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Abstract
In this note, we derive, under some natural assumptions, a general pattern of the
almost sure central limit theorem in the joint version for the maxima and sums.
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1 Introduction andmain results
Let {X,Xn;n≥ } be a sequence of independent and identically distributed (i.i.d.) random
variables and Sn =

∑n
k=Xk , Mn = max≤k≤n Xk for n ≥ . If E(X) = , E(X) = , then the

classical almost sure central limit theorem (ASCLT) has the simplest form as follows:

lim
n→∞


logn

n∑
k=


k
I
{
Sk√
k

≤ x
}
= �(x) a.s. for all x ∈ R, (.)

where, here and in the sequel, I(A) is the indicator function of the event A and�(x) stands
for the standard normal distribution function. This result was firstly proved independently
by Brosamler [] and Schatte [] under a stronger moment condition. Since then, this type
of almost sure theorem, which mainly dealt with logarithmic average limit theorems, has
been extended in various directions. In particular, Fahrner and Stadtmüller [] and Cheng
et al. [] extended the almost sure convergence for partial sums to the case of maxima of
i.i.d. random variables. Namely, under some natural conditions, they proved as follows:

lim
n→∞


logn

n∑
k=


k
I
{
Mk – bk

ak
≤ x

}
=G(x) a.s. for all x ∈ CG, (.)

where CG denotes the set of continuity points of G, and where ak >  and bk ∈ R satisfy

lim
k→∞

P
(
Mk – bk

ak
≤ x

)
=G(x) a.s. for any x ∈ CG

with G(x) being one of the extreme value distributions, i.e.,

∧(x) = exp
{
– exp(–x)

}
,

�α(x) =

⎧⎨
⎩, x < ,

exp{–x–α}, x ≥ ,
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for some α > , or

�α(x) =

⎧⎨
⎩exp{–(–x)α}, x < ,

, x ≥ ,

for some α > . These three distributions are often called the Gumbel, the Frechet and the
Weibull distributions, respectively.
For Gaussian sequences, Csáki and Gonchigdanzan [] investigated, under some mild

conditions, the validity of (.) for maxima of stationary Gaussian sequences. Further-
more, Chen and Lin [] extended it to non-stationary Gaussian sequences. As for some
other dependent random variables, Peligrad and Shao [] and Dudziński [] derived some
corresponding results about ASCLT. In addition, the almost sure central limit theorem in
the joint version for log-average of maxima and partial sums of independent and iden-
tically distributed random variables was obtained by Peng et al. [], whereas the joint
version of the almost sure limit theorem for log-average of maxima and partial sums of
stationary Gaussian random variables was derived by Dudziński [].
In statistical context, we are very concerned with the ASCLT in the joint version for the

maxima and partial sums. The goal of this note is to investigate the general pattern of the
ASCLT for themaxima and partial sums of i.i.d. random variables by themethod provided
by Hörmann []. He showed the following result.

TheoremA Let X,X, . . . be independent random variables with partial sums Sn.Assume
that for some numerical sequences an >  and bn, we have

Sn
an

– bn
D→H

with some (possibly degenerate) distribution function H .
Suppose,moreover, that

E
∣∣∣∣Snan – bn

∣∣∣∣
v

=O() for some v > 

and

ak/al ≤ C(k/l)β ( ≤ k ≤ l)

for some positive constants C, β .
Assume finally that

kdk 	  and dkkα is nonincreasing for some  < α < ,

and that

dk =O
(

Dk

k(logDk)ρ

)
for some ρ > , where Dn =

n∑
k=

dk .
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Then, if f is a bounded Lipschitz function on the real line or the indicator function of a Borel
set A⊂ R with λ(∂A) = , we have

lim
N→∞


DN

N∑
k=

dkf
(
Sk
ak

– bk
)
=

∫ ∞

–∞
f (x)dH(x) a.s.

Now, we may state our main result as follows.

Theorem . Let {X,Xn;n ≥ } be a sequence of independent and identically distributed
(i.i.d.) random variables with non-degenerate and continuous common distribution func-
tion F satisfying E(X) =  and E(X) = . Suppose that, for a non-degenerate distribution
G, there exist some numerical sequences (an > ), (bn) such that

Mn – bn
an

D→G. (.)

Suppose,moreover, that the positive weights dn,n≥ , satisfy the following conditions:

(C) lim infn→∞ ndn > ;
(C) nαdn is nonincreasing for some  < α < ;
(C) lim supn→∞ ndn(logDn)ρ/Dn < ∞ for some ρ > , where Dn =

∑n
k= dk .

Assume, in addition, that f (x, y) is a bounded Lipschitz function. Then

lim
n→∞


Dn

n∑
k=

dkf
(

Sk√
k
,
Mk – bk

ak

)
=

∫ ∞

–∞

∫ ∞

–∞
f (x, y)�(dx)G(dy) a.s. (.)

Remark . Since a set of bounded Lipschitz functions is tight in a set of bounded con-
tinuous functions, Theorem . is true for all bounded continuous functions f (x, y).

