Sunthrayuth and Kumam Journal of Inequalities and Applications 2012, 2012:133 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2012/1/133 a SpringerOpen Journal

RESEARCH Open Access

Iterative algorithms approach to a general system
of nonlinear variational inequalities with
perturbed mappings and fixed point problems
for nonexpansive semigroups

Pongsakorn Sunthrayuth and Poom Kumam’

* Correspondence: poom.
kum@kmutt.ac.th

Department of Mathematics,
Faculty of Science, King Mongkut's
University of Technology Thonburi
(KMUTT), Bangmod, Bangkok
10140, Thailand

@ Springer

Abstract

In this paper, we introduce new iterative algorithms for finding a common element
of the set of solutions of a general system of nonlinear variational inequalities with
perturbed mappings and the set of common fixed points of a one-parameter
nonexpansive semigroup in Banach spaces. Furthermore, we prove the strong
convergence theorems of the sequence generated by these iterative algorithms
under some suitable conditions. The results obtained in this paper extend the recent
ones announced by many others.
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1 Introduction
Variational inequality theory has been studied widely in several branches of pure and
applied sciences. Indeed, applications of variational inequalities span as diverse disci-
plines as differential equations, time-optimal control, optimization, mathematical pro-
gramming, mechanics, finance, and so on (see, e.g., [1,2] for more details). Note that
most of the variational problems include minimization or maximization of functions,
variational inequality problems, quasivariational inequality problems, decision and
management sciences, and engineering sciences problems. For more details, we recom-
mend the reader [3-8,29-31].

Let X be a real Banach space, and X* be its dual space. The duality mapping
J: X — 2% is defined by

J) = {f € X*: (x.f) = [Ix1% 111 = [1xl1},

where (,, -) denotes the duality pairing between X and X* If X : = H is a real Hilbert
space, then J = I where I is the identity mapping. It is well known that if X is smooth,
then J is single-valued, which is denoted by j (see [9]).
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Let C be a nonempty closed and convex subset of X and T be a self-mapping of C.
We denote — and — by strong and weak convergence, respectively. Recall that a map-
ping T: C — C is said to be L-Lipschitzian if there exists a constant L >0 such that

ITx =Tyl < Lllx —yll, Vx,yeC.

If 0 <L < 1, then T is a contraction and if L = 1, then T is a nonexpansive mapping.
We denote by Fix(7) the set of all fixed points set of the mapping 7, i.e., Fix(7) = {x €
C: Tx = x}.

A mapping F : C — X is said to be accretive if there exists j(x - y) € J(x - y) such
that

(Fx—Fyj(x—y))=0, VxyeC.

A mapping F: C — X is said to be strongly accretive if there exists a constant 77 > 0
and j(x - y) € J(x - y) such that

(Fx —Fy,j(x—y)) = nllx—yII>, VxyeC.

Remark 1.1. If X : = H is a real Hilbert space, accretive and strongly accretive map-
pings coincide with monotone and strongly monotone mappings, respectively.

Let H be a real Hilbert space, whose inner product and norm are denoted by(, -) and
[|-]], respectively. Let A be a strongly positive bounded linear operator on H, that is,

there exists a constant y > 0 such that
(Ax,x) > y|Ix||?>, VxeH. (1.1)

Remark 1.2. From the definition of operator A, we note that a strongly positive
bounded linear operator A is a ||A||-Lipschitzian and 7-strongly monotone operator.

Let C be a nonempty closed and convex subset of a real Banach space X. Recall that
the classical variational inequality is to find x* € C such that

(wx*,j(x—x")) >0, VxeC, (1.2)

where ¥: C — X is a nonlinear mapping and j(x - x*) € J(x - x*). The set of solution
of variational inequality is denoted by VI(C, W). If X : = H is a real Hilbert space, then
(1.2) reduces to find x* € C such that

(wx*,x —x*)>0, VxeC. (1.3)

A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonex-pansive mapping on a real Hilbert space H

min,ec  (Ax, x) — (x,u), (1.4)

1
2
where C is the fixed point set of a nonexpansive mapping 7 on H and u is a given
point in H.
In 2001, Yamada [10] introduced a hybrid steepest descent method for a nonexpan-
sive mapping T as follows:

Xpe1 = Txy — uAnF (Txy), VYn >0, (1.5)

Page 2 of 23



Sunthrayuth and Kumam Journal of Inequalities and Applications 2012, 2012:133
http://www.journalofinequalitiesandapplications.com/content/2012/1/133

where F is a k-Lipschitzian and n-strongly monotone operator with constants «, 171 > 0
2

and 0 < u < 727 . He proved that if {4,} satisfying appropriate conditions, then the
K

sequence {x,}generated by (1.5) converges strongly to the unique solution of variational
inequality

(Fx*,x —x*) >0, Vx € Fix(T). (1.6)

In 2006, Marino and Xu [11] introduced and considered the following general itera-
tive method:

X1 = oy f () + (I — 2yA) Txp, Vn >0, (1.7)

where A is a strongly positive bounded linear operator on a real Hilbert space H.
They, proved that, if the sequence {0} of parameters satisfies appropriate conditions,
then the sequence {x,} generated by (1.7) converges strongly to the unique solution of

the variational inequality
<(yf — A) x5, x— x*) <0, VxeFix(D), (1.8)

which is the optimality condition for the minimization problem

mingec  (Ax, x) — h(x), (1.9)

1
2
where C is the fixed point set of a nonexpansive mapping 7 and / is a potential
function for yf (i.e., /'(x) = Yfx) for all x € H).
Recently, Tian [12] combined the iterative method (1.7) with the Yamada’s method
(1.5) and considered the general iterative method for a nonexpansive mapping 7 as

follows:
X1 = AV f () + I — ayuF) Tx,,  Vn > 0. (1.10)

Then, he proved that the sequence {x,} generated by (1.10) converges strongly to the
unique solution of variational inequality

((yf — wF)x*,x —x*) <0, Vx e Fix(T). (1.11)

Let ¥;, ¥, : C —> X be two mappings. Yao et al. [7] considered the following pro-
blem of finding (x% y*) € C x C such that

{(pl\lfly* X -y (x —x*)) >0,Vxe(C, (1.12)

(p2Wox* +y* —x*,j(x—y*)) = 0, Vx € C,

which is called a general system of nonlinear variational inequalities in Banach
spaces, where p; > 0 and p, > 0 are two constants. In particular, if p; = 1 and p = 1
then problem (1.12) reduces to problem of finding (x*, y*) € C x C such that

{(\Illy +x* —y*j(x—x%)) >0, Vx € C, (1.13)

(Wox* +y* —x%,j(x—y*)) = 0, ¥x € C,

which is defined by Yao et al. [13].
Very recently, Yao et al. [7] introduced an iterative algorithm for solving the problem
(1.12). To be more precise, they proved the following theorem.
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Theorem YLKY [7]Let C be a nonempty closed convex subset of a uniformly convex
and 2-uniformly smooth Banach space X and let Qc be a sunny nonexpansive retrac-
tion from X onto C. Let the mappings V1, Y5 : C —> X be a-inverse-strongly accretive
and B-inverse-strongly accretive, respectively. Let A : C — X be a strongly positive linear
bounded operator with coefficient y > 0. Let Q: = VI(C, ¥1) n VI(C, ¥,). For given
x9 € C, let the sequence {x,} be generated by

zn = Qc (xn — p2¥2xy),
Yn = Qc (@n — p1W12n), (1.14)
Xne1 = Buxn + (1 — Byn) Qc U — apA) Yo, Yn > 0.

