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We establish some multiple integral Hilbert-Pachpatte-type inequalities. As applications, we get
some inverse forms of Pachpatte’s inequalities which were established in 1998.

1. Introduction

In 1934, Hilbert [1] established the following well-known integral inequality.
If felP(0,0),g€LP(0,0), f,g>0,p>1land 1/p+1/g=1, then

[ 5o () (o)

where o/ sin(or /p) is the best value.

In recent years, considerable attention has been given to various extensions and
improvements of the Hilbert inequality form different viewpoints [2-10]. In particular,
Pachpatte [11] proved some inequalities similar to Hilbert’s integral inequalities in 1998. In
this paper, we establish some new multiple integral Hilbert-Pachpatte-type inequalities.
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2. Main Results

Theorem 2.1. Let h; > 1, let fi(0;) € C[(x;,0),(0,00)], i = 1,...,n, where x; are positive real
numbers, and define Fi(s;) = fg fi(oi)doy, for s; € (x;,0). Then for 1/a; +1/pi =1,0 < pi < 1 and
Z?ﬂ(l/“i) =1/a,

Fh- (si) ( - P >1/pi
5 ds---dsn 2 Vi, i—xi) (FF (s fi(s0)) dsi) -

4[ J‘xn(azl 1(1/[x1)( S))l/tx S H( x) J;(S x)( i (S )f(s )> s
2.1)

Proof. From the hypotheses and in view of inverse Holder integral inequality (see [12]), it is
easy to observe that

HFh s:)-th F (0) () dos

_ 1/p:
>Hh s)l/“’<J‘ <Fh 1(ol)fl(0'l ) ldoi> , s;i€(x;,0),i=1,...,n

(2.2)

Let us note the following means inequality:

1/a
Hml/“’><az m> om0, 3)

i=1

We obtain that

H?lF’”(sz) n < " (e p )Uﬂi
hi( | (B (o0 filo)) doi | . 24

Integrating both sides of (2.4) over s; from x; (i = 1,2,...,n) to 0 and using the special case
of inverse Holder integral inequality, we observe that

f f TTL 1F.h (si) i e,
o (@ X (1/ai) (- s,))l/"’
1/p;
n ) hi~1, N\ £~ Bi . .
z ll;[hl J;(i <J‘s,~ (Fi (Gz)fz(01)> dO‘l> ds;
] (=) O< i hi=1( -\ £ (o5 Pi > '>1/ﬁi
> 11:1[]’11( Xi) <J;i J‘Si <F1 (O'z)fl (O'l)> do; )ds;

n _ 1/Bi
=TT "n < f (si-x) (F' (s fits))' ‘dsi> :
i=1 Xi

(2.5)

The proof is complete. O
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Remark 2.2. Takingn =2, pi =1/2 to (2.1), (2.1) changes to

Fl"(s1)FY
J‘ J' (s1) (Sz)d Lds»

(s1+82)72

0 2
> 4hihy(x1x0) ™" <J‘ (51 —x1) <Ff1_1(51)f1(51)>1/2d51> (2.6)

0 2
x (f (52— 22) (F(52) fz<52>)”2dsZ> .

This is just an inverse inequality similar to the following inequality which was proved by
Pachpatte [11]:

J‘J‘y Fh(s)Gl(t)d dt < hl(x 1/2<J' (x - Fhl(s)f s))zds>1/2

x <Jj (y-1) <Gl—1(t)g(t)>2dt>l/2.

(2.7)

Theorem 2.3. Let fi(0;), Fi(si), ai, and p; be as in Theorem 2.1. Let p;(0;) be n positive functions
defined for o; € (x;,0) (i = 1,2,...,n), and define P;(s;) = fg, pi(oi)doi, where x; are positive real
numbers. Let ¢; (i = 1,2,...,n) be n real-valued nonnegative, concave, and super-multiplicative
functions defined on R.. Then

J .[ e ib o) dsy -+ dsy
x (@ X0 (1 ag) (-s1)) "
(2.8)
1/

) as)

> L(xy,..., xn)li[ <—[:(Si - xi) <Pi(5i)¢i <P1

where

n 0 (Pi(s; a 1/ai
L(xl,...,xn)=];11<fx_ (%> dsi> . (2.9)
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Proof. By using Jensen integral inequality (see [11]) and inverse Holder integral inequality
(see [12]) and noticing that ¢; (i = 1,2,...,n) are n real-valued super-multiplicative
functions, it is easy to observe that

:(si) (2 pi(0i) (fi(o:) /pi(ov) ) do;
¢i(Fi(si)) = ¢i<P(S)fSip () (filo)/pi(ci))do >

ffipi(ci)doi
0 i(0i) (fi(oi)/pi(oi))do;
z¢i(pi<si>>¢i<fsfp(G)Ef(")/’” (@) o>
[, pi(oi)do; .10
S $i(Pi(si) filo)\ ,
T PG f <pi<oi>>d"l

