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This paper is devoted to generalize Halanay’s inequality which plays an important rule in study
of stability of differential equations. By applying the generalized Halanay inequality, the stability
results of nonlinear neutral functional differential equations (NFDEs) and nonlinear neutral delay
integrodifferential equations (NDIDEs) are obtained.

1. Introduction

In 1966, in order to discuss the stability of the zero solution of

u′(t) = −Au(t) + Bu(t − τ∗), τ∗ > 0, (1.1)

Halanay used the inequality as follows.

Lemma 1.1 (Halanay’s inequality, see [1]). If

v′(t) ≤ −Av(t) + B sup
t−τ≤s≤t

v(s), for t ≥ t0, (1.2)

where A > B > 0, then there exist c > 0 and κ > 0 such that

v(t) ≤ ce−κ(t−t0), for t ≥ t0, (1.3)

and hence v(t) → 0 as t → ∞.
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In 1996, in order to investigate analytical and numerical stability of an equation of the
type

u′(t) = f

(
t, u(t), u

(
η(t)

)
,

∫ t

t−τ(t)
K(t, s, u(s))ds

)
, t ≥ t0,

y(t) = φ(t), t ≤ t0, φ bounded and continuous for t ≤ t0,

(1.4)

Baker and Tang [2] give a generalization of Halanay inequality as Lemma 1.2 which can be
used for discussing the stability of solutions of some general Volterra functional differential
equations.

Lemma 1.2 (see [2]). Suppose v(t) > 0, t ∈ (−∞,+∞), and

v′(t) ≤ −A(t)v(t) + B(t) sup
t−τ(t)≤s≤t

v(s) (t ≥ t0), v(t) =
∣∣ψ(t)∣∣ (t ≤ t0), (1.5)

where ψ(t) is bounded and continuous for t ≤ t0, A(t), B(t) > 0 for t ∈ [t0,+∞), τ(t) ≥ 0, and
t − τ(t) → +∞ as t → +∞. If there exists p > 0 such that

−A(t) + B(t) ≤ −p < 0, for t ≥ t0, (1.6)

then

(i) v(t) ≤ sup
t∈(−∞,t0]

∣∣ψ(t)∣∣, for t ≥ t0,

(ii) v(t) −→ 0 as t −→ ∞.

(1.7)

In recent years, the Halanay inequality has been extended to more general type
and used for investigating the stability and dissipativity of various functional differential
equations by several researchers (see, e.g., [3–7]). In this paper, we consider a more general
inequality and use this inequality to discuss the stability of nonlinear neutral functional
differential equations (NFDEs) and a class of nonlinear neutral delay integrodifferential
equations (NDIDEs).

2. Generalized Halanay Inequality

In this section, we first give a generalization of Lemma 1.1.

Theorem 2.1 (generalized Halanay inequality). Consider

u′(t) ≤ −A(t)u(t) + B(t) max
s∈[t−τ,t]

u(s) + C(t) max
s∈[t−τ,t]

w(s),

w(t) ≤ G(t) max
s∈[t−τ,t]

u(s) +H(t) max
s∈[t−τ,t]

w(s),
t ≥ t0, (2.1)
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where A(t), B(t), C(t), D(t), G(t), and H(t) are nonnegative continuous functions on [t0,∞), and
the notation (′) denotes the conventional derivative or the one-sided derivatives. Suppose that

A(t) ≥ A0 > 0, H(t) ≤ H0 < 1,
B(t)
A(t)

+
C(t)G(t)

(1 −H(t))A(t)
≤ p < 1, ∀t ≥ t0. (2.2)

Then for any ε > 0, one has

u(t) < (1 + ε)Ueν
∗(t−t0), w(t) < (1 + ε)Weν

∗(t−t0), (2.3)

where U = maxs∈[t0−τ,t0]u(s), W = maxs∈[t0−τ,t0]w(s), and ν∗ < 0 is defined by the following
procedure. Firstly, for every fixed t, let ν denote the maximal real root of the equation

ν +A(t) − B(t)e−ντ − C(t)G(t)e−2ντ

1 −H(t)e−ντ
= 0. (2.4)

Obviously, ν is different for different t, that is to say, ν is a function of t. Then we define ν∗ as

ν∗ := sup
t≥t0

{ν(t)}. (2.5)

To prove the theorem, we need the following lemmas.