Suppose that {o,,} and {§,} are sequences in [0, 1] satisfying the following conditions:

(C1) lim,, ,.. @, = 0 and Y 2, an = 00;

(C2) 0 < lim inf,_,.. B, < lim sup,_,.. B, < 1.

Then, {x,} converges strongly to X € @ which solves the variational inequality (1.12).

On the other hand, motivated and inspired by the idea of Tian [12] and Yao et al.
[7], we consider and introduce the following system of variational inequalities in
Banach spaces: Let C be a nonempty closed and convex subset of a Banach space X.
Let ¥;, ®;: C —> X (i = 1, 2) be a mapping. First, we consider the following problem of
finding (x*, y*) € C x C such that

{(pl (W1 + 1) y* +x* —y%j(x—x%)) > 0, Vx € C,

(p2 (W) + o) x* +y* —x*,j (x — ")) > 0, Vx € C, (1.15)

which is called a general system of nonlinear variational inequalities with perturbed
mapping in Banach spaces, where p; > 0 and p, > 0 are two constants. In particular, if
@, = @, = 0 then problem (1.15) reduces to problem (1.12). Further, if ®; = ®, = 0
and p; = p, = 1 then problem (1.15) reduces to problem (1.13). Second, we introduce
iterative algorithms (3.15) below for finding a common element of the set of solutions
of a general system of nonlinear variational inequalities with perturbed mappings
(1.15) and the set of common fixed points of a one-parameter nonexpansive semigroup
in Banach spaces. Furthermore, we show that our iterative algorithm converges
strongly to a common element of the two aforementioned sets under some suitable
conditions. Our results extend the main result of Tian [12] and Yao et al. [7] and the
methods of the proof in this paper are also new and different.

2 Preliminaries

< 1 for

Let U = {xe X:||x|| = 1}. A Banach space X is said to be strictly convex if Ix ; VI

all x, y e U with x = y. A Banach space X is called uniformly convex if for each ¢ > 0 there is
a 0 >0 such that for x, y e X with |[|x|], ||y|]| <1 and ||x - y|| 2 & ||x + y|| < 2(1 - ) holds.
The modulus of covexity of X defined by

. 1
8x (€) =lnf{1 -1, e+ ) 11 UL Iyl < 10l = yll = 6},

for all € € [0 2]. It is known that every uniformly convex Banach space is strictly
convex and reflexive [9]. The norm of X is said to be Gdteaux differentiable if the limit
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byl = I 21

lim,_, .

exists for each %, y € U. In this case X is smooth. The norm of X is said to be Fréchet
differentiable if for each x € U, the limit (2.1) is attained uniformly for y € U. The norm
of X is called uniformly Fréchet differentiable if the limit (2.1) is attained uniformly for x,
y e U. It is well known that (uniform) Fréchet differentiability of the norm of X implies
(uniform) Gdteaux differentiability of the norm of X.

Let px : [0, ) — [0, o) be the modulus of smoothness of X defined by

1
,OX(T)=SUP{2 (I +yll+lx—=yll) = 1:x€ Uyl sr}.

A Banach space X is said to be uniformly smooth if Px
t

— 0 as — 0. Suppose that

q >1, then X is said to be g-uniformly smooth if there exists ¢ >0 such that px(¢) < ct’.
It is easy to see that if X is g-uniformly smooth, then g < 2 and X is uniformly smooth.
It is well known that X is uniformly smooth if and only if the norm of X is uniformly
Fréchet differentiable and hence the norm of X is Fréchet differentiable, in particular,
the norm of X is Fréchet differentiable. Typical examples of both uniformly convex and
uniformly smooth Banach spaces are L,, where p >1. More precisely, L, is min{p, 2}-
uniformly smooth for every p >1.

Definition 2.1. A one-parameter family S = {T (¢t) : t > 0} from C into itself is said
to be a nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = xfor all x € C;

(ii) T(s + t)x = T(s)T(t)x for all x € C and s, t >0;

(iii) for each x € C the mapping ¢ ~ T(f)x is continuous;

(iv) ||T@x - T(®)y|| < ||% - y|| for all x, y € C and ¢ >0.

Remark 2.2. We denote by Fix (S) the set of all common fixed points of S, that is
Fix (S) : = N oFix (T (1)) = {x € C: T (t) x = x}. We know that Fix(S) is nonempty if
C is bounded [14].

Now, we present the concept of a uniformly asymptotically regular semigroup
[15-17].

Definition 2.3. Let C be a nonempty closed and convex subset of a Banach space
X, §={T(t) : t > 0} be a continuous operator semigroup on C. Then § is said to be
uniformly asymptotically regular (in short, u.a.r.) on C if for all # > 0 and any bounded
subset B of C such that

lim sup [T (h) T (t)x — T (t) x|| = 0.
t—00 xeB

The nonexpansive semigroup {o; : t >0} defined by the following lemma is an exam-
ple of u.a.r. operator semigroup. Other examples of u.a.r. operator semigroup can be
found in [15].

Lemma 2.4. [18]Let C be a nonempty closed and convex subset of a uniformly
convex Banach space X, B be a bounded closed and convex subset of C. If we

denote S={T(t):t>0} is a nonexpansive semi-group on C such that

Fix (S) = N oFix (T (t)) # . For all h > 0, the set o, (x) = 1 fOtT(s) xds, then
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lim;_, ooSUPe [0 (x) — T (h) 07 (x)|| = 0.

Example 2.5. The set {0, : t >0} defined by Lemma 2.4 is u.a.r. nonexpansive semi-
group. In fact, it is obvious that {0, : t >0} is a nonexpansive semigroup. For each h > 0,

we have

h
1
llow (x) = onor ) | = llov () — /T(S) o (x) dsl|
0
1 h
= h/(ot(x)—T(S)Uz(x))dS
0

h
1
< / lo (¥) — T (s) o7 ()l ds.
0

By Lemma 2.4, we obtain that

h

. 1 .
lim - ocsup ccs o (09 — oh01 O < / lim s c08UP o7 (¥) — T (5) 07 () ds = 0.
0

Let D be a nonempty subset of C. A mapping Q : C — D is said to be sunny [19] if
Q(Qx+1t(x—Qx)) =Qx,

whenever Qx + t(x - Qx) € Cforx e Cand t > 0. A mapping Q : C — D is said to
be retraction if Qx = x for all x € D. Furthermore, Q is a sunny nonexpansive retrac-
tion from C onto D if Q is a retraction from C onto D which is also sunny and nonex-
pansive. A subset D of C is called a sunny nonexpansive retraction of C if there exists
a sunny nonexpansive retraction from C onto D. It is well known that if X : = H is a
real Hilbert space, then a sunny nonexpansive retraction Q¢ is coincident with the
metric projection from X onto C. The following lemmas concern the sunny nonex-
pansive retraction.

Lemma 2.6. [19]Let C be a closed and convex subset of a smooth Banach space X.
Let D be a nonempty subset of C. Let Q : C — D be a retraction and let ] be the nor-
malized duality mapping on X. Then the following are equivalent:

(a) Q is sunny and nonexpansive.

(b) [1Qx - Qy||* < (x - 3, J(Qx - Q) ¥x, y € C.

() (x-Qx J(y- Qx)) <0,¥xe C ye D.

Lemma 2.7. [20]If X is a strictly convex and uniformly smooth Banach space and if
T : C — C is a nonexpansive mapping having a nonempty fixed point set Fix(T), then
the set Fix(T) is a sunny nonexpansive retraction of C.

