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1 Introduction
Let C be a nonempty, closed and convex subset of a Banach space E. Recall that a self
mapping f : E → E is an α-contraction on C if there exists a constant α ∈ (, ) such that
for any x, y ∈ E, we have

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖.

A functionψ :R+ →R
+ is said to be an L-function ifψ() = ,ψ(t) >  for any t > , and

for every t >  and s > , there exists u > s such that ψ(t) ≤ s for all t ∈ [s,u]. This implies
that ψ(t) < t for all t > .
A mapping f : E → E is said to be a (ψ ,L)-contraction if there exists an L-function ψ :

R
+ →R

+ such that

∥∥f (x) – f (y)
∥∥ ≤ ψ‖x – y‖, ∀x, y ∈ E with x �= y.

If ψ(t) = kt for all t > , where k ∈ (, ), then f is a contraction.
A mapping f is called aMeir-Keeler typemapping if for each ε > , there exists δ(ε) > 

such that for all x, y ∈ E, if ε < ‖x – y‖ < ε + δ, then ‖f (x) – f (y)‖ < ε.
A mapping T : C → C is said to be
(i) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;
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(ii) Lipschitzian with a Lipschitz constant l >  if

‖Tx – Ty‖ ≤ l‖x – y‖, ∀x, y ∈ C;

(iii) asymptotically nonexpansive if there exists a sequence {kn} of positive numbers
satisfying the property limn→∞ kn =  and

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C.

Every nonexpansive mappings are asymptotically nonexpansive with respect to the se-
quence kn = , n ∈ N. Also, every asymptotically nonexpansive mappings are uniformly
l-Lipschitzian with l = supn∈N kn.
Let S be a semigroup. Then a family S = {Ts : s ∈ S} of mappings of C into itself is called

Lipschitzian mappings on C if for each s ∈ S, the mapping Ts is a Lipschitzian mapping
on C with a Lipschitz constant ks, and Tst = TsTt for all s, t ∈ S. A family S is called a
Lipschitzian semigroup on C if it satisfies the following:
. Tstx = TsTtx for all s, t ∈ S and x ∈ C;
. for each s ∈ S, Ts is a Lipschitzian mapping of C into itself, i.e., there is ks ≥  such

that

‖Tsx – Tsy‖ ≤ ks‖x – y‖ for all x, y ∈ C.

A Lipschitzian semigroup S is called uniformly l-Lipschitzian if ks = l for all s ∈ S.
Let F(S) denote the common fixed point set {x ∈ C : Tsx = x,∀s ∈ S} of the mappings Ts.
For a semigroup S, we define a partial preordering≺ on S by a ≺ b if and only if aS ⊃ bS.

If S is a left reversible semigroup (i.e., aS ∩ bS �= ∅ for a,b ∈ S), then it is a directed set.
(Indeed, for every a,b ∈ S, applying aS ∩ bS �= ∅, there exist a′,b′ ∈ S with aa′ = bb′; by
taking c = aa′ = bb′, we have cS ⊆ aS ∩ bS, and then a ≺ c and b ≺ c.)
Let S = {Ts : s ∈ S} be a representation of a left reversible semigroup S as Lipschitzian

mappings onC with Lipschitz constants {ks : s ∈ S}.We shall say thatS is an asymptotically
nonexpansive semigroup onC, if there holds the uniformLipschitzian condition lims ks ≤ 
on the Lipschitz constants.
In , Mann [] introduced an iterative method as follows: a sequence {xn} defined by

xn+ = αnxn + ( – αn)Txn, (.)

where the initial guess element x ∈ C is arbitrary and {αn} is a sequence of real numbers
in [, ]. The Mann iteration can guarantee in general only weak convergence. The Mann
iteration has been extensively investigated for nonexpansive mappings and modified for
strong convergence. Later, in , Reich and Zaslavski [] introduced the Krasnoselskii-
Mann iterations of a generic nonexpansive operator on a closed and convex, but not nec-
essarily bounded, subset of a hyperbolic space with a unique fixed point.
In , Halpern [] considered the following algorithm:

xn+ = αnx + ( – αn)Txn, (.)

where T is nonexpansive and the initial guess element x ∈ C is arbitrary.
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In , Xu [] introduced and proved the following viscosity approximation methods
for nonexpansive mappings in a uniformly smooth Banach space:

xn+ = αnf (xn) + ( – αn)Txn, (.)

where f : C → C is a contraction mapping.
In , Lau, Miyake and Takahashi [] introduced the following Mann’s implicit itera-

tion process:

xn+ = αnx + ( – αn)T(μn)xn, (.)