Remark . It can be seen by routine approximation arguments similar, e.g., to those in
Lacey and Philipp [] that, under the conditions of Theorem ., the result in (.) holds
for indicator functions, i.e.,

lim
n→∞


Dn

n∑
k=

dkI
(

Sk√
k

≤ x,
Mk – bk

ak
≤ y

)
= �(x)G(y) a.s.

Remark . The result of Berkes and Csáki [] shows that the a.s. central limit theorem
remains valid even with the sequence of weights

dk =
exp((logk)α)

k
provided ≤ α <



,

which at least includes a ‘halfway’ from logarithmic to ordinary averaging.Moreover, Hör-
mann [] shows that this sequence obeys the a.s. central limit theorem for all  ≤ α < .
Due to the similar conditions on the sequence of weights, our result also holds for this
sequence provided ≤ α < .
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2 Proof of our main result
The following notations will be used throughout this section: Sn =

∑n
k=Xk , Sk,n =∑n

i=k+Xi, Mn =max≤i≤n Xi, and Mk,n =maxk+≤i≤n Xi for n ≥ . Furthermore, a 	 b and
a ∼ b stand for a = O(b) and a

b → , respectively, and �(x) is the standard normal distri-
bution function. The proof of our main result is based on the following lemmas.

Lemma  Under the assumptions of Theorem ., we have

Cov

(
f
(

Sk√
k
,
Mk – bk

ak

)
, f

(
Sl√
l
,
Ml – bl

al

))
	

(
k
l

)/

,  ≤ k ≤ l.

Proof It is easy to see that

∣∣∣∣Cov
(
f
(

Sk√
k
,
Mk – bk

ak

)
, f

(
Sl√
l
,
Ml – bl

al

))∣∣∣∣
≤

∣∣∣∣Cov
(
f
(

Sk√
k
,
Mk – bk

ak

)
, f

(
Sl√
l
,
Ml – bl

al

)
– f

(
Sl√
l
,
Mk,l – bl

al

))∣∣∣∣
+

∣∣∣∣Cov
(
f
(

Sk√
k
,
Mk – bk

ak

)
, f

(
Sl√
l
,
Mk,l – bl

al

)
– f

(
Sk,l√
l
,
Mk,l – bl

al

))∣∣∣∣
+

∣∣∣∣Cov
(
f
(

Sk√
k
,
Mk – bk

ak

)
, f

(
Sk,l√
l
,
Mk,l – bl

al

))∣∣∣∣
=: L + L + L.

For L, we have, by the independence of {Xn;n ≥ }, that

L = . (.)

Now, we are in a position to estimate L. From the fact that f is bounded and Lipschitzian,
it follows that

L 	 E
∣∣∣∣f

(
Sl√
l
,
Ml – bl

al

)
– f

(
Sl√
l
,
Mk,l – bl

al

)∣∣∣∣
	 E

(
min

(
Ml –Mk,l

al
, 

))

= E
(
min

(
Ml –Mk,l

al
, 

))
I(Ml �=Mk,l)

	 P(Ml �=Mk,l)

= P(Mk >Mk,l)

= k
∫ ∞

–∞

(
F(x)

)l–k(F(x))k– dF(x)
≤

∫ 


ktl– dt

=
k
l
, (.)
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where we used the fact that

∫ ∞

–∞
ψ

(
F(x)

)
dF(x)≤

∫ 


ψ(t)dt

for any nondecreasing function ψ on [, ]. In order to verify the last relation, let F–(t) =
sup{x : F(x) ≤ t}, and let U be a random variable uniformly distributed on (, ). Then
F(F–(t))≤ t for all t ∈ (, ) and the random variable Y = F–(U) has distribution F . Thus,
the left-hand side of the above inequality equals

Eψ
(
F(Y )

)
= Eψ

(
F
(
F–(U)

)) ≤ Eψ(U) =
∫ 


ψ(t)dt

as claimed.
By the fact that f is Lipschitzian and due to the Cauchy-Schwarz inequality, we have

L 	 E
∣∣∣∣f

(
Sl√
l
,
Mk,l – bl

al

)
– f

(
Sk,l√
l
,
Mk,l – bl

al

)∣∣∣∣
	 E

∣∣∣∣ Sk√
l

∣∣∣∣ ≤ √
l
(
ESk

) 


=
(
k
l

) 

. (.)

Thus, using (.)-(.), we get the desired result. �

Let f and {X,Xn;n ≥ } be such as in the statement of Theorem . and

ξk = f
(

Sk√
k
,
Mk – bk

ak

)
– Ef

(
Sk√
k
,
Mk – bk

ak

)
,

ξk,l = f
(
Sk,l√
l
,
Mk,l – bl

al

)
– Ef

(
Sk,l√
l
,
Mk,l – bl

al

)
.

We will also prove the following auxiliary result.

Lemma  Let p be a positive integer. Then for  ≤ k ≤ l, we have

E|ξl – ξk,l|p 	
(
k
l

)/

.