Let N be the set of positive integers and let [~ be the Banach space of bounded
valued functions on N with supremum norm. Let LIM be a linear continuous func-
tional on [~ and let x = (a3, ay,...) € [”. Then sometimes, we denote by LIM,,(a,) the
value of LIM(x). We know that there exists a linear continuous functional LIM on [”
such that LIM = LIM(1) = 1 and LIM(a,) = LIM(a,,.,) for each x = (a, as,...) € [”.
Such a LIM is called a Banach limit. Let LIM be a Banach limit. Then

liminf, o a, < LIM (x) < lim sup ,_, codn,
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Let [~ be a Banach space of all bounded real-valued sequences. A Banach limit LIM,,

[9] is a linear continuous functional on [ such that

[ILIM|| =1, liminf,,a, < LIMpa, <limsup,_, . dn,

for each x = (ay, a,,...) € [”. Specially, if a,, — a, then LIM(x) = a [9].

In order to prove our main results, we need the following lemmas.

Lemma 2.8. [21]Let X be a real 2-uniformly smooth Banach space with the best
smoothness constant K >0. Then the following inequality holds:

o+ <l + 2y ) + 2| Ky,

Vx,y € X.
Lemma 2.9. [22][n a real Banach space X, the following inequality holds:
e+l < N2+ 2(p,j (x+7)),  VayeX,

where j(x + y) € J(x + y).

Lemma 2.10. [23]Let {x,} and {[,} be bounded sequences in a Banach space X and let
{B,} be a sequence in [0, 1] with 0 < lim inf,_,_, B, < lim sup,,_,.. B, <1. Suppose x,,., =
(1 - Bl + Bux, for all integers n > 0 and lim sup,_,..(||L41 - L] - ||%0s1 - x4]]) < 0.
Then, lim,,_,.. ||{, - x,,|| = 0.

Lemma 2.11. [24]Let C be a closed and convex subset of a strictly convex
Banach space X. Let T and T, be two nonexpansive mappings from C into itself
with Fix(T;) n Fix(T,) = Q. Define a mapping S by

Sx=6T1x+(1—98)Twx, VxeC,

where 0 is a constant in (0, 1). Then S is nonexpansive and Fix(S) = Fix(T1) N Fix(Ty).

Lemma 2.12. [9]Let C be a closed and convex subset of a reflexive Banach space X. Let
u be a proper convex lower semicontinuous function of C into (-o, o] and suppose that
U(x,) = oo as ||x,|| = oo. Then, there exists z € C such that u(z) = inf,. c{u(x): x € C}.

Lemma 2.13. [25]Let C be a nonempty closed convex subset of a smooth Banach
space X and let S ={T (h) : h > 0} be a u.a.r. nonexpansive semigroup on C such
Fix (S) = Np=oFix (T (h)) # @ and at least there exists a T(h) which is demicompact.
Then, for each x € C, there exists a sequence {T(t;): t; >0, k e N } € {T(h): h >0} such
that {T (ty)x} converges strongly to some point in Fix (S) , where limy_,., t; = .

Lemma 2.14. [26]Let C be a nonempty closed and convex subset of a real uniformly
convex Banach space and T : C — C be a nonexpansive mapping such that Fix(T) = O
. Then, I - T is demiclosed at zero.

Lemma 2.15. [27]Let X be a real smooth and uniformly convex Banach space and
let v >0. Then there exists a strictly increasing, continuous and convex function g : [0,
2r] = R such that g(0) = 0 and

g(Ilx = yll) < Il = 2 (x,jy) + [IYlI>,  Vx,y € By.

Lemma 2.16. [28]Assume that {a,} is a sequence of nonnegative real numbers such
that

ane1 < (1 —0y) dn + 8y,
where {0,} is a sequence in (0, 1) and {0,} is a sequence in R such that

(i) ZZZO Oop =00 ;

)
(i) limsup,,_, o G" <0 or Y o2y 18nl < co.
n

Page 7 of 23



Sunthrayuth and Kumam Journal of Inequalities and Applications 2012, 2012:133 Page 8 of 23
http://www.journalofinequalitiesandapplications.com/content/2012/1/133

Then, lim,,_,.., a, = 0.
Lemma 2.17. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth Banach space X. Let F : C — X be a k-Lipschitzian and n-strongly accretive

K;;{z and © = u(n - ux*K*). Then, for

operator with constants r, N >0. Let 0 < pu <
1

each t € (O, min {1, 5 }) , the mapping S : C — C defined by S : = (I - tuF) is con-
T

tractive with a constant 1 - tt.

1
Proof. Since 0 < u < KZ’;(Z and t € (0, min {1, 2 }) This implies that 1 - ¢tz € (0,
1). From Lemma 2.8, for all x, y € C, we have
|1Sx — Syl1> = [| (I — tuF)x — (I — tuF) yl?
llx —y — tie (Fx — Fy) II?

< |lx—ylI* = 2tpu (Fx — Fy,j (x — y)) + 28 w>K?||Fx — Fy||?
< |lx—yII* = 2tunllx — ylI* + 22 k> K> |lx — y|?
<[1—2tu(n— pe?K?) ] llx — yII?

|
[
[1— 1 (n — w®K2) ][ 1x — 12
(1 —t0)?|lx —yII*.

IA

It follows that
[1Sx — Syll < (1 —t7) |Ix — yIl.

Hence, we have S : = (I - tuF) is contractive with a constant 1 - ¢z. This proof is
complete.

Lemma 2.18. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let the mappings ¥, ®: C — H be
p -inverse strongly accretive and y -inverse strongly accretive, respectively. Then, we

have

1= p (W +®)x—( = p (¥ + DY < [lx—yl*+40°K? (p - zﬁz) [[Wx—Wy||*+4pK* (p - 222) [|Px—Dyl[*.

B v
2K2' 2K2

Proof. By the convexity of ||-||* and Lemma 2.8, for all x, y € C, we have

In particular, if 0 < p < min { }, then I - p(¥ + @) is nonexpansive.

HI=p(¥+®)x—T—p(¥+PNYI*=llx—y—p[(¥+D)x—(¥+D)y]|
1 1
= Hz [x—y—2p (Wx+ <1>y)]+2 [x—y—2p (ox — dy)]II?

=

1
v =y =20 (¥x = Wy) P+ llx =y = 2 (9x = @) |

=<

[lx = yII> — 4p (Wx — Wy, j (x —y)) + 80°K*[|Wx — Wy||*]

[
1 .
+, [l =117 = ap (@x — @y, (x 1)) + 80°K7]|0x — oyil’]

1 ~
< [l =y = 4pBI1wx — Wyl + 89K Wx — Wyl °]
1
2

+ [l =yII> = 4p7l|0x — y|> + 80°K?|| &x — Dyl I’]

B
= llx = yI? + 40K (p - 2K2) llwx — wy|?

Y

4pK? [ p —
+4p (p K2

) llox — @yl
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B ¥

It is clear that, if 0 < p < min ,
2K?2" 2K?

}, then 7 - p(¥ + @) is nonexpansive.

This proof is complete.

Lemma 2.19. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Qc be a sunny nonexpansive retrac-
tion from X onto C. Let ¥; : C —> H (i = 1, 2) be El -inverse-strongly accretive and @, :
C — H (i =1, 2) be y-inverse-strongly accretive. Let G : C — C be the mapping
defined by

Gx = QclQc(x— p2 (W +D)x) — p1 (W1 +DP1) Qc(x — p2 (W2 + P2)x)], VxeC.