Lemma 2.2. There exists nontrivial solution ũ(t) = Ũeν∗(t−t0), w̃(t) = W̃eν∗(t−t0), t ≥ t0, ν∗ ≥ 0, (Ũ
and W̃ are constants) to systems

u′(t) = −A(t)u(t) + B(t)u(t − τ) + C(t)w(t − τ),

w(t) = G(t)u(t − τ) +H(t)w(t − τ),
t ≥ t0 (2.6)

if and only if for any fixed t characteristic equation (2.4) has at least one nonnegative root ν.

Proof. If systems (2.6) have nontrivial solution ũ(t) = Ũeν∗(t−t0), w̃(t) = W̃eν∗(t−t0), then ν∗ is
obviously a nonnegative root of the characteristic equation (2.4). Conversely, if characteristic
equation (2.4) has nonnegative root ν for any fixed t, then ũ(t) = Ũeν∗(t−t0) and w̃(t) =
W̃eν∗(t−t0), ν∗ = inft≥t0{ν(t)} ≥ 0, are obviously a nontrivial solution of (2.6).

Lemma 2.3. If (2.2) holds, then

(i) for any fixed t, characteristic equation (2.4) does not have any nonnegative root but has a
negative root ν;

(ii) ν∗ < 0.

Proof. We consider the following two cases successively.
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Case 1 (τ = 0). Obviously, for any fixed t, the root of characteristic equation (2.4) is ν =
−A(t) + B(t) + C(t)G(t)/(1 − H(t)) < 0. Now we want to show that ν∗ < 0. Suppose this is
not true. Take ε such that 0 < ε < (1 − p)A0. Then there exists t∗ ≥ t0 such that 0 > ν(t∗) > −ε.
Using condition (2.2), we have

0 = ν(t∗) +A(t∗) − B(t∗) − C(t∗)G(t∗)
1 −H(t∗)

> −ε +A(t∗) − pA(t∗)

= −ε + (
1 − p

)
A(t∗)

≥ −ε + (
1 − p

)
A0

> 0,

(2.7)

which is a contradiction, and therefore ν∗ < 0.

Case 2 (τ > 0). In this case, obviously, for any fixed t, 0 is not a root of (2.4). If (2.4) has a
positive root ν at a certain fixed t, then it follows from (2.2) and (2.4) that

B(t) +
C(t)G(t)
1 −H(t)

< B(t)e−ντ +
C(t)G(t)e−2ντ

1 −H(t)e−ντ
, (2.8)

that is,

C(t)G(t)
1 −H(t)

<
C(t)G(t)e−2ντ

1 −H(t)e−ντ
. (2.9)

After simply calculating, we have H(t) > 1 which contradicts the assumption. Thus, (2.4)
does not have any nonnegative root.

To prove that (2.4) has a negative root ν for any fixed t, we set ν0 = τ−1 lnH(t) and
define

H(ν) = ν +A(t) − B(t)e−ντ − C(t)G(t)e−2ντ

1 −H(t)e−ντ
. (2.10)

Then it is easily obtained that

H(0) > 0, lim
ν→ ν+0

H(ν) = −∞. (2.11)
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On the other hand, when ν ∈ (ν0, 0], we have

H′(ν) = 1 + B(t)τe−ντ +
2C(t)G(t)τe−2ντ[1 −H(t)e−ντ]

[1 −H(t)e−ντ]2

+
C(t)G(t)e−2ντH(t)τe−ντ

[1 −H(t)e−ντ]2
> 0,

(2.12)

which implies that H(ν) is a strictly monotone increasing function. Therefore, for any fixed t
the characteristic equation (2.4) has a negative root ν ∈ (ν0, 0).

