}A_{1,3} = \begin{pmatrix}
\frac{2}{3} + \frac{2}{3}a_1 & -1 + \frac{2}{3}a_2 & -1 + \frac{2}{3}a_3 \\
-\frac{1}{3} - \frac{1}{3}a_1 & \frac{1}{3} - \frac{1}{3}a_2 & \frac{1}{3} - \frac{1}{3}a_3 \\
a & b & c
\end{pmatrix}
\left| a_1, a_2, \ldots, a_{10} \in \mathbb{C} \right.,
\]

(3.13)

where \(a = a_7 + a_1a_8 - a_1a_9 + a_4a_{10}, b = (1/2)a_9 + a_2a_8 - a_2a_9 + a_5a_{10}, \) and \(c = (1/2)a_9 + a_3a_8 - a_3a_9 + a_6a_{10}. \) It is obvious that if \(a_1 = 1/2, a_2 = 1/4, a_3 = 1/4, a_4 = a_6 = a_9 = 0, a_5 = a_{12} = a_{13}, a_7 = 2a_{13} + a_{11}, a_9 = 4a_{13}, \) and \(a_{10} = 1, \) then

\[
\begin{pmatrix}
\frac{2}{3} + \frac{2}{3}a_1 & -1 + \frac{2}{3}a_2 & -1 + \frac{2}{3}a_3 \\
-\frac{1}{3} - \frac{1}{3}a_1 & \frac{1}{3} - \frac{1}{3}a_2 & \frac{1}{3} - \frac{1}{3}a_3 \\
a & b & c
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
-\frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{pmatrix}.
\]

(3.14)

That is, \(B_{1,3}A_{1,3} \supseteq (AB)_{1,3}. \) Furthermore, note that if \(a_1 \neq 1/2, \) then there are some \(B_{1,3}A_{1,3} \) which do not belong to \((AB)_{1,3}. \) Therefore, \(B_{1,3}A_{1,3} \supset (AB)_{1,3}. \)

On the other hand, because

\[
A_{1,4} = \left\{ \begin{pmatrix}
1 & a_1 & -a_1 \\
0 & a_2 & -a_2 + \frac{1}{2} \\
0 & a_3 & -a_3 + \frac{1}{2} \\
0 & a_4 & -a_4
\end{pmatrix} \left| a_1, a_2, a_3, a_4 \in \mathbb{C} \right. \right\},
\]

(3.15)

\[
B_{1,4} = \left\{ \begin{pmatrix}
a_5 & -a_5 + 1 & a_5 - 1 & a_6 \\
a_7 & -a_7 & a_7 + 1 & a_8 \\
a_9 & -a_9 & a_9 & a_{10}
\end{pmatrix} \left| a_5, a_6, \ldots, a_{10} \in \mathbb{C} \right. \right\},
\]

\[
(AB)_{1,4} = \left\{ \begin{pmatrix}
1 & a_{11} & -a_{11} \\
-\frac{1}{2} & a_{12} & -a_{12} + \frac{1}{2} \\
0 & a_{13} & -a_{13}
\end{pmatrix} \left| a_{11}, a_{12}, a_{13} \in \mathbb{C} \right. \right\},
\]

we easily obtain that

\[
B_{1,4}A_{1,4} = \left\{ \begin{pmatrix}
a_5 & d & -d \\
a_7 & e & -e + \frac{1}{2} \\
a_9 & f & -f
\end{pmatrix} \left| a_1, a_2, \ldots, a_{10} \in \mathbb{C} \right. \right\},
\]

(3.16)
where $d = a_2 - a_3 + a_1a_5 - a_2a_5 + a_3a_5 + a_4a_6$, $e = a_3 + a_1a_7 - a_2a_7 + a_4a_7$, and $f = a_1a_9 - a_2a_9 + a_3a_9 + a_4a_{10}$. It is obvious that if $a_1 = a_{11}$, $a_2 = a_5 = a_8 = a_9 = 0$, $a_3 = a_{11} + 2a_{12}$, $a_4 = a_{13}$, $a_5 = a_{10} = 1$ and $a_7 = -1/2$, then

$$
\begin{pmatrix}
 a_5 & d & -d \\
 a_7 & e & -e + \frac{1}{2} \\
 a_9 & f & -f
\end{pmatrix}
= \begin{pmatrix}
 1 & a_{11} & -a_{11} \\
 -\frac{1}{2} & a_{12} & -a_{12} + \frac{1}{2} \\
 0 & -a_{13} & -a_{13}
\end{pmatrix}.
$$

That is, $B\{1,4\}A\{1,4\} \supseteq (AB)\{1,4\}$. Furthermore, note that if $a_5 \neq 1$, then there are some $B^{(1,4)}A^{(1,4)}$ which do not belong to $(AB)\{1,4\}$. Therefore, $B\{1,4\}A\{1,4\} \supset (AB)\{1,4\}$.

Acknowledgments

This work is supported by the Third Stage Training of “211 Project” (Project no.: S-09110), and supported by The Natural Science Foundation Project of CQ CSTC (2009BB6189).

References