B
2K2' 2K?2

B %

If 0 i ,
[f <p1<m1n{2K2 2K2

}d}’ld0<p2<min{ },thenG:C—)Cis

nonexpansive.
Proof. By Lemma 2.18, for all x, y € C, we have
[IGx = Gyll = [1Qc[Qc (x — p2 (¥ + @) x) — p1 (V1 + P1) Qc (x — p2 (V2 + P2) x)]
—Qc[Qc (¥ —p2 (W +®)y) — p1 (W1 + ®1) Qe (y — p2 (W2 + D) y)] |
< =p1 (W1 +P1)) QeI — p2 (W2 + P2))x — (I — p1 (V1 + @1)) Qc (I — p2 (W2 + P2)) ¥l
< Qc U — p2 (W2 + @2))x — Qc (I — p2 (V2 + P2)) ||
<A =p2 (W2 +Pr))x — (I — p2 (V2 + D)) ||

< llx=yll,

which implies that G : C — C is nonexpansive. This proof is complete.

Lemma 2.20. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Qc be a sunny nonexpansive retrac-
tion from X onto C. Let ¥;: C - H (i = 1, 2) be E—inverse—strongly accretive and @; :
C — H (i = 1, 2) be yi-inverse-strongly accretive. For given (x*, y*) € C x C is a solu-
tion of the problem (1.15) if and only if x* € Fix(G) and y* = Q¢ (x* - po(¥y + Oy)x*),
where G is the mapping defined as in Lemma 2.19.

Proof. Let (x*, y*) € C x C be a solution of the problem (1.15). Then, we can rewrite

(1.15) as
((y*—ﬁl (\Ill+q)1)y*_x*,j(x—x*))50, Vx € C, 2.2)
(" — p2 (Wy + D) x* —y*,j(x—y*)) <0, Vx e C. )
From Lemma 2.6(c), we can deduce that (2.2) is equivalent to
{X* =Qc (y* — p1 (W1 + 1) YY), 2.3)
Y =Qc " — p2 (W2 + P2)x").

This proof is complete.

3 Main results

Let C be a nonempty closed and convex subset of a real 2-uniformly smooth and uni-
formly convex Banach space X. Let Q¢ be a sunny nonexpansive retraction from X onto
C.Let F: C — X be a s-Lipschitizian and 7-strongly accretive operator with constants
K, M >0, V:C— Cbe an L-Lipschitzian mapping with a constant L >0 and 7: C > C

be a nonexpansive mapping with Fix(7) = @. Let 0 < u < and 0 < YL <7, where

n
K2K?



Sunthrayuth and Kumam Journal of Inequalities and Applications 2012, 2012:133 Page 10 of 23
http://www.journalofinequalitiesandapplications.com/content/2012/1/133

1

r = u(n - ur>K?). For each t € <O, min {1, ) }) , consider the mapping S,: C > C
T

defined by

Six=QcltyVx+ (I —tuF)Tx], VxeC.

It is easy to see that S, is contractive. Indeed, from Lemma 2.17, for all x, y € C, we
have

[1Six — Syl = 11Qc [ty Vi + (I — tiuF) Tx] — Qc [ty Vy + (I — tuF) Ty] ||
<||[tyVx+ I — tuF) Tx] — [ty Vy + I — tuF) T] ||
= ||ty (Vx — Vy) + (I — tuF) (Tx — 1) ||
< ty|[Vx = Wyl + (1 — t) || Tx — Ty||
<A =(@=yDolx—yll

Hence S, is contractive. By the Banach contraction principle, S, has a unique fixed
point, denoted by x,, which uniquely solves the fixed point equation

Xt = QcltyVay + (I — tuF) Txy] . (3.1)

Lemma 3.1. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Q¢ be a sunny nonexpansive retrac-
tion from X onto C. Let F: C — X be a k-Lipschitizian and n-strongly accretive opera-
tor with constants k, 1 >0, V: C — C be an L-Lipschitzian mapping with a constant

n
K2K?
and 0 < YL < 1, where © = u(n - pk 2K?). Then the net {x,} defined by (3.1) converges

L=0andT:C— C be a nonexpansive mapping with Fix(T) = @. Let 0 < u <

strongly to X € Fix(T) as t — 0, where X is the unique solution of the variational

inequality
(WF —yV)X,j&E—1)) <0, Ve Fix(T). (3.2)
Proof. We observe that
uk’K? > 0 & n— u’K? <

< (n — peK?) < un
ST < Un.

It follows that
0<yL<rt<un. (3.3)

First, we show the uniqueness of a solution of the variational inequality (3.2). Sup-

pose that X, X € Fix(T) are solution of (3.2), then
(HF=yWV)XjE-%) =<0 (3.4)
and

(WF =y V)% jG—D) < 0. (3.5)
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Adding up (3.4) and (3.5), we have

0> ((uF —yV)X— (uF —y V)X, j (X — %))
= w(FX—FXj@=%) -y (V¥ - V& j & - 5)
> pnlX —%)* — y|IVx — VXx|||[X — ]|
> (un — yL) IX = %|%.

Note that (3.3) implies that X =X and the uniqueness is proved. Below, we use X to
denote the unique solution of (3.2).

Next, we show that {x,} is bounded. Without loss of generality, we may assume that

1
t < min { 1, ) } Take p € Fix(7T). From Lemma 2.17, we have
T

llxe — pll = [1Qc [ty Vay + (I — tuF) Tx,] — Qcpl
<t (yVx, — uFp) + I — tuF) (Tx; — p) ||
< ty|IVa — Vpl| +tlly Vp — wFpl| + (1 — tx) || Tx; — pl|
<1 —(x—yD 0 llx —pll +tllyVp — uFpl|.

It follows that

[lyVp — uFpl|

X, — <
be—pli<

Hence, {x,} is bounded, so are {V x,} and {FTx,}. Assume {t,,} € (0, 1) is such that
t, — 0 as n —> oo. Set Xn = X1,. Define a mapping ¢ : C — R by

¢ (x) == LIMy||x, — x||?>, VxeC,

where LIM,, is a Banach limit on [”. Note that X is reflexive and ¢ is continuous,
convex functional and @ (x) — o as ||x|| = . From Lemma 2.12, there exists ze C
such that ¢(z) = inf,c ¢ @(x). This implies that the set

K:={z€ C: ¢ (2) = infrecd (x)} # 9.
Observe that

[1xn = Txn|| = [1Qc [tay Vn + (I — taptF) Totn] — QcTixnl|

(3.6)
< tyllyVx, — uFTx,|| — 0 as n — oo.

For all ze C, we have

¢ (Tz) = LIMy||x, — Tz||?
= LIM,,||Tx, — Tz||?
< LIMy|lx, — 2]1*
=9 @,
which implies that T(K) € K; that is, K is invariant under 7. Since X is a uniformly
smooth Banach space, it has the fixed point property for nonexpansive mapping T.

Then, there exists ¥ € K such that Tx =X . Since X is also minimization of ¢ over C,
it follows that x € C and t € (0, 1),

(X)) <P @+t (x— puFx).
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From Lemma 2.9, we have

[ — %+ € (UFX — 2) 1> < |20 = X7 + 20 (X — x,j (x0 — X+ £ (WEX — %))
Taking Banach limit over # > 1, then

LIMy |, =X+t (UFX — x) [|> < LIMp |1, —X]|2+20LIMy, (WFX — X, j (0 — X + £ (WFX — X)),
which in turn implies that

2LIM, (x — wFX, j (xp — X + t (WFX — %))) < LIMy[1xy — X1|? — LIMy||xy — X + ¢ (WFX — %) ||
<0,

and hence

LIM,, (x — puFR, j (xy — X + t (WFX — x))) < 0.