It remains to prove that ν∗ < 0. If it does not hold, we arbitrarily take p̃ such that
(1 −H0)p +H0 < p̃ < 1 and fix

0 < ε < min
{(

1 − p̃
)
A0, (2τ)−1

[
ln p̃ − ln

(
(1 −H0)p +H0

)]}
. (2.13)

Then there exists t∗ ≥ t0 such that 0 > ν(t∗) > −ε. Since

eετH(t∗) ≤ H0e
ετ ≤ H0

[
p̃

(1 −H0)p +H0

]1/2
< 1,

1
1 −H(t∗)eετ

≤ 1 −H0

(1 −H0eετ)(1 −H(t∗))
,

(2.14)

we have

0 = ν(t∗) +A(t∗) − B(t∗)e−ν(t
∗)τ − C(t∗)G(t∗)e−2ν(t

∗)τ

1 −H(t∗)e−ν(t∗)τ

> −ε +A(t∗) − B(t∗)eετ − C(t∗)G(t∗)e2ετ

1 −H(t∗)eετ

> −ε +A(t∗) − e2ετ(1 −H0)
1 −H0eετ

[
B(t∗) +

C(t∗)G(t∗)
1 −H(t∗)

]

≥ −ε +A(t∗) − e2ετ(1 −H0)
1 −H0eετ

pA(t∗)

> −ε +A(t∗) − p̃A(t∗)

= −ε + (
1 − p̃

)
A(t∗)

≥ −ε + (
1 − p̃

)
A0

> 0,

(2.15)

which is a contradiction, and therefore ν∗ < 0.
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Lemma 2.4. If (2.6) has a solution with exponential form ũ(t) = Ũeν
∗(t−t0), w̃(t) = W̃eν

∗(t−t0), t ≥ t0,
ν∗ < 0, then for any ε > 0, any nontrivial solution u(t), w(t) of (2.1) satisfies (2.3).

Proof. The required result follows at once when t ∈ [t0 − τ, t0]. If there exists t∗ such that when
t < t∗,

u(t) < (1 + ε)Ueν
∗(t−t0), w(t) < (1 + ε)Weν

∗(t−t0) (2.16)

with u(t∗) = (1 + ε)Ueν
∗(t∗−t0) or w(t∗) = (1 + ε)Weν

∗(t∗−t0), then for t ≤ t∗, we can find that

u(t) ≤ e
− ∫ t

t0
A(x)dx

u(t0) +
∫ t

t0

e−
∫ t
r A(x)dx

[
B(r) max

s∈[r−τ,r]
u(s) + C(r) max

s∈[r−τ,r]
w(s)

]
dr

< e
− ∫ t

t0
A(x)dx(1 + ε)U +

∫ t

t0

e−
∫ t
r A(x)dx

[
B(r)(1 + ε)Ueν

∗(r−τ−t0) + C(r)(1 + ε)Weν
∗(r−τ−t0)

]
dr

= ũ(t) = (1 + ε)Ueν
∗(t−t0),

w(t) < G(t) max
s∈[t−τ,t]

(1 + ε)Ueν
∗(s−t0) +H(t) max

s∈[t−τ,t]
(1 + ε)Weν

∗(s−t0)

= w̃(t) = (1 + ε)Weν
∗(t−t0),

(2.17)

a contradiction proving the lemma.

Proof of Theorem 2.1. By Lemma 2.3, we can find that for any fixed t, characteristic equation
(2.4) only has negative root and ν∗ < 0. Thus from Lemma 2.2 we know that systems (2.6)
have not nontrivial solution with the form ũ(t) = Ũeν∗(t−t0), w̃(t) = W̃eν∗(t−t0), t ≥ t0, ν∗ ≥ 0.
However, it is easily verified that systems (2.6) have nontrivial solution ũ(t) = Ũeν

∗(t−t0),
w̃(t) = W̃eν

∗(t−t0), t ≥ t0, ν∗ < 0. The result now follows from Lemma 2.4.

Corollary 2.5. If (2.1) and (2.2) hold, then

(i) u(t) ≤ max
s∈[t0−τ,t0]

u(s), w(t) ≤ max
s∈[t0−τ,t0]

w(s);

(ii) lim
t→+∞

u(t) = 0, lim
t→+∞

w(t) = 0.
(2.18)

Proof. (i) follows at once from the arbitrariness of ε. Since ν∗ < 0, (ii) is an immediate
consequence of Theorem 2.1.
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Corollary 2.6 (see [3]). Suppose that A = inft≥t0A(t), B = supt≥t0B(t), C = supt≥t0C(t), G =
supt≥t0 G(t), and H = supt≥t0H(t). Then when

A > 0, H < 1, −A + B +
CG

1 −H
< 0, (2.19)

equation (2.3) holds for any ε > 0, where ν∗ < 0 is defined by

ν∗ := max

{
ν : H(ν) = ν +A − Be−ντ − CGe−2ντ

1 −He−ντ
= 0

}
. (2.20)

3. Applications of the Halanay Inequality

In this section, we consider several simple applications of Theorem 2.1 to the study of stability
for nonlinear neutral functional differential equations (NFDEs) and nonlinear neutral delay-
integrodifferential equations (NDIDEs).