for a semigroupS = {Ts : s ∈ S} of nonexpansivemappings on a compact and convex subset
C of a smooth and strictly convex Banach space.
In the same year, Zhang et al. [] introduced the following composite iteration scheme:

⎧⎨
⎩
yn = βnxn + ( – βn)T(tn)xn,

xn+ = αnx + ( – αn)yn,
(.)

where {T(t) : t ≥ } is a nonexpansive semigroup, x is an arbitrary point in C. Under a
suitable condition, they proved strong convergence theorems of an explicit composite it-
eration scheme for nonexpansive semigroups in a reflexive Banach space with a uniformly
Gâteaux differentiable norm, uniformly smooth Banach space and uniformly convex Ba-
nach space with a weakly continuous normalized duality mapping.
In , Shahram Saeidi [] introduced the following viscosity iterative scheme:

xn+ = αnf (xn) + βnxn + γnT(μn)xn, (.)

for a representation of S as Lipschitzian mappings on a compact and convex subset C of a
smooth Banach space E with respect to a left regular sequence {μn} of means defined on
an appropriate invariant subspace of l∞(S); for some related results, we refer the readers
to [, ].
Motivated and inspired by the idea of Zhang et al. [] and Saeidi [], we introduce the

explicit viscosity iterative process by Meir-Keeler type contraction in a smooth Banach
space. Then we prove that the sequence {xn} converges strongly to a common fixed point
of S = {Ts : s ∈ S}, where S is a left reversible semigroup, which is the unique solution of
the variational inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

2 Preliminaries
Let E be a Banach space and let E* be the topological dual of E. The value of x* ∈ E* at
x ∈ E will be denoted by 〈x,x*〉 or x*(x). With each x ∈ E, we associate the set

J(x) =
{
x* ∈ E* :

〈
x,x*

〉
=

∥∥x*∥∥ = ‖x‖}.
Using the Hahn-Banach theorem, it immediately follows that J(x) �= ∅ for each x ∈ E.
A Banach space E is said to be smooth if the duality mapping J of E is single-valued. We
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know that if E is smooth, then J is norm-to-weak* continuous; see [, ]. Let E be a Banach
space and let C be a closed and convex subset of E. Then

‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉, (.)

and

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, (.)

for all x, y ∈ E and λ ∈ [, ].
Let S be a semigroup. We denote by l∞(S) the Banach space of all bounded real valued

functions on S with a supremum norm. For each s ∈ S, we define ls and rs on l∞(S) by
(lsg)(t) = g(st) and (rsg)(t) = g(ts) for each t ∈ S and g ∈ l∞(S). Let X be a subspace of l∞(S)
containing  and letX* be its topological dual. An elementμ ofX* is said to be amean onX
if ‖μ‖ = μ() = .We often write μt(g(t)) instead of μ(g) for μ ∈ X* and g ∈ X. Let X be left
invariant (resp. right invariant), i.e., ls(X) ⊂ X (resp. rs(X) ⊂ X) for each s ∈ S. A mean μ

on X is said to be left invariant (resp. right invariant) if μ(lsg) = μ(g) (resp. μ(rsg) = μ(g))
for each s ∈ S and g ∈ X. A subspace X is said to be left (resp. right) amenable if X has
a left (resp. right) invariant mean. A semigroup X is amenable if X is both left and right
amenable. If a semigroup S is left amenable, then S is left reversible [, ].
A net {μα} of means on X is said to be strongly left regular if

lim
α

∥∥l*sμα –μα

∥∥ = 

for each s ∈ S, where l*s is the adjoint operator of ls. LetC be a nonempty, closed and convex
subset of E. Throughout this paper, Swill always denote a semigroupwith an identity e. S is
called left reversible if any two right ideals in S have nonvoid intersection, i.e., aS∩ bS �= ∅
for any a,b ∈ S. In this case, we can define a partial ordering ≺ on S by a≺ b if and only if
aS ⊃ bS. It is easy to see t ≺ ts (for all t, s ∈ S). Further, if t ≺ s, then pt ≺ ps for all p ∈ S. If
a semigroup S is left amenable, then S is left reversible. But the converse is false. Denote
by Ca the set of almost periodic elements in C, i.e., all x ∈ C such that S = {Tsx : s ∈ S} is
relatively compact in the norm topology of E. We will call a subspace X of l∞(S), S-stable
if the functions s �→ 〈Tsx,x*〉 and s �→ ‖Tsx – y‖ on S are in X for all x, y ∈ C and x* ∈ E*.
We know that if μ is a mean on X and if for each x* ∈ E*, the function s �→ 〈Tsx,x*〉 is
contained in X and C is weakly compact, then there exists a unique point x of E such that

μs
〈
Tsx,x*

〉
=

〈
x,x*

〉

for each x* ∈ E*.We denote such a point x byT(μ)x. Note thatT(μ)z = z for each z ∈ F(S);
see [–]. Let D be a subset of B where B is a subset of a Banach space E and let P be
a retraction of B onto D. Then P is said to be sunny [] if for each x ∈ B and t ≥  with
Px + t(x – Px) ∈ B,

P
(
Px + t(x – Px)

)
= Px.