Again since X is a uniformly smooth Banach space, we have that the duality mapping
j is norm-to-norm uniformly continuous on a bounded subset of C (see [9], Lemma 1),
letting £ — 0, we obtain

LIM, (x — uFX,j (x, — %)) <0, VxeC.
In particular
LIM, (y VX — uFX, j (x, — %)) < 0. (3.7)

Set x, = Qcy,, where y, = tyVx, + (I - tuF)Tx,. Notice that Xn :=%;, and ¥n :=Vs,. For
X € Fix (T) , by Lemma 2.6(c), we have

12 = XI1> = (yn — %, j (tn — ) + (Qcyn — ¥ j (Qcyn — X))
= <Yn — X, (% _§)>
=1In (van — WFX, j (% _§)> + ((I — typtF) (Txy — %), j (%0 _35)>
< tn (¥ Vi — nFX, j (60 — %)) + (1 — t,7) [1xn — X1

Thus, we have

~ 1 ) ~
llxn —X|I* < . (yVan — uF%, j (xn — %))
1 ~ . ~
= {y (Vay = VX, j (xn = %)) + (y V& — wFX, j (xn — X))}
1 ~ . ~
= {yLlxa = X1 + (Y VX — uFX, j (% — )},

which implies that

~12
%0 — X[| =<

g PVE R G = 3))

It follows from (3.7) that

~ 1 . ~
LIM,||x, — X||? < . yLLIMn(yV%— wFX,j (x, — %)) < 0. (3.8)

This implies that LIM,||x, —X|| = 0. Hence, there exists a subsequence {xni} of {x,}

such that x,, — X as i — 0. From (3.6) and Lemma 2.14, we get X € Fix(T) .

Page 12 of 23
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Next, we show that X solves the variational inequality (3.2). We note that

xe = Qcyr = Qcyr — Ve + ty Vxy + (I — tuF) Txy,
which derives that

1 1

WE—yVx = (Qcye —ye) — , A= Do+ p (P — FTx,). (3.9)

Note that 7 - T is accretive (i.e., (({ - T )x - (I - T )y, jlx - y)) = 0, for x, y € C). For
all v e Fix(7), it follows from (3.9) and Lemma 2.6(c) that
. 1 ) 1 _
(F =y V)xuj e =) = (Qeye=y0j (Qeye =v)) = (U =Dx = A =T)v,jx —v))
+ w(Px; — FTxy, j (% — v))
=u (Fx[ — FTx,j(x — V))

< wllFxe — FTxe|[l1x — vl|
< [lxe — Txe|IM,

(3.10)

. 1 . .
where M = sup,, = 1{px||x; - v||} and t € (0, min {1, ) }) Now, replacing ¢ in
T

(3.10) with ¢, and taking the limit as n — o, we noticing that
X, —Tx, >X¥—>T¥=0 for ¥eFix(T), we obtain ((uF—yV)XjE—v))=<0.
Hence X € Fix(T) is the solution of the variational inequality (3.2). Consequently,
% =% by uniqueness. Therefore, x, — % as ¢t — 0. This completes the proof.

Lemma 3.2. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Q¢ be a sunny nonexpansive retrac-
tion from X onto C. Let F : C — X be a k-Lipschitizian and n-strongly accretive opera-
tor with constants k, 1 > 0, V: C — C be an L-Lipschitzian mapping with a constant

n
k2K?2
and 0 < YL <z, where © = u(n - ux 2K?). Assume that the net {x,) defined by (3.1) con-

L>0and T:C — C be a nonexpansive mapping with Fix(T) = Q. Let 0 < u <

verges strongly to x € Fix(T) as t = 0. Suppose that {x,} is bounded and lim,,_,.. ||x,
- Tx,|| = 0. Then

limsup,_, , (y V& — uF%, j (x, — %)) < 0. (3.11)

Proof. Notice that x, = Qc y,, where y, = tyVx, + (I - tuF)Tx,. We note that

Vi —Xp =ty Vx; + (I — tuF) Txy — x,
=t(yVx, — uFx;) + Txy — x, + tie (Fx; — FTxy)
=t (yVa, — uFx;) + (Txy — Txg) + Tty — %) + tjt (FQcy: — FQcTxy) .

It follows from Lemma 2.6(c) that

e = xal1* = (yr — %, j (60 = x0)) + (Qcyr — 1,3 (Qcye — %))
< (e = 2, (e — x0))
= t{yVxy — uFx;, j (¢ — x)) + (Toxy — T, j (6 — %)) + (T — X, j (X — %))
+ ti (FQcy: — FQeTxy, j (% — xn))
< t(y Ve — wFxe, j (x — %)) + 115 = xal1> + [T — X [[160 — 20|
+ 1tk ||Qcye — QcTxe 1% — xnl|
< t(y Ve — wFxe, j (x — %)) + 1% — xal1> + [T — % [116 — x|

+ ||y Vag — pFTx[|x, — xall,
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which in turn implies that

. || Txy — %]
(yVa, — uFxq, j (xn — x) < "t "l — xall + tpaic|ly Vay — wFTx . (3.12)

Since x,, - Tx,, — 0 as n — o, taking the upper limit as n — oo firstly, and then as ¢
— 0 in (3.12), we have

lim sup (.o lim sup o0 (¥ Var — Fx;, j (xp — x,)) < 0. (3.13)
On the other hand, we note that

(yV& — uFx,j (xp — %)) = (y VR — uF%, j (xn — X)) — (y V& — wFX, j (xp — 1))
+ <V‘/x\* WFX, j (xn — xt)> - (V%C\* wFxy, j (xn — xr))
+(y VX — wFxq, j (tn — x)) — (¥ Ve — wFx,, j (%0 — x0))
+{y Vi, — wFx,, j (e — x0))
= (y V& — uFX,j (% = %) —j (X0 — x0)) + 11 (Fxe — FX,j (%0 — x0)
+y (VX = Vi, j (xn — x0)) + (¥ Ve — uFxy, j (xn — x)).

Taking the upper limit as 7 — oo, we have

lim SUP;_ 00 ()/V’X?— ,uP?,j(xn _3‘)) <lim SUP;,_ 00 (yV}E— IJ‘FBE/j(xn _@ _j (X0 — xt))
+ (/LK + VL) ||xt _/-X?H lim supnaoo'lxn - xtll
+limsup,, ., (¥ Va — uFx;, j (xp — x0)).

Since X is a uniformly smooth Banach space, we have that the duality mapping j is
norm-to-norm uniformly continuous on bounded subset of C (see [9], Lemma 1), then

lim sup (.o lim sup o0 (¥ VX — uF%, j (X — %) — j (% — %)) = 0. (3.14)
Then, from (3.13) and (3.14), we have

lim supp— 0 (¥ VX — wFX, j (xp — %)) = lim sup;—o lim supy—o0 (¥ V& — uF%, j (x, — %))
< limsup;— o lim sup;— (Vth — Fxe, j(xp — xc))
< 0.

This completes the proof.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Qc be a sunny nonexpansive retrac-
tion from X onto C. Let F : C — X be a k-Lipschitizian and n-strongly accretive opera-
tor with constants k, N > 0, V: C — C be an L-Lipschitzian mapping with a constant

L > 0. Let 0 <pu< K;;@ and 0 < yL <1, where © = u(n - uk K?). Let

S={T(h) : h > 0} be a u.a.r. nonexpansive semigroup from C into itself such that
Fix (S) := Np=oFix (T (h)) # @ and least there exists a T(h) which is demicompact. Let
¥Y,:C—>X(@i=1,2)be E—inverse—strongly accretive and ®©; : C — X (i = 1, 2) be ¥;
-inverse-strongly accretive. Assume that Q: = Fix (S) NFix(G) # 0, where G is defined
as in Lemma 2.19. For given x, € C, let {x,} be a sequence defined by

zp = Qc (xp — p2 (W2 + P2) xp),
Yn=Qc @ — p1 (Y1 + P1)zn), (3.15)
X1 = Bk + (1= Bp) Qc [any Vg + (I — aqutF) T () yu] . Y = 1,
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where p; € (0, min{zifz, 2ﬁ2 }) for all i = 1, 2. Suppose that {o,} and {B,} are

sequences in [0, 1] and {t,} is a sequence in (0, «) satisfying the following conditions:
(C1) lim, o, @0, = 0 and Y p2; ay = 00 ;
(C2) 0 < lim inf,_,.. B, < lim sup,.. B, < 1;
(C3) tye1 = h + ¢, for all h >0 and lim,,_,.. t, = .
Then, the sequence {x,} defined by (3.15) converges strongly to x € Q as n — ,
which % is the unique solution of the variational inequality

(MF=yV)XjGE-—1))<0, Weg, (3.16)

and (X,7) is the solution of the problem (1.15), where J = Qc (X — p2 (W2 + ®2)%) .