3.1. Stability of Nonlinear NFDEs

Neutral functional differential equations (NFDEs) are frequently encountered in many fields
of science and engineering, including communication network, manufacturing systems,
biology, electrodynamics, number theory, and other areas (see, e.g., [8–11]). During the last
two decades, the problem of stability of various neutral systems has been the subject of
considerable research efforts. Many significant results have been reported in the literature.
For the recent progress, the reader is referred to the work of Gu et al. [12] and Bellen and
Zennaro [13]. However, these studies were devoted to the stability of linear systems and
nonlinear systems with special form, and there exist few results available in the literature for
general nonlinear NFDEs. Therefore, deriving some sufficient conditions for the stability of
nonlinear NFDEs motivates the present study.

Let X be a real or complex Banach space with norm ‖ · ‖. For any given closed
interval [a, b] ⊂ R, let the symbol CX[a, b] denote a Banach space consisting of all continuous
mappings x : [a, b] → X, on which the norm is defined by ‖x‖[a,b] = maxt∈[a,b]‖x(t)‖.

Our investigations will center on the stability of nonlinear NFDEs

ẏ(t) = f
(
t, y(t), yt, ẏt

)
, t ≥ t0,

yt0 = φ, ẏt0 = φ̇,
(3.1)

where the derivative (·) is the conventional derivative, yt(θ) = y(t + θ), −τ ≤ θ ≤ 0, τ ≥ 0
and t0 are constants, φ : [t0 − τ, t0] → X is a given continuously differentiable mapping,
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and f : R × X × CX[−τ, 0] × CX[−τ, 0] → X is a given continuous mapping and satisfies the
following conditions:

[1 − α(t)λ]Gf

(
0, t, y1, y2, χ, ψ

)

≤ Gf

(
λ, t, y1, y2, χ, ψ

)
, ∀λ ≥ 0, t ≥ t0, y1, y2 ∈ X, χ, ψ ∈ CX[−τ, 0],

(3.2)

∥∥f(t, y1, χ1, ψ1
) − f

(
t, y2, χ2, ψ2

)∥∥
≤ L(t)

∥∥y1 − y2
∥∥ + β(t)

∥∥χ1 − χ2
∥∥
[t−τ,t] + γ(t)

∥∥ψ1 − ψ2
∥∥
[t−τ,t],

∀t ≥ t0, y1, y2 ∈ X, χ1, ψ1, χ2, ψ2 ∈ CX[−τ, 0],

(3.3)

where

Gf

(
λ, t, y1, y2, χ, ψ

)
:=

∥∥y1 − y2 − λ
[
f
(
t, y1, χ, ψ

) − f
(
t, y2, χ, ψ

)]∥∥,
∀λ ∈ R, t ≥ t0, y1, y2 ∈ X, χ, ψ ∈ CX[−τ, 0],

(3.4)

and throughout this paper, α(t), L(t), β(t) and γ(t) < 1, for all t ≥ t0, denote continuous
functions. The existence of a unique solution on the interval [t0,∞) of (3.1) will be assumed.

To study the stability of (3.1), we need to consider a perturbed problem

ż(t) = f(t, z(t), zt, żt), t ≥ t0,

zt0 = ϕ, żt0 = ϕ̇,
(3.5)

where we assume the initial function ϕ(t) is also a given continuously differentiable mapping,
but it may be different from φ(t) in problem (3.1).

To prove our main results in this section, we need the following lemma.