A subset D is said to be a sunny nonexpansive retract of B if there exists a sunny nonex-
pansive retraction P of B onto D. If E is smooth and P is a retraction of B onto D, then P
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is sunny and nonexpansive if and only if for each x ∈ B and z ∈D,

〈
x – Px, J(z – Px)

〉 ≤ . (.)

For more details, see [, ].

Lemma . ([]) Let S be a left reversible semigroup and let S = {Ts : s ∈ S} be a represen-
tation of S as Lipschitzian mappings from a nonempty, weakly compact and convex subset
C of a Banach space E into C, with the uniform Lipschitzian condition lims ks ≤  on the
Lipschitz constants of the mappings. Let X be a left invariant S-stable subspace of l∞(S)
containing , and μ be a left invariant mean on X. Then F(S) = F(T(μ))∩Ca.

Corollary . ([]) Let {μn} be an asymptotically left invariant sequence of means on X.
If z ∈ Ca and lim infn→∞ ‖T(μn)z – z‖ = , then z is a common fixed point of S .

Lemma . ([]) Let S be a left reversible semigroup and let S = {Ts : s ∈ S} be a represen-
tation of S as Lipschitzian mappings from a nonempty weakly compact and convex subset
C of a Banach space E into C, with the uniform Lipschitzian condition lims ks ≤  on the
Lipschitz constants of the mappings. Let X be a left invariant subspace of l∞(S) containing
 such that the mappings s �→ 〈Tsx,x*〉 be in X for all x ∈ X and x* ∈ E*, and {μn} be a
strongly left regular sequence of means on X . Then

lim sup
n→∞

sup
x,y∈C

(∥∥T(μn)x – T(μn)y
∥∥ – ‖x – y‖) ≤ .

Remark . From Lemma ., taking

cn = sup
x,y∈C

(∥∥T(μn)x – T(μn)y
∥∥ – ‖x – y‖), ∀n, (.)

we obtain that lim supn→∞ cn ≤ . Moreover,

∥∥T(μn)x – T(μn)y
∥∥ ≤ ‖x – y‖ + cn, ∀x, y ∈ C. (.)

Corollary . ([]) Let S be a left reversible semigroup and let S = {Ts : s ∈ S} be a repre-
sentation of S as Lipschitzian mappings from a nonempty, compact and convex subset C
of a Banach space E into C, with the uniform Lipschitzian condition lims ks ≤ . Let X be a
left invariant S-stable subspace of l∞(S) containing , and μ be a left invariant mean on X.
Then T(μ) is nonexpansive and F(S) �= ∅. Moreover, if E is smooth, then F(S) is a sunny
nonexpansive retract of C and the sunny nonexpansive retraction of C onto F(S) is unique.

Lemma . ([, ]) Let E be a real Banach space. Then, for any given x, y ∈ E and j(x+ y) ∈
J(x + y), the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
.

Lemma . ([]) Let {xn} and {yn} be two bounded sequences in a Banach space E and
let {βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that

http://www.journalofinequalitiesandapplications.com/content/2012/1/279
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xn+ = (–βn)yn +βnxn for all integers n ≥  and lim supn→∞(‖yn+ – yn‖–‖xn+ –xn‖) ≤ .
Then limn→∞ ‖yn – xn‖ = .

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – σn)an + ρn,

where {αn} is a sequence in (, ) and {δn} is a sequence in R such that
()

∑∞
n= αn = ∞;

() lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let (Y ,d) be a metric space and let f : Y → Y be a mapping. The fol-
lowing assertions are equivalent:
. f is a Meir-Keeler type mapping;
. there exists a L-function ψ :R+ →R

+ such that f is a (ψ ,L)-contraction.

Lemma . ([]) Let E be a Banach space and let C be a convex subset of E. Let T : C →
C be a nonexpansive mapping and f be a (ψ ,L)-contraction. Then the following assertions
hold:
. T ◦ f is a (ψ ,L)-contraction on C and has a unique fixed point in C;
. for each α ∈ (, ), the mapping x → αf (x) + ( – α)Tx is of Meir-Keeler-type and it

has a unique fixed point in C.