Proof. Note that from the condition (C1), we assume without loss generality, that
1

o, < min {1, ) } for all n > 1. First, we show that {x,} is bounded. Take x* € Q. It
T

follows from Lemma 2.19 that
x* = QclQc (x — p2 (W2 + @) x*) — p1 (W1 + P1) Qc (" — p2 (W2 + Do) xM)].
Put y* = Q¢ (x* - pa(¥y + @y)x*), then x* = Qc (v* - p1(¥1 + ®@1)y*). From (3.15), we
observe that
lyn — &[] = [|Gxn — Gx™||
< |lan — x|
Set u,, = Qclo,, YV, + (I - a,uF)T(t,)y,]. From Lemma 2.17, we have
[lun — x*| = 11Qc [Oan/Vxn + (I —anuF) T (tn) )’n] — Qcx™||
< llotn (van - MFx*) +( — ayuF) (T (tn) Yn — x*) Il
< any ||V — V|| + o ||y Va* — uFx™|| + (1 — anT) [[yn — x|
< (1= (t —yLap llxg — x| + anlly V&* — uwFx*||.

It follows that

[xner = 2] = 11Bn (X0 — %) + (1 = Ba) (un — x*) |
< Ballxn — x*|1 + (1 = B lun — x™]
< Bulltn — "1 + (1 = B) [(1 = (x = yL) otn) |13 — x*[| + | ly V™ — puFx*|[]

V * — F *
(= (@ = D an (= B [ — 1]+ (1 — By (= yiy |7V E 7RI
T —yL
By induction, we have
Vx* — uFx*
||xn—x*||§max{||x1—x*||,“V . “}, Vi1
T —yL

Hence, {x,} is bounded, so are {z,}, {y,} and {u,}.
Next, we show that ||x,,,1 - x,|| = 0 as n > . We observe that

Yne1 — Yull = 11GXne1 — Gyl (3.17)

< lxpe1 — 27|
Now, we can take a constant M >0 such that

M = sup pz1 Y11Vt | + 1T Gren) Y |l v [Vl + wlIFT (t0) yull} -
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Then, we have
[[uns1 — unll = 11Qc [an+l ¥V + (I — ane1 uF) T(tml)ynﬂ] - Qc [anyvxn + (I —anuF) T (ty) )’n] Il
< llans1y Vaner + (I — otnad kF) T (tn41) Yns1 — @y Vn — (L — ankF) T (8) yul| ( )
< o1y Vanar — UFT (tne1) Yt || + oy Vg — wFT (8) Yall + [IT (tne1) Ynor — T (&) Yl
< (ap + o) M+ [y = vall + 1T (W) T (60) yu — T (L) Yl
Combining (3.17) and (3.18), we obtain
Nuner — tnll = xne1 — Xnll < (@1 + ) M+ [|T (W) T (60) yn — T (t) yall.  (3.19)

Since {T(h): h >0} is a u.a.r. nonexpansive semigroup and lim,, ,., t, = oo, then for all
h >0, and for any bounded subset B of C containing {x,} and {y,}, we obtain that

lim s oo 1T () T (t0) Y — T (tn) Yull < im0 SUP weB || T (W) T (t1) @ — T (ta) @ = 0. (3.20)
Consequently, it follows from the conditions (C1), (C2) and (3.19) that

lim sup n— 00 ([[uns1 — unll — [Ixne1 — xall) < 0.
Hence, by Lemma 2.10, we obtain that

lim s o0 ||t — x,]] = 0. (3.21)
Consequently, we have

lim s o |11 — x|l = lim s 00 (1 — Bn) [lun — x| = 0. (3.22)
We observe that

ltn = T (&) yull = [1Qc [etnyf n) + (I = anpbF) T (ta) Yu] — QCT (&) ¥l

(3.23)
< aullyf (n) — FT (ty) ynll — O asn — oo,
From (3.21) and (3.23), we have
%0 — T (ta) Ynll < X0 — tall + [ltn — T (tn) yull = 0 as n — oo. (3.24)

Next, we show that lim,,_,., ||x, - T(h)x,|| = 0, Vi >0. For all x*, y* € Q, by the con-
vexity of || - ||* and Lemma 2.8, we have
llzn — y*I1* = [|1Qc (%n — p2 (¥2 + D2) xn) — Qc (x* — p2 (W2 + D) x™) |2

<1 G — p2 (W + P2) ) — (x* — o2 (W + Do) &™) ||
= [l — 2 — o3 [(W2 + ®2) xy — (W3 + D) x*] |
1 1
=11 [ =" = 20 (Way — Wax") ]+ [ = x" = 25 (@2, = 226 II?
1
[1xn — &* = 2p2 (Waxy — Wox®) || + o[l = X" = 23 (@23, — @2x7) I1?

=<

=<

1
2
1
(Ilen = x7[1 — 42 (Waxy — Wax™, xy — &%) + 803 K2 || W, — Wox™||?) 3.25
2
1
*y (I1n — 2|17 — 42 {@oxn — Dox™, x4 — x*) + 83 K?[| 2%, — P2x*||?)
1 -
< N (I1%n = x*|I? = 4p2Ba || Waxy — Wox*[|* + 8p3 K[| Waxy — Waxax™[|?)
1 -
ty (I1n — x| — 4p2 72| P2xy — Dox*[> + 83 K[| 2%y — Pocex™||?)
B
2K2

Y2

2 2
)szxn—wzx*u +4pak? (p2 = 12,

= llgn = x°I17 + 4p2K? (Pz - ) 1023, = 02|

In a similar way, we can get

B 71
H}’n*x*HzE\|Zn*Y*||2+4P1K2<P1*2K2 1W120= 01y P44 K2 (o1 = ey ) I1@1za—@1y7 117 (3.26)

Page 16 of 23



Sunthrayuth and Kumam Journal of Inequalities and Applications 2012, 2012:133
http://www.journalofinequalitiesandapplications.com/content/2012/1/133

Substituting (3.25) into (3.26), we have

B> 7
lyn = x*11* < llxn — 51> + 4p2K? (ﬂz = 2 119 = W12+ 4o K2 (o = ) 11920 — @ox”|I?

3 (3.27)
+4p K> (Pl - 21(12) W12 — Wiy*|I + 401 K2 (,01 - 2)/12) (112, — D1y*|].

K

Set u,, = Qcv,, where v,, = o, yVx,, + (I - o,,uF)1(t,)y,. From Lemma 2.6(c), we have

et — (17 = (v — x*,j (1t — )} + {Qctm — vn, j (Qcvn — x*))

< <Vn - x*rj (u” - x*)>

-, (nyn _ /LFx*,j (un _ x*)) + <([ — apuF) (T (tn) Vn — x*) ’j (un - x*))

< (1= a0 llyn = x[[[[un = 21| + etn (y Vitn = P, j (un — )
1—a, * * *j *

< ( 204 7) (Iyn = %117 + lup — x*117) + ot (¥ Vg — uFx*,j (up — x*))
1— 1

< ( 2a”f) llyn — x¥112 +  llun = X1 + o (Y Vg — pFx* j (g — x7)).