Lemma 3.1 (cf. Li [14]). If the abstract function ω(t) : R → X has a left-hand derivative at point
t = t∗, then the function ‖ω(t)‖ also has the left-hand derivative at point t = t∗, and the left-hand
derivative is

D−(‖ω(t∗)‖) = lim
ξ→−0

‖ω(t∗) + ξω′(t∗ − 0)‖ − ‖ω(t∗)‖
ξ

. (3.6)

If ω(t) has a right-hand derivative at point t = t∗, then the function ‖ω(t)‖ also has the right-hand
derivative at point t = t∗, and the right-hand derivative is

D+(‖ω(t∗)‖) = lim
ξ→+0

‖ω(t∗) + ξω′(t∗ + 0)‖ − ‖ω(t∗)‖
ξ

. (3.7)
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Theorem 3.2. Let the continuous mapping f satisfy (3.2) and (3.3). Suppose that

α(t) ≤ α0 < 0, γ(t) ≤ γ0 < 1,
γ(t)L(t) + β(t)
−[1 − γ(t)

]
α(t)

≤ p < 1, ∀t ≥ t0. (3.8)

Then for any ε > 0, one have

∥∥y(t) − z(t)
∥∥ < (1 + ε) max

s∈[t0−τ,t0]

∥∥φ(s) − ϕ(s)
∥∥eν#(t−t0),

∥∥ẏ(t) − ż(t)
∥∥ < (1 + ε) max

s∈[t0−τ,t0]

∥∥φ̇(s) − ϕ̇(s)
∥∥eν#(t−t0), (3.9)

where ν# < 0 is defined by the following procedure. Firstly, for every fixed t, let ν denote the maximal
real root of the equation

ν − α(t) − β(t)e−ντ − γ(t)
[
L(t) + β(t)

]
e−2ντ

1 − γ(t)e−ντ
= 0. (3.10)

Since ν is a function of t, then one defines ν# as ν# := supt≥t0{ν(t)}. Furthermore, one has

∥∥y(t) − z(t)
∥∥ ≤ max

s∈[t0−τ,t0]

∥∥φ(s) − ϕ(s)
∥∥, ∥∥ẏ(t) − ż(t)

∥∥ ≤ max
s∈[t0−τ,t0]

∥∥φ̇(s) − ϕ̇(s)
∥∥,

lim
t→+∞

∥∥y(t) − z(t)
∥∥ = 0, lim

t→+∞
∥∥ẏ(t) − ż(t)

∥∥ = 0.
(3.11)

Proof. Let us define Y (t) = ‖y(t) − z(t)‖ and Ỹ (t) = ‖ẏ(t) − ż(t)‖. By means of

∥∥y(t) − z(t) − λ
[
ẏ(t) − ż(t)

]∥∥ ≥ ∥∥y(t) − z(t) − λ
[
f
(
t, y(t), yt, ẏt

) − f
(
t, z(t), yt, ẏt

)]∥∥
− λ

[
β(t)

∥∥y − z
∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

]
, λ ≥ 0,

(3.12)

from Lemma 3.1, we have

D−(Y (t)) = lim
λ→+0

∥∥y(t) − z(t) − λ
[
ẏ(t) − ż(t)

]∥∥ − ∥∥y(t) − z(t)
∥∥

−λ

≤ lim
λ→+0

[
Gf(0) −Gf(λ)

λ
+ β(t)

∥∥y − z
∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

]

≤ lim
λ→+0

{
[1 − (1 − α(t)λ)]Gf(0)

λ
+ β(t)

∥∥y − z
∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

}

= α(t)Y (t) + β(t)
∥∥y − z

∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t].

(3.13)
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On the other hand, it is easily obtained from (3.3) that

Ỹ (t) ≤ L(t)Y (t) + β(t)
∥∥y − z

∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t], t ≥ t0. (3.14)

Thus, the application of Theorem 2.1 and Corollary 2.5 to (3.13) and (3.14) leads to
Theorem 3.2.