Proof Without loss of generality, we may assume that |f | ≤ . Thus, we have

E|ξl – ξk,l|p ≤ p–E|ξl – ξk,l|. (.)

Furthermore, we obtain that

E|ξl – ξk,l| ≤ E
∣∣∣∣f

(
Sl√
l
,
Ml – bl

al

)
– f

(
Sk,l√
l
,
Mk,l – bl

al

)∣∣∣∣
≤ E

∣∣∣∣f
(
Sk,l√
l
,
Mk,l – bl

al

)
– f

(
Sl√
l
,
Mk,l – bl

al

)∣∣∣∣
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+ E
∣∣∣∣f

(
Sl√
l
,
Ml – bl

al

)
– f

(
Sl√
l
,
Mk,l – bl

al

)∣∣∣∣
	 P(Ml �=Mk,l) + E

∣∣∣∣ Sk√
l

∣∣∣∣
	 k

l
+

√
l
(
ESk

)/

	
(
k
l

)/

. (.)

The relations in (.), (.) imply the claim in Lemma . �

The following lemma will also be used.

Lemma  Let p be a positive integer. Then for  ≤ k ≤ m≤ n, we have

E

∣∣∣∣∣
n∑

l=m

dl(ξl – ξk,l)

∣∣∣∣∣
p

	
( n∑

l=m

ld
l

) p


.

Proof We can write

( n∑
l=m

dl(ξk – ξk,l)

)p

=
n∑

l=m

· · ·
n∑

lp=m

dl · · ·dlp (ξl – ξk,l ) · · · (ξlp – ξk,lp ).

Thus, using theHölder inequality, theCauchy-Schwarz inequality and Lemma,we derive

E

∣∣∣∣∣
n∑

l=m

dl(ξl – ξk,l)

∣∣∣∣∣
p

≤
n∑

l=m

· · ·
n∑

lp=m

dl · · ·dlp
(
E|ξl – ξk,l |p · · ·E|ξlp – ξk,lp |p

) 
p

	 √
k

n∑
l=m

· · ·
n∑

lp=m

dl · · ·dlp l
– 
p

 · · · l–

p

p

=
√
k

( n∑
l=m

dll–

p

)p

≤ √
m

( n∑
l=m

ld
l

) p

( n∑

l=m

l–

p–

) p


.

This and the relation

n∑
l=m

l–

p– ≤ p



(m – )

p

	 m– 
p

imply the desired result. �

We will also prove the following lemma.
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Lemma  For every p ∈N, we have

E

∣∣∣∣∣
n∑
k=

dkξk

∣∣∣∣∣
p

	
( ∑
≤k≤l≤n

dkdl
(
k
l

)/) p

.

Proof This lemma can be obtained from Lemmas  and  by making slight changes in the
proof of Lemma  of Hörmann []. �

The following result will be needed in the proof of our main result.

Lemma  Suppose that η < ρ , where ρ satisfies the assumption in (C) of Theorem ..We
have

∑
≤k≤l≤n

dkdl
(
k
l

)/

=O
(

D
n

(logDn)η

)
, where Dn =

n∑
i=

di.

Proof This result follows from Lemma  in Hörmann []. �

Proof of Theorem . Firstly, by Theorem .. in Hsing [] and our assumptions, we have

lim
n→∞P

(
Sn√
n

≤ x,
Mn – bn

an
≤ y

)
= �(x)G(y) for x, y ∈ R.

Then, in view of the dominated convergence theorem, we have

Ef
(

Sn√
n
,
Mn – bn

an

)
→

∫ ∞

–∞

∫ ∞

–∞
f (x, y)�(dx)G(dy).

Hence, in order to complete the proof, it is sufficient to show

lim
n→∞


Dn

n∑
k=

dk
(
f
(

Sk√
k
,
Mk – bk

ak

)
– Ef

(
Sk√
k
,
Mk – bk

ak

))
=  a.s.

This follows from Lemmas  and  by applying similar arguments to those used in Hör-
mann [].
In fact, from Lemmas  and  and the Markov inequality, we derive

P

(∣∣∣∣∣
n∑
k=

dkξk

∣∣∣∣∣ > εDn

)
	 (logDn)

–pη
 for any ε,p ∈N and large enough n.

By (C), we have
Dnj+
Dnj

→ . Thus, we can choose an increasing subsequence (nj) such that

Dnj =O(exp(j  )). Then, choosing p > 
η
and using Borel-Cantelli lemma, we derive


Dnj

nj∑
i=

diξi →  a.s.
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For nj ≤ n < nj+, we have


Dn

∣∣∣∣∣
n∑
k=

dkξk

∣∣∣∣∣ ≤ 
Dnj

∣∣∣∣∣
nj∑
i=

diξi

∣∣∣∣∣ + 
(Dnj+

Dnj
– 

)
a.s.

Since
Dnj+
Dnj

→ , the convergence of the subsequence implies that the whole sequence con-
verges almost surely. This completes the proof of Theorem .. �
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