It follows that

= 11> < {lyn = 511 + 200 {y Vitu = wFx*, j (un — x%)) (3.28)
<y — X112 + 20ty Vaty — P — 2|1

By the convexity of || - ||* and (3.28), we have

ner = 511 = 11 (0 — 2%) + (1 = B (10 — x°) |2
< Bullxn — X7 + (1 = Bo) [lun — x| (3.29)
< Balla = 2°17 + (1 = Bo) {llyn — 2117 + 201y Vity — x| ||y — %71}
= Bulltn — (17 + (1 = Bu) llyn — 11> + 2a (1 = Bu) [|y Vitw — puPx*[[[Jun — x¥|1.

Substituting (3.27) into (3.29), we have

B
mefx*nzsﬁnnxnfx*nh(lfﬁn){||xnfx*|\2+4pzl<2 (prZKZ [[Wax, — Wox™||?
a0k (pr = 72 ) 1020 — 0212 4 4o K2 (pr = P ) 1120 — wip 2
2K? 2K2
2]
+401K> (pl - 2K2> ||®12, — d>1y*||2} +205 (1 = ) ||y Vatw — B[y — x*]|}
2
= [l — 112+ (1 — o) {4sz2 (Pz - 2‘;2) (W5, — Wox*||2
a0k (p2 = 72 ) 102 — 02
2K?
4ok (o= P W1z, — W1y*||> + 401 K2 ( p1 — % [|@12, — D1y*|I
2K2 2K2

+ 20 (1 = B) |y Vien — nFx®|[[|up — x|,

which in turn implies that

B’ ~
(1—/3”){4sz2<21§2—/)2 |10, — Wox[|” + 40, K2 2);?2—,02 || ®25, — Do*||?

B 7
+4p1K2<21<2_101 1920 = W1y |12+ 4pu K2y = o1 ) (19120 = @1y°I17
[Bn = 2117 = [1ne1 = Xl + 20 (1 = Ba) |1y Vatw — puFx*|[[]up — x*]]

<
< (Ihn = 11+ Hxmer = 211 [1na1 = Xl + 20 (1 = B) |1y Vatn — x| [l — 1.
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Bi 7

Since lim inf, ,.(1-f,) >0, 0 < p; < min { 2K2’ 2K2

},foralli: L2 [|%41 - %4 > 0

and o,, — 0, we have

{ limy_ 00| |W12, — Wyl = limy,_ oo || P12, — @1y =0, (3.30)

limy s oo || Woxy — Wox™|| = limy_ oo || P2xy — Pox*|| = 0.
Let r1 = sup, = 1{l|z. - ¥*||, ||y» - #*||}. By Lemma 2.6(b) and Lemma 2.15, we have

llyn = x*117 = 11Qc (zn — p1 (W1 + @1)z0) — Qc (¥ — p1 (¥1 + @1)y*) |
< (zn — p1 (W1 + @) zn — (y* — p1 (W1 + P1)Y*),j (v — x¥))
= (zn - Y*r] (er - x*)) — P1 <(\II1 + q>l)zn - (\yl + qDl)y*lj (yn - x*))

1
<, {lzn = ¥ 117 + llyn — x*11> — &1 (20 — yu +x* — y*11)}
— 1 (W1 + D) 2y — (Vg + @)Y (yn — 1)),

which in turn implies that

lyn = x*11% < lan = ¥ 11* = 81 (Il 20— pu + x* = ¥*) 1) = 201 (W1 + P1) 20 — (W1 + D1) ¥, (v — x¥))

3.31
< lan = ¥*II* — 81 (I12n = yu + x* = Y1) + 2111 (¥1 + P1) 20 — (W1 + D) y*|lllyn — x*1|. ( )

Let ry = sup,, = 1f{||%, - *||, ||z, - ¥*||}- Again, by Lemma 2.6(b) and Lemma 2.15, we

have

lzn = ¥*I1> = [1Qc (0 — p2 (W2 + P2) x4) — Qc (x* — p2 (W2 + B3) x*) ||
< {tn — o2 (W2 + ®2) xy — (x* — p2 (W2 + D) x*) ,j (20 — "))
= (n — x*,j (20 — ¥*)) — P2 (W2 + D2) xy — (W2 + P2) x*,j (20 — ¥¥))

1
=, {llxn — x*[17 + llza — 11 — 82 (1160 — 20 — (x* — ¥*) 1) }
— P2 (W2 + Do) xy — (W2 + D) &%, j (20 — 7)),

which in turn implies that

lzn — V11> < 110 — %*11* — g2 (1% — 20 — (& = ¥*) 1) — 202 (W2 + 2) Xy — (W2 + P2) x*,j (20 — V"))

3.32
< lln = 2117 = 82 (1w — 20— (¢ = ¥*) 1) + 20201 (W2 + D) X — (W + D2) x* [} — ¥*Il. ( )

Substituting (3.32) into (3.31), we obtain

yn — 1% < 1w — x*117 = g1 (1120 — yn +2* = ¥*11) — &2 (I1xn — 20 — (x* —¥*) 1)
+ 2011 (W1 + @)z — (W1 + D) Y lllyn — x*[ + 2021 (U2 + Do), (3.33)
— (Wy + @) x*||l|zn — ¥*II.

And, then substituting (3.33) into (3.29), we obtain

[xne1 = x| < Bulln — x*11> + (1 = Bu) {llxn — x*[12 = g1 (Ilzn — yn +x* = ¥*])
=& (Ilxn — 20 — (x* = y*) 1)
+201][ (W1 + @1) 2y — (W1 + D1) Y¥{[llyn — 2|1 + 2p2]| (W2 + D2) xn
— (Wy + D) &[]z — ¥*I1}
+ 20, (1 = Bn) [ly Vatn — pFx™|[[|un — x|
<l = 2117 = (1 = B {81 (llzn — yn +x* = ¥*11) — &2 (1160 — 20 — (x* =) 11) }
+ 201 (W1 + @1) zp — (W1 + @1) Y¥(lllyn — x*I| + 2021 (W2 + P2) xy
— (W2 + D) x™|[l1zn — ¥*II
+ 20y (1 = Bp) 1y Vay — pBEx™|[|[un — x|,
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which in turn implies that
(1= B) {81 (Ilzn — yn +x* —¥*1) + &2 (IIxn — 20 — (x* =) 1)}
< ln = 2117 = [ner = 2*117 + 2111 (W1 + 1) 20 — (U1 + D) [[lyn — x7]]
+202|1 (W2 + @2) Xy — (W2 + P2) X¥|[lzn — Y| + 20 (1 — Bu) [y Vitw — pFx*[| [t — x¥||
< (10 = X1+ [ner — X*1) 1xner = Xall + 20111 (¥1 + 1) 2 — (W1 + @)yl lyn — x¥]|
+202|1 (W2 + @2) Xy — (W2 + ©2) x¥|[[lzn — V|| + 200 (1 = Bn) [y Vin — pFx*|| ||ty — x¥]|.
Since lim inf,,_,..(1 - B,) > 0, |[%,41 - %4|| = 0, &, = 0 and (3.30), we have
limy_ 0081 (||Zn —VYnt X — Y*H) = lim,, g2 (||xn —&Zn — (x* - Y*) ||) =0.
It follows from the properties of g; and g, that
limn—wo“Zn —In +x% — }’*|| = 1imn—>oo||xn —&Zn — (x* - }’*) [| = 0.
Consequently, we have
%0 — yull < llxn — 20 — (x* - Y*) [l +11zn —yn+x* —y*[| > 0asn — oo. (3.34)
On the other hand, we observe that

[0 — T (tn) Xull < [1%n — T (tn) Yull + 1T (tn) yn — T (tn) Xnl|
< lxn — T (&) Yull + [[yn — xall.