(M) (1] (ruoan (i) o)

In view of the means inequality and integrating two sides of (2.10) over s; from x; (i =
1,2,...,n) to 0 and noticing Holder integral inequality, we observe that

0 0 n (F.(g:
f f ITie1¢i(Fi(si) - ds; ---dsp,
a (@3 (/) (-s) "

T ([ o (535 a0) s

¢i(P; (sl)) 1a o " (2.11)
I (B ) ([ (o (2 )
=L(X1,...,xn)lj[<f (s - x1) (Pl(sz)d)z(fz )>> ds>1/ﬁ,~.
This completes the proof of Theorem 2.3. .

Remark 2.4. Takingn =2, pi =1/2 to (2.8), (2.8) changes to

dSz

J‘ ¢1(F1(51))¢2(F2(32))

(s1+82)7>

> L(xl,xz><fi< - (s (2 1553)) dsl>2 @12)
x <sz(52 - x2)<p2(sz)¢2<£§zz; >>1/2dsz>2,
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where

L @O N\ /@,
“’C“*””@(W) s L(Tw) doz ) - @)

This is just an inverse inequality similar to the following inequality which was proved by
Pachpatte [11]:

f Iy P (F( ss) J:pt(G(t))ds dt < L(x,y) <f:(x— s) <p(s)¢<%>>zds>
<f (y-t) (q( )qf<gft)))> dt>l/2,

1/2

(2.14)

where

L(x,y) = %U <¢§3P(Ss)) ) ds> /2<f0 ("’gg”) dt> 2. (2.15)

Theorem 2.5. Let fi(0i), pi(oi), Pi(0i), ai, and P; be as Theorem 2.3, and define Fi(s;) =
(1/Pi(s;)) jg pi(oi) fi(oi)do; for oi,si € (x;,0), where x; are positive real numbers. Let ¢; (i
1,2,...,n) be n real-valued, nonnegative, and concave functions on R... Then

fof TLPGRFils) oo

(a3 (1/a) (=) "
(2.16)

n

0 1/p;
>[Tx"" <I (si— xi)(pi(si)ﬁbi(fi(si)))pidsi) .
i=1 Xi

Proof. From the hypotheses and by using Jensen integral inequality and the inverse Holder
integral inequality, we have

¢i(Fi(Si)) <P( ) J Pz(ol)fl(oz)dol>

1 (©
> Bi(s) j .Pi(o'i)(,bi (fi(oy))do; (2.17)

1 1/a; 0 ) 1/Bi
O <L,.(Pi("f)¢f<ff<0i))) do,) |
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Hence

1--ds,

IO [0 TIPs)dFls))
o Jx (a3 (1 ) (- sl))”“

n 0 0 . 1/
> 1‘1[ f (f (pl-(o,->¢i(fi(oi>>)"‘da,-> ds;

(2.18)
n 0 (0 1/pi
> [T <I J‘ (pi(on)di(fi(0))) do dSi)
i=1 Xi ¥ Si
n 0 1/pi
= J=x)"™ <J‘ (si - xi)(Pi(si)¢i(fi(5i))>ﬂid5i> :
i=1 x; -
Remark 2.6. Taking n =2, p; = 1/2 to (2.16), (2.16) changes to
JO J’ Pl(51)P2(52)¢1(Fl(Sl))‘i’z(Fz 52)) ;o
(s1+82)7
0 2
> 4(x12) " <f (s1—x1) (pr(s1) (1 <s1>)>“2ds1> (2.19)

0 2
X <I (52—xz)(P2(52)¢2(fz(Sz)))l/zdSz> .

This is just an inverse inequality similar to the following inequality which was proved by
Pachpatte [11]:

J— jy P()QMPEE)$(GEH)

s+t

L, (220

. % (xy)1/2< f:(x —5)(p(s)o( f(s)))zds>1/2<f:(y ~1) (q(t)qf(g(t)))zdt>

Remark 2.7. In (2.20), if p1(s1) = p2(s2) = 1, then Pi(s1) = s1, Pa(s2) = s2. Therefore (2.20)
changes to

J‘ ¢1(F1(51))¢2(F2(52))

dSz
(s1+ 52)

0 270 2
24(x1x2)_1<f (51—x1)(¢1(f1(51)))1/2d51> <f (Sz—xz)(¢2(f2(52)))1/2d52> .

(2.21)
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This is just an inverse inequality similar to the following Inequality which was proved by
Pachpatte [11]:

f fy PEE)p(GH)

(sHy (s +1)
(2.22)

<2 ([ s (¢(f(5)))2d5)1/2 ([ w-nwsmya)
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