Lemma. ([]) Let E be a Banach space and let C be a convex subset of E. Let f : C → C
be a Meir-Keeler-type contraction. Then for each ε > , there exists r ∈ (, ) such that, for
each x, y ∈ C with ‖x – y‖ ≥ ε, we have ‖f (x) – f (y)‖ ≤ r‖x – y‖.

3 Main results
In this paper, we suppose that ψ from the definition of (ψ ,L)-contraction is continuous,
strictly increasing. Let η(t) = t –ψ(t) for all t ∈R

+, we have that limt→∞ η(t) = ∞ and η(t)
is strictly increasing and onto. Consequently, we have that and η(t) is a bijection on R

+.

Theorem . Let C be a nonempty, compact and convex subset of a smooth Banach
space E. Let S be a left reversible semigroup and S = {Ts : s ∈ S} be a representation of
S as Lipschitzian mappings from C into itself, with the uniform Lipschitzian condition
lims ks ≤ , and f be a Meir-Keeler contraction of C into itself. Let X be a left invari-
ant S-stable subspace of l∞(S) containing , {μn} be a strongly left regular sequence of
means on X such that limn→∞ ‖μn+ – μn‖ =  and {cn} be the sequence defined in (.)
with lim supn→∞ cn ≤ . Suppose the sequences {αn}, {βn}, {γn} and {δn} in (, ) satisfy
αn + βn + γn = , n≥ . The following conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) limn→∞ δn = ;
(iii) lim supn→∞

cn
αn

≤ ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

http://www.journalofinequalitiesandapplications.com/content/2012/1/279
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For arbitrary x ∈ C, generate a sequence {xn} by
⎧⎨
⎩
yn = δnxn + ( – δn)T(μn)xn,

xn+ = αnf (xn) + βnxn + γnyn.
(.)

Then {xn} converges strongly to q ∈ F(S), which is the unique solution of the variational
inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

Equivalently, we have q = Pfq, where P is the unique sunny nonexpansive retraction of C
onto F(S).

Proof First, we prove that {xn} is bounded. That is, if we take a point p ∈ F(S), wewill show
that ‖xn–p‖ ≤ M for all n ∈N. Let p ∈ F(S). It is obvious thatM =max{‖x –p‖,η–‖f (p)–
p‖}. By induction we suppose that M = max{‖xk – p‖,η–‖f (p) – p‖}, where k ∈ N. Since
T(μk) is nonexpansive, we have

‖yk – p‖ =
∥∥δnxk + ( – δk)T(μk)xk – p

∥∥
≤ δk‖xk – p‖ + ( – δk)

∥∥T(μk)xk – p
∥∥

≤ δk‖xk – p‖ + ( – δk)
(‖xk – p‖)

≤ ‖xk – p‖. (.)

Since f is a Meir-Keeler contraction, we have that

‖xk+ – p‖ =
∥∥αkf (xk) + βkxk + γkyk – p

∥∥
=

∥∥αk
(
f (xk) – p

)
+ βk(xk – p) + γn(yk – p)

∥∥
≤ αk

∥∥f (xk) – p
∥∥ + βk‖xk – p‖ + γk‖yk – p‖

≤ αk
∥∥f (xk) – f (p)

∥∥ + αk
∥∥f (p) – p

∥∥ + βk‖xk – p‖ + γk‖yk – p‖
≤ αkψ‖xk – p‖ + αk

∥∥f (p) – p
∥∥ + βk‖xk – p‖ + γk‖yk – p‖

= αkψ‖xk – p‖ + (βk + γk)‖xk – p‖ + αkη
(
η–)∥∥f (p) – p

∥∥
= αkψ‖xk – p‖ + ( – αk)‖xk – p‖ + αkη

(
η–)∥∥f (p) – p

∥∥
≤ αkψ(M) + ( – αk)(M) + αkη(M)

≤ αkψ(M) + ( – αk)(M) + αk
(
M –ψ(M)

)
= M.