Remark 3.3. In Theorem 3.2, the derivative (·) can be understood as the right-hand derivative
and the same results can be obtained. In fact, defining

M(θ, t) :=
∂

∂y
f
(
t, (1 − θ)z(t) + θy(t), yt, ẏt

)
, θ ∈ [0, 1], t ≥ t0, (3.15)

we have

D+(Y (t)) = lim
λ→+0

∥∥y(t) − z(t) + λ
[
ẏ(t) − ż(t)

]∥∥ − ∥∥y(t) − z(t)
∥∥

λ

≤ lim
λ→+0

1
λ

[∥∥∥∥∥
(
I + λ

∫1

0
M(θ, t)dθ

)[
y(t) − z(t)

]∥∥∥∥∥ − ∥∥y(t) − z(t)
∥∥]

+ β(t)
∥∥y − z

∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

≤ lim
λ→+0

1
λ

[∥∥∥∥∥I + λ

∫1

0
M(θ, t)dθ

∥∥∥∥∥ − 1

]∥∥y(t) − z(t)
∥∥

+ β(t)
∥∥y − z

∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

≤ μ

[∫1

0
M(θ, t)dθ

]
Y (t) + β(t)

∥∥y − z
∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t]

≤ α(t)Y (t) + β(t)
∥∥y − z

∥∥
[t−τ,t] + γ(t)

∥∥ẏ − ż
∥∥
[t−τ,t],

(3.16)

where I denotes the identity matrix, and μ[·] denotes the logarithmic norm induced by 〈·, ·〉.

Remark 3.4. From (3.9), we know that ‖y(t) − z(t)‖ and ‖ẏ(t) − ż(t)‖ have an exponential
asymptotic decay when the conditions of Theorem 3.2 are satisfied.

Not that for special case where X is a Hilbert space with the inner product 〈·, ·〉 and
corresponding norm ‖ · ‖, condition (3.2) is equivalent to a one-sided Lipschitz condition (cf.
Li [14])

Re
〈
y1 − y2, f

(
t, y1, χ, ψ

) − f
(
t, y2, χ, ψ

)〉

≤ α(t)
∥∥y1 − y2

∥∥, ∀t ≥ t0, y1, y2 ∈ X, χ, ψ ∈ CX[−τ, 0].
(3.17)
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Example 3.5. Consider neutral delay differential equations with maxima (see [15])

ẏ(t) = f̂

(
t, y(t), y

(
η0(t)

)
, max
t−h≤s≤η1(t)

y(s), ẏ(ζ0(t)), max
t−h≤s≤ζ1(t)

ẏ(s)
)
,

t − h ≤ ηi(t), ζi(t) ≤ t, i = 0, 1,
t ≥ [0, T]

y(t) = φ(t), ẏ(t) = φ̇(t), t ∈ [−τ, 0].

(3.18)

Since it can be equivalently written in the pattern of IVP (3.1) in NFDEs, on the basis of
Theorem 3.2, we can assert that the system is exponentially stable if the assumptions of
Theorem 3.2 are satisfied.

Example 3.6. As a specific example, consider the following nonlinear system:

ẏ1(t) = cos t − 2y1(t) + 0.4y2(t) + 0.1 sin y2
(
η1(t)

)
+ sin t

∫ t

t−1

0.3ẏ1(θ)

1 + ẏ2
1(θ)

dθ, t ≥ 0,

ẏ2(t) = sin t + 0.4y1(t) − 2y2(t) − 0.2 cos y1
(
η2(t)

)
+ cos t

∫ t

t−1

0.3ẏ2(θ)

1 + ẏ2
2(θ)

dθ, t ≥ 0,

y1(t) = φ1(t), y2(t) = φ2(t), t ≤ 0,

(3.19)

where there exists a constant τ such that t − τ ≤ ηi(t) ≤ t (i = 1, 2). It is easy to verify that
α(t) = −1.6, β(t) = 0.2, γ(t) = 0.3, and L(t) = 2.4. Then, according to Theorem 3.2 presented in
this paper, we can assert that the system (3.19) is exponentially stable.

3.2. Asymptotic Stability of Nonlinear NDIDEs

Consider neutral Volterra delay-integrodifferential equations

ẏ(t) = f̃

(
t, y(t), y(t − τ(t)), ẏ(t − τ(t)),

∫ t

t−τ(t)
K
(
t, θ, y(θ)

)
dθ

)
, t ≥ t0,

y(t) = φ(t), ẏ(t) = φ̇(t), t ∈ [t0 − τ, t0].

(3.20)

Since (3.20) is a special case of (3.1), we can directly obtain a sufficient condition for stability
of (3.20).