From (3.24) and (3.34), we obtain that
lim 0| |%0 — T (83) Xn| = 0. (3.35)
For all # >0, we note that

1% = T (h) Xnl| < {160 = T (&) Xnl| + T (tn) X = T (W) T (&) xul | + T (W) T (tn) xp — T (M) X |
=< 2flxn = T (tn) xull + 1T (80) X0 — T () T (tn) Xl

Since {T(k): h >0} is a u.a.r. nonexpansive semigroup, it follows from (3.20) and
(3.35) that

lim s oollxtn — T (h) x|| = 0. (3.36)

Since {T(h): h >0} is a w.a.r. nonexpansive semigroup, by Lemma 2.13, for each x €
C, there exists a sequence {T(ty): tx > 0, k € N} {T(h): h >0} such that {T(;)x} con-
verges strongly to some point in Fix (S), where £y — o as k — oo. Define a mapping
T:C— Chby

Tx = limy_ oo T () x, Vx € C.

By [25, Remark 3.4], we see that the mapping T is nonexpansive such that
Fix (T) = Fix (S) . From (3.36), we obtain that

lim o ooy — Tl = lim oo lim o ol — T () x| (3.37)
= lim s oo lim 4 oo [Jtn — T (8) x41| = 0.

Define a mapping W: C — C by

Wx=6Tx+(1—-68)Gx, VxeC,
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where J is a constant in (0, 1). By Lemma 2.11, we see that the mapping W is nonex-
pansive such that

Fix (W) = Fix (T) N Fix (G)

Notice that

[1xn — Wil < |18 (tn — Txn) + (1 = 8) (Xn — Gxn) ||
= 118 (n — Txn) + (1 = 8) (X0 — yn) Il
< 8llxn — Txull + (1 = 8) [1Xn — yull.

From (3.34) and (3.37), we obtain that

lim ;o0 llxn — Waxyl| = 0. (3.38)
Next, we show that

limsup, (v V& — uF%,j (u, — %)) < 0,

where ¥ = lim,_,ox; and x; is the unique fixed point of the contraction mapping T :
C — C given by

1
Tix = QcltyVa+ (I —tuF)Wx], VxeCandte (O, min{l, D .
T

By Lemma 3.1, we have X € Fix (W) = Q, which solves the variational inequality
(MF=yV)XjGE-—1)) <0, WeQ.
By (3.21) and Lemma 3.2, we obtain that

Him SUp oo [ VA — R, (1 — ) = lim sup, o, (y V& — 1F%, j (5, — )
< 0.

(3.39)

Finally, we show that x, — X as n — . Notice that u,, = Q¢ v,, where v,, = oYV %,
+ (I - a,uF)TI(t,)y,. Then, from Lemma 2.6(c), we have

[t = X1 = (g — X, j (un — D)) + (Qcvn — Vi, j (Qcvn — X))
< (v —%j (un =)
= any (Vatn — V& j (tn — X)) + o (y VK — pFR, j (1 — X)) (3.40)
+ (I — aneF) (T (tn) yu —X) ,j (un — X))
<= (t—yLyan (1= B) 1% —X* + o (Y VE — uFX, j (1, — ).

It follows from (3.40) that

[1Xns1 7&1'2 < Bnllxn *35”2 + (1 — Bn) ||un 755\”2
< Balltn =P+ (1 = ) {A = (z — yD) an (1 = B) |Ixa — X
+an (Y V& — 1FR, j (un — %))}
=(1—( —yDoan(1—Bn)llxn =% +an (1= B (V‘/f— WFX, j (ttn _Sa)

(3.41)

Puto,: = (t- YL)o,(1 - B,) and 8, :=a, (1 — /3,,)()/\735— WFX, j (uy —’JD) Then (3.41)

re-duces to formula

xns1 =% < (1 = o) [|xn = XIN* + 8.
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It is easily seen that ) ,-; 0, = 00 and (using 3.39)

. n
limsup ys0o =

lim sup o0 (¥ V& — 1FX, j (i — %)) < 0.
o, T—vyL

Hence, by Lemma 2.16, we conclude that x, — X as # — oo. This completes the
proof.

Remark 3.4. Note that Lemma 2.17 and Lemma 2.18 play an important role in the
proof of Theorem 3.3. These are proved in the framework of the more general uni-
formly convex and 2-uniformly smooth Banach space. Lemma 2.17 is quite similar to
the result of Yamada [10] which is obtained in a Hilbert space but we extended that
result to a Banach space.

Remark 3.5. Theorem 3.3 extends the main result of Yao et al. [7] in the following
ways:

(i) A general system of variational inequalities (1.12) containing two inverse-strongly
accre-tive mappings are extends to a general system of nonlinear variational inequal-
ities (1.15) containing perturbed mappings.

(ii) Theorem 3.3 for finding an element ¥ € Fix (§) NFix (G) (G is defined as in
Lemma 2.19) is more general the one of finding elements of
X e VI(C,¥)NVI(C,¥,) of Yao et al. [7].

Furthermore, our method of the proof is very different from that in [7, Theorem 3.7]
because it can be applied to solving the problem of finding a common element of the
set of common fixed points of a one-parameter nonexpansive semigroup and the set of
solutions of a general system of nonlinear variational inequalities containing perturbed
mappings.

From Theorem 3.3, Lemma 2.4 and Example 2.5, we have the following result.

Corollary 3.6. Let C be a nonempty closed and convex subset of a real 2-uniformly
smooth and uniformly convex Banach space X. Let Qc be a sunny nonexpansive retrac-
tion from X onto C. Let F : C — X be a r-Lipschitizian and n-strongly accretive opera-
tor with constants k, 1 >0, V: C — C be an L-Lipschitzian mapping with a constant

L > 0. Let O0<p< /(27;(2 and 0 < yL <1, where © = u(n - ur *K*). Let

S={T(h): h> 0} be a u.a.r. nonexpansive semigroup from C into itself such that
Fix (S) := NpsoFix (T (h)) # @ and least there exists a T(h) which is demicompact. Let
V,:C—> X (i=1,2)be Ei—inverse—strongly accretive and ®; : C - X (i = 1, 2) be ¥;
-inverse-strongly accretive. Assume that Q = Fix (S) NFix (G) # @, where G is defined
as in Lemma 2.19. For given x, € C, let {x,} be a sequence defined by

Zn = Qc (Xy — p2 (W2 + P2) xp),
Yn=Qc (@n — p1 (V1 + P1)zy),

1 (3.42)
Xne1 = BnXn + (1 — Bn) Qc [annyn + (I — apuF) . ST yndS], vn>1,
n o

B 7

where p; € | 0, min ,
pi ( {21(2 2K2

}) for all i = 1, 2. Suppose that {t,} is a positive real

. t,
divergent sequence such that hmn—>oot " =1, and {a,.}, {B,} are sequences in [0, 1]
n+1

satisfying the following conditions:
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(C1) lim,, 5. @0, = 0 and > poj oy = 00 ;

(C2) 0 < lim inf,_,., B, < lim sup,_,.. B, < 1.

Then, the sequence {x,} defined by (3.42) converges strongly to X e Q as n — o,
which % is the unique solution of the variational inequality

(WF=yWVXjE-v)=<0, WeQ, (3.43)

and (X,y) is the solution of the problem (1.15), where J = Qc (X — p2 (W2 + ®2)%) .
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