That is, {xk+} is bounded. By induction we have that {xn} is bounded, and so are the se-
quences {f (xn)}, {T(μn)xn} and {yn}. As T(μn) is bounded, we have {Tsxn} is also bounded.
Denote D = sups∈S ‖Tsxn‖, then it follows that

∥∥T(μn+)xn – T(μn)xn
∥∥ = sup

{∣∣〈T(μn+)xn – T(μn)xn, z*
〉∣∣ : z* ∈ E*,

∥∥z*∥∥ = 
}

= sup
{∣∣(μn+)s

〈
Tsxn, z*

〉
– (μn)s

〈
Tsxn, z*

〉∣∣ : z* ∈ E*,
∥∥z*∥∥ = 

}

http://www.journalofinequalitiesandapplications.com/content/2012/1/279


Saewan and Kumam Journal of Inequalities and Applications 2012, 2012:279 Page 8 of 15
http://www.journalofinequalitiesandapplications.com/content/2012/1/279

≤ ‖μn+ –μn‖ sup
s∈S

‖Tsxn‖
∥∥z*∥∥

≤ ‖μn+ –μn‖ sup
s∈S

‖Tsxn‖

= ‖μn+ –μn‖D.

Since limn→∞ ‖μn+ –μn‖ = , we obtain that

lim
n→∞

∥∥T(μn+)xn – T(μn)xn
∥∥ = . (.)

Next, we will show that limn→∞ ‖xn+ – xn‖ =  and by Lemma ., we observe that

‖yn+ – yn‖ =
∥∥δn+xn+ + ( – δn+)T(μn+)xn+ –

(
δnxn + ( – δn)T(μn)xn

)∥∥
=

∥∥δn+xn+ – δn+xn + δn+xn + ( – δn+)T(μn+)xn+

– ( – δn+)T(μn)xn + ( – δn+)T(μn)xn – δnxn – ( – δn)T(μn)xn
∥∥

=
∥∥δn+(xn+ – xn) + (δn+ – δn)xn + ( – δn+)

(
T(μn+)xn+

– T(μn)xn
)
+ (δn – δn+)T(μn)xn

∥∥
≤ δn+‖xn+ – xn‖ + |δn+ – δn|

(‖xn‖ + ∥∥T(μn)xn
∥∥)

+
∥∥T(μn+)xn+ – T(μn)xn

∥∥
≤ δn+‖xn+ – xn‖ + |δn+ – δn|

(‖xn‖ + ∥∥T(μn)xn
∥∥)

+
∥∥T(μn+)xn+ – T(μn)xn+

∥∥ +
∥∥T(μn)xn+ – T(μn)xn

∥∥
≤ δn+‖xn+ – xn‖ + |δn+ – δn|

(‖xn‖ + ∥∥T(μn)xn
∥∥)

+
∥∥T(μn+)xn+ – T(μn)xn+

∥∥ + ‖xn+ – xn‖ + cn.

Setting xn+ = ( – βn)zn + βnxn, we see that

zn =
xn+ – βnxn

 – βn
.

Then we compute

‖zn+ – zn‖

=
∥∥∥∥xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

∥∥∥∥
=

∥∥∥∥αn+f (xn+) + γn+yn+
 – βn+

–
αnf (xn) + γnyn

 – βn

∥∥∥∥
=

∥∥∥∥αn+f (xn+) + γn+yn+
 – βn+

–
αn+f (xn)
 – βn+

+
αn+f (xn)
 – βn+

–
γn+yn
 – βn+

+
γn+yn
 – βn+

–
αnf (xn) + γnyn

 – βn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – f (xn)

)
+

γn+

 – βn+
(yn+ – yn)

http://www.journalofinequalitiesandapplications.com/content/2012/1/279
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+
(

αn+

 – βn+
–

αn

 – βn

)
f (xn) +

(
γn+

 – βn+
–

γn

 – βn

)
yn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – f (xn)

)
+

γn+

 – βn+
(yn+ – yn)

+
(

αn+

 – βn+
–

αn

 – βn

)
f (xn) +

(
 – βn+ – αn+

 – βn+
–
 – βn – αn

 – βn

)
yn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – f (xn)

)
+

γn+

 – βn+
(yn+ – yn)

+
(

αn+

 – βn+
–

αn

 – βn

)
f (xn) +

(
–αn+

 – βn+
+

αn

 – βn

)
yn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – f (xn)

)
+

γn+

 – βn+
(yn+ – yn)

+
(

αn+

 – βn+
–

αn

 – βn

)
f (xn) –

(
αn+

 – βn+
–

αn

 – βn

)
yn

∥∥∥∥
=

∥∥∥∥ αn+

 – βn+

(
f (xn+) – f (xn)

)
+

γn+

 – βn+
(yn+ – yn)