Theorem 3.7. Let the continuous mapping f̃ in (3.20) satisfy

[1 − α(t)λ]G̃f̃

(
0, t, y1, y2, u, v,w

)
≤ G̃f̃

(
λ, t, y1, y2, u, v,w

)
, ∀λ ≥ 0, t ≥ t0, y1, y2, u, v,w ∈ X,

(3.21)
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) − f̃

(
t, y2, u2, v2, w2

)∥∥∥
≤ L(t)

∥∥y1 − y2
∥∥ + β(t)‖u1 − u2‖

+ γ(t)‖v1 − v2‖
+ μ(t)‖w1 −w2‖, ∀t ≥ t0, y1, y2, u1, u2, v1, v2, w1, w2 ∈ X,

(3.22)

∥∥K(
t, θ, y1

) −K
(
t, θ, y2

)∥∥ ≤ LK(t)
∥∥y1 − y2

∥∥, (t, θ) ∈ D, y1, y2 ∈ X, (3.23)

where D = {(t, θ) : t ∈ [0,+∞), θ ∈ [−τ, t]},

G̃f̃

(
λ, t, y1, y2, u, v,w

)
:=

∥∥∥y1 − y2 − λ
[
f̃
(
t, y1, u, v,w

) − f̃
(
t, y2, u, v,w

)]∥∥∥,
∀λ ∈ R, t ≥ t0, y1, y2, u, v,w ∈ X.

(3.24)

Then if

α(t) ≤ α0 < 0, γ(t) ≤ γ0 < 1, ∀t ≥ t0, (3.25)

γ(t)L(t) + β(t) + τμ(t)LK(t)
−[1 − γ(t)

]
α(t)

≤ p < 1, ∀t ≥ t0, (3.26)

one has (3.9) and (3.11).

Our main objective in this subsection is to apply Corollary 2.5 to (3.20) and give
another sufficient condition for the asymptotical stability of the solution to (3.20). We will
assume that (3.21) and (3.23) are satisfied. We also assume that the continuous mapping f̃ in
(3.20) satisfies

∥∥∥f̃(t, y, u, v1, w1
) − f̃

(
t, y, u, v2, w2

)∥∥∥
≤ γ(t)‖v1 − v2‖ + μ(t)‖w1 −w2‖, ∀t ≥ t0, y, u, v1, v2, w1, w2 ∈ X,

∥∥F(t, y, u1, v,w, r, s
) − F(t, y, u2, v,w, r, s

)∥∥
≤ σ(t)‖u1 − u2‖, ∀t ≥ t0 + τ, y, u1, u2, v,w, r, s ∈ X,

(3.27)

where F is defined as

F(t, y, u, v,w, r, s
)
:= f̃

(
t, y, u, f̃(t − τ(t), u, v,w, r), s

)
. (3.28)
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The mappings η(ν)(t), ν = 1, 2, . . ., which are frequently used in that following analysis,
are defined recursively by

η(1)(t) = η(t) = t − τ(t), η(2)(t) = η
(
η(1)(t)

)
= η

(
η(t)

)
, η(ν)(t) = η

(
η(ν−1)(t)

)
.

(3.29)

Theorem 3.8. Let the continuous mapping f̃ in (3.20) satisfy (3.21), (3.23), and (3.27). Suppose
that (3.25) and

σ(t) + τμ(t)LK(t)
−[1 − γ(t)

]
α(t)

≤ p < 1, ∀t ≥ t0, (3.30)

are satisfied. Then one has

lim
t→+∞

∥∥y(t) − z(t)
∥∥ = 0. (3.31)

Furthermore, if f̃ satisfies

∥∥∥f̃(t, y1, u, v,w
) − f̃

(
t, y2, u, v,w

)∥∥∥ ≤ L
∥∥y1 − y2

∥∥, ∀t ≥ t0, y1, y2, u, v, v,w,w ∈ X,

(3.32)

where L is a constant, then one has

lim
t→+∞

∥∥ẏ(t) − ż(t)
∥∥ = 0. (3.33)

Proof. Define

Φ(t) =

∥∥∥∥∥f̃
(
t, z(t), y

(
η(t)

)
, ẏ

(
η(t)

)
,

∫ t

η(t)
K
(
t, s, y(s)

)
ds

)

−f̃
(
t, z(t), z

(
η(t)

)
, ż
(
η(t)

) ∫ t

η(t)
K(t, s, z(s))ds

)∥∥∥∥∥.
(3.34)