+
(

αn+

 – βn+
–

αn

 – βn

)(
f (xn) – yn

)∥∥∥∥
≤

∣∣∣∣ αn+

 – βn+

∣∣∣∣∥∥f (xn+) – f (xn)
∥∥ +

∣∣∣∣ γn+

 – βn+

∣∣∣∣‖yn+ – yn‖

+
∣∣∣∣
(

αn+

 – βn+
–

αn

 – βn

)∣∣∣∣∥∥f (xn) – yn
∥∥

=
∣∣∣∣ αn+

 – βn+

∣∣∣∣∥∥f (xn+) – f (xn)
∥∥ +

∣∣∣∣ – αn+

 – βn+

∣∣∣∣‖yn+ – yn‖

+
∣∣∣∣
(

αn+

 – βn+
–

αn

 – βn

)∣∣∣∣∥∥f (xn) – yn
∥∥

≤
∣∣∣∣ αn+

 – βn+

∣∣∣∣∥∥f (xn+) – f (xn)
∥∥ + ‖yn+ – yn‖

+
∣∣∣∣
(

αn+

 – βn+
–

αn

 – βn

)∣∣∣∣∥∥f (xn) – yn
∥∥

≤
∣∣∣∣ αn+

 – βn+

∣∣∣∣∥∥f (xn+) – f (xn)
∥∥ + |δn+|‖xn+ – xn‖ + |δn+ – δn|

(‖xn‖ + ∥∥T(μn)xn
∥∥)

+
∥∥T(μn+)xn+ – T(μn)xn+

∥∥ + ‖xn+ – xn‖ + cn

+
∣∣∣∣
(

αn+

 – βn+
–

αn

 – βn

)∣∣∣∣∥∥f (xn) – yn
∥∥.

It follows that

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤
(

αn+

 – βn+
+ δn+

)
‖xn+ – xn‖

+
∣∣∣∣ αn+

 – βn+
–

αn

 – βn

∣∣∣∣(∥∥f (xn)∥∥ + ‖yn‖
)

+ |δn+ – δn|
(‖xn‖ + ∥∥T(μn)xn

∥∥)
+

∥∥T(μn+)xn+ – T(μn)xn+
∥∥ + cn.
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From (i), (ii), (iv), (.) and Lemma ., we have

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Applying Lemma ., we obtain limn→∞ ‖zn – xn‖ =  and also

‖xn+ – xn‖ = ( – βn)‖zn – xn‖ → , as n→ ∞.

That is,

lim
n→∞‖xn+ – xn‖ = . (.)

Next, we will show that the set of all limit points of {xn} is a subset of F(S). Note that

‖xn+ – xn‖ =
∥∥αnf (xn) + βnxn + γnyn

∥∥
=

∥∥αnf (xn) + βnxn + γn
(
δnxn + ( – δn)T(μn)xn

)
– xn

∥∥
=

∥∥αnf (xn) – ( – βn)xn + γn
(
δnxn + ( – δn)T(μn)xn

)∥∥
=

∥∥αnf (xn) – ( – βn)xn + γnδnxn + γnT(μn)xn – γnδnT(μn)xn
∥∥

=
∥∥αnf (xn) – ( – βn)xn + γnδnxn + ( – αn – βn)T(μn)xn – γnδnT(μn)xn

∥∥
=

∥∥αn
(
f (xn) – T(μn)xn

)
+ ( – βn)

(
T(μn)xn – xn

)
+ γnδn

(
xn – T(μn)xn

)∥∥
=

∥∥αn
(
f (xn) – T(μn)xn

)
+ (– + βn + γnδn)

(
xn – T(μn)xn

)∥∥
≤ αn

∥∥f (xn) – T(μn)xn
∥∥ + (– + βn + γnδn)

∥∥xn – T(μn)xn
∥∥.

It follows that

∥∥xn – T(μn)xn
∥∥ ≤ 

 – βn – γnδn

(
αn

∥∥f (xn) – T(μn)xn
∥∥ – ‖xn+ – xn‖

)
.

From (i), (ii), (iv) and (.), we have

lim
n→∞

∥∥xn – T(μn)xn
∥∥ = . (.)

Let p be a limit point of {xn} and {xnk } be a subsequence of {xn} converging strongly to p.
From Lemma ., we obtain that

lim sup
k→∞

∥∥p – T(μnk )p
∥∥ ≤ lim sup

k→∞

(‖p – xnk‖ +
∥∥xnk – T(μnk )xnk

∥∥
+

∥∥T(μnk )xnk – T(μnk )p
∥∥)

≤ lim sup
k→∞

(
‖p – xnk‖ +

∥∥xnk – T(μnk )xnk
∥∥ + cnk

)

≤ .