Then it follows that

Y ′(t) ≤ α(t)Y (t) + Φ(t), t ≥ t0. (3.35)
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It is easily obtained from (3.17) and (3.27) that

Φ(t) =

∥∥∥∥∥f̃
(
t, z(t), y

(
η(t)

)
, f̃

(
η(t), y

(
η(t)

)
, y

(
η(2)(t)

)
, ẏ

(
η(2)(t)

)
,

∫η(t)

η(2)(t)
K
(
t, s, y(s)

)
ds

)
,

∫ t

η(t)
K
(
t, s, y(s)

)
ds

)

− f̃

(
t, z(t), y

(
η(t)

)
, f̃

(
η(t), y

(
η(t)

)
, y

(
η(2)(t)

)
, ẏ

(
η(2)(t)

)
,

∫η(t)

η(2)(t)
K
(
t, s, y(s)

)
ds

)
,

∫ t

η(t)
K
(
t, s, y(s)

)
ds

)∥∥∥∥∥
≤ σ(t)Y

(
η(t)

)
+ γ(t)Φ

(
η(t)

)
+ μ(t)τ max

s∈[t−τ,t]

∥∥K(
t, s, y(s)

) −K(t, s, z(s))
∥∥

≤ σ(t)Y
(
η(t)

)
+ γ(t)Φ

(
η(t)

)
+ μ(t)τ max

s∈[t−τ,t]
LK(t)Y (s)

≤ γ(t)Φ
(
η(t)

)
+
[
σ(t) + μ(t)τLK(t)

]
max

s∈[t−τ,t]
Y (s), t ≥ t0 + τ.

(3.36)

By virtue of Corollary 2.5, from (3.35)-(3.36) it is sufficient to prove (3.31) and

lim
t→∞

Φ(t) = 0. (3.37)

Since

∥∥ẏ(t) − ż(t)
∥∥ ≤ L

∥∥y(t) − z(t)
∥∥ + Φ(t), t ≥ t0, (3.38)

the last assertion follows.

3.3. Comparison with the Existing Results

(i) In 2004, Wang and Li [16]were among the first who studied IVP in nonlinear NDDEs with
a single delay τ(t) in a finite dimensional space Cn, that is,

ż(t) = f
(
t, y, y(t − τ(t)), ẏ(t − τ(t))

)
, t ≥ t0,

y(t) = φ(t), ẏ(t) = φ̇(t), t ≤ t0.
(3.39)

They obtained the asymptotic stability result (3.31) for the cases of (3.25), (3.26) and (3.25),
and (3.30) under the following assumptions:

(a) there exists a constant τ0 > 0 such that

τ(t) ≥ τ0, ∀t ≥ t0; (3.40)
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(b) t − τ(t) is a strictly increasing function on the interval [t0,+∞);

(c) limt→+∞(t − τ(t)) = +∞.

From Theorems 3.7 and 3.8 of the present paper, we can obtain the asymptotic stability
results (3.31) for NDDEs (3.39), which do not require the above severe conditions (a) and (b)
to be satisfied but require 0 ≤ τ(t) ≤ τ .

(ii) In 2004, using a generalized Halanay inequality proved by Baker and Tang [2],
Zhang and Vandewalle [17, 18] proved the contractility and asymptotic stability of solution
to Volterra delay-integrodifferential equations with a constant delay

ẏ(t) = f

(
t, y(t), y(t − τ),

∫ t

t−τ
K
(
t, θ, y(θ)

)
dθ

)
, t ≥ t0,

y(t) = φ(t), t ∈ [t0 − τ, t0],

(3.41)

in finite-dimensional space for the case of

β + τμLK

−α ≤ p < 1, (3.42)

where α = supt≥t0α(t), β = supt≥t0β(t), μ = supt≥t0μ(t), and LK = supt≥t0LK(t).
Note that in this case, γ(t) ≡ 0, and condition (3.26) is equivalent to condition (3.30).

Since Theorem 3.7 or Theorem 3.8 of the present paper can be applied to (3.41)with a variable
delay τ(t), 0 ≤ τ(t) ≤ τ , and (3.9), (3.11) can be obtained under condition (3.26), the results
of these two theorems are more general and deeper than these obtained by Zhang and
Vandewalle mentioned above.
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