From (.), (.) and Corollary ., we get p ∈ F(S).
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We know that there exists a unique sunny nonexpansive retraction P of C onto F(S),
and from the Banach contraction mapping principle, we known that Pf has a unique fixed
point q which by (.) is the unique solution of

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S). (.)

Let {xnk } be a subsequence of {xn} converging to p ∈ C. From the smoothness of E
and (.), we have that

lim sup
n→∞

〈
(f – I)q, J(xn – q)

〉
= lim sup

k→∞

〈
(f – I)q, J(xnk – q)

〉

=
〈
(f – I)q, J(p – q)

〉 ≤ . (.)

Finally, we show that the sequence {xn} converges strongly to q = Pfq. Now, we have

‖yn – q‖ =
∥∥δnxn + ( – δn)T(μn)xn – q

∥∥
=

∥∥( – δn)
(
T(μn)xn – q

)
+ δn(xn – q)

∥∥
≤ ( – δn)

∥∥T(μn)xn – q
∥∥ + δn‖xn – q‖

≤ ( – δn)‖xn – q‖ + cn + δn‖xn – q‖
= ‖xn – q‖ + cn. (.)

From Lemma ., (.) and (.), we have

‖xn+ – q‖ =
∥∥αnf (xn) + βnxn + γnyn – q

∥∥

=
∥∥(

γn(yn – q) + βn(xn – q)
)
+ αn

(
f (xn) – q

)∥∥

≤ ∥∥γn(yn – q) + βn(xn – q)
∥∥ + αn

〈
f (xn) – q, J(xn+ – q)

〉

=
∥∥∥∥( – βn)

γn

 – βn
(yn – q) + βn

(
 – βn

 – βn

)
(xn – q)

∥∥∥∥


+ αn
〈
f (xn) – f (q), J(xn+ – q)

〉
+ αn

〈
f (q) – q, J(xn+ – q)

〉

≤ ( – βn)
∥∥∥∥ γn

 – βn
(yn – q)

∥∥∥∥


+ βn‖xn – q‖

+ rαn‖xn – q‖‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉

≤ γ 
n

 – βn
‖yn – q‖ + βn‖xn – q‖

+ rαn
(‖xn – q‖ + ‖xn+ – q‖) + αn

〈
f (q) – q, J(xn+ – q)

〉

≤ γ 
n

 – βn
‖xn – q‖ + γ 

n cn
 – βn

+ βn‖xn – q‖

+ rαn‖xn – q‖ + rαn‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉

=
(

γ 
n

 – βn
+ βn + rαn

)
‖xn – q‖ + γ 

n cn
 – βn

+ rαn‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
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=
(
(( – βn) – αn)

 – βn
+ βn + rαn

)
‖xn – q‖ + γ 

n cn
 – βn

+ rαn‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉

=
(
( – βn) – ( – βn)αn + α

n
 – βn

+ βn + rαn

)
‖xn – q‖

+
γ 
n cn

 – βn
+ rαn‖xn+ – q‖ + αn

〈
f (q) – q, J(xn+ – q)

〉

=
(
 – βn – αn +

α
n

 – βn
+ βn + rαn

)
‖xn – q‖ + γ 

n cn
 – βn

+ rαn‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉

=
(
( – rαn) + (rαn – αn) +

α
n

 – βn

)
‖xn – q‖ + γ 

n cn
 – βn

+ rαn‖xn+ – q‖ + αn
〈
f (q) – q, J(xn+ – q)

〉
.

It follows that

‖xn+ – q‖ ≤
(
 –

αn( – r)
 – rαn

+
α
n

( – rαn)( – βn)

)
‖xn – q‖ + γ 

n cn
( – rαn)( – βn)

+
αn

 – rαn

〈
f (q) – q, J(xn+ – q)

〉

≤
(
 –

αn( – r)
 – rαn

)
‖xn – q‖ + αn

 – rαn

(
αn

 – βn
‖xn – q‖

+
γ 
n cn

αn( – βn)
+ 

〈
f (q) – q, J(xn+ – q)

〉)

:= ( – σn)‖xn – q‖ + ρn,

where σn := αn(–r)
–rαn and ρn := αn

–rαn (
αn

–βn
‖xn – q‖ + γ 

n cn
αn(–βn) + 〈f (q) – q, J(xn+ – q)〉). Now,

from (i), (iii), (iv), (.) and Lemma ., ‖xn – q‖ →  as n→ ∞. This proof is completed.
�

Corollary . Let C be a nonempty, compact and convex subset of a smooth Banach
space E. Let S be a left reversible semigroup and S = {Ts : s ∈ S} be a representation of
S as Lipschitzian mappings from C into itself, with the uniform Lipschitzian condition
lims ks ≤ , and f be an α-contraction of C into itself. Let X be a left invariant S-stable sub-
space of l∞(S) containing , {μn} be a strongly left regular sequence of means on X such that
limn→∞ ‖μn+ –μn‖ =  and {cn} be the sequence defined by (.) with lim supn→∞ cn ≤ .
Suppose the sequences {αn}, {βn}, {γn} and {δn} in (, ) satisfy αn + βn + γn = , n ≥ . The
following conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) limn→∞ δn = ;
(iii) lim supn→∞

cn
αn

≤ ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

For arbitrary given x ∈ C, generate a sequence {xn} by
⎧⎨
⎩
yn = δnxn + ( – δn)T(μn)xn,

xn+ = αnf (xn) + βnxn + γnyn.
(.)
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Then {xn} converges strongly to q ∈ F(S), which is the unique solution of the variational
inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

Equivalently, we have q = Pfq, where P is the unique sunny nonexpansive retraction of C
onto F(S).

Corollary . Let C be a nonempty, compact and convex subset of a smooth Banach
space E. Let S be a left reversible semigroup and S = {Ts : s ∈ S} be a representation of
S as Lipschitzian mappings from C into itself, with the uniform Lipschitzian condition
lims ks ≤ , and f be a Meir-Keeler contraction of C into itself. Let X be a left invariant
S-stable subspace of l∞(S) containing , {μn} be a strongly left regular sequence of means
on X such that limn→∞ ‖μn+ – μn‖ =  and {cn} be the sequence defined by (.) with
lim supn→∞ cn ≤ . Suppose the sequences {αn}, {βn} and {γn} in (, ) satisfyαn+βn+γn = ,
n≥ . The following conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) lim supn→∞

cn
αn

≤ ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

For arbitrary x ∈ C, generate a sequence {xn} by

xn+ = αnf (xn) + βnxn + γnT(μn)xn. (.)

Then {xn} converges strongly to q ∈ F(S), which is the unique solution of the variational
inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

Equivalently, we have q = Pfq, where P is the unique sunny nonexpansive retraction of C
onto F(S).

Corollary . Let C be a nonempty, compact and convex subset of a smooth Banach
space E. Let S be a left reversible semigroup and S = {Ts : s ∈ S} be a representation of
S as Lipschitzian mappings from C into itself, with the uniform Lipschitzian condition
lims ks ≤ , and f be an α-contraction of C into itself. Let X be a left invariant S-stable sub-
space of l∞(S) containing , {μn} be a strongly left regular sequence of means on X such that
limn→∞ ‖μn+ –μn‖ =  and {cn} be the sequence defined by (.) with lim supn→∞ cn ≤ .
Suppose the sequences {αn}, {βn} and {γn} in (, ) satisfy αn + βn + γn = , n ≥ . The fol-
lowing conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) lim supn→∞

cn
αn

≤ ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

For arbitrary x ∈ C, generate a sequence {xn} by

xn+ = αnf (xn) + βnxn + γnT(μn)xn. (.)
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Then {xn} converges strongly to q ∈ F(S), which is the unique solution of the variational
inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

Equivalently, we have q = Pfq, where P is the unique sunny nonexpansive retraction of C
onto F(S).

Corollary . Let C be a nonempty, compact and convex subset of a smooth Banach
space E. Let S be a left reversible semigroup and S = {Ts : s ∈ S} be a representation of S
as nonexpansive mappings from C into itself and f be an α-contraction of C into itself. Let
X be a left invariant S-stable subspace of l∞(S) containing , {μn} be a strongly left regular
sequence of means on X such that limn→∞ ‖μn+ –μn‖ =  and {cn} be the sequence defined
by (.) with lim supn→∞ cn ≤ . Suppose the sequences {αn}, {βn}, {γn} and {δn} in (, )
satisfy αn + βn + γn = , n≥ . The following conditions are satisfied:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii) limn→∞ δn = ;
(iii) lim supn→∞

cn
αn

≤ ;
(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

For arbitrary x ∈ C, generate a sequences {xn} by
⎧⎨
⎩
yn = δnxn + ( – δn)T(μn)xn,

xn+ = αnf (xn) + βnxn + γnyn.
(.)

Then {xn} converges strongly to q ∈ F(S), which is the unique solution of the variational
inequality

〈
(f – I)q, J(p – q)

〉 ≤ , ∀p ∈ F(S).

Equivalently, we have q = Pfq, where P is the unique sunny nonexpansive retraction of C
onto F(S).
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