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Abstract
In this paper, a new theorem concerning the degree of approximation of the
conjugate of a function belonging to Lip(ξ (t), r) class by (N,pn)(E,q) summability of its
conjugate series of a Fourier series has been proved. Here the product of Euler (E,q)
summability method and Nörlund (N,pn) method has been taken.
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1 Introduction
Khan [, ] has studied the degree of approximation of a function belonging to Lip(α, r)-
class by Nörlund means. Generalizing the results of Khan [, ], many interesting results
have been proved by various investigators like Mittal et al. [–], Mittal, Rhoades and
Mishra [], Mittal and Singh [], Rhoades et al. [], Mishra et al. [, ] and Mishra and
Mishra [] for functions of various classes Lipα, Lip(α, r), Lip(ξ (t), r) and W (Lr , ξ (t)),
(r ≥ ) by using various summability methods. But till now, nothing seems to have been
done so far to obtain the degree of approximation of conjugate of a function using
(N ,pn)(E,q) product summability method of its conjugate series of Fourier series. In this
paper, we obtain a new theorem on the degree of approximation of a function f̃ , con-
jugate to a periodic function f ∈ Lip(ξ (t), r)-class, by (N ,pn)(E,q) product summability
means.
Let

∑∞
n= un be a given infinite series with the sequence of its nth partial sums {sn}. Let

{pn} be a non-negative generating sequence of constants, real or complex, and let us write

Pn =
n∑

k=

pk �=  ∀n≥ , p– =  = P– and Pn → ∞ as n→ ∞.

The conditions for regularity of Nörlund summability are easily seen to be
() limn→∞ pn

Pn →  and
()

∑∞
k= |pk| =O(Pn), as n→ ∞.
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The sequence-to-sequence transformation

tNn =

Pn

n∑
k=

pn–ksk (.)

defines the sequence {tNn } of Nörlund means of the sequence {sn}, generated by the se-
quence of coefficients {pn}. The series ∑∞

n= un is said to be summable (N ,pn) to the sum s
if limn→∞ tNn exists and is equal to s.
The (E,q) transform is defined as the nth partial sum of (E,q) summability, and we de-

note it by Eq
n. If

Eq
n =


( + q)n

n∑
k=

(
n
k

)
qn–ksk → s as n→ ∞, (.)

then the infinite series
∑∞

n= un is said to be summable (E,q) to the sum s Hardy [].
The (N ,pn) transform of the (E,q) transform defines (N ,pn)(E,q) product transform and
denotes it by tNEn . This is if

tNEn =

Pn

n∑
k=

pn–k
( + q)k

k∑
ν=

(
k
ν

)
qk–νsν . (.)

If tNEn → s as n → ∞, then the infinite series
∑∞

n= un is said to be summable (N ,pn)(E,q)
to the sum s.

sn → s ⇒ (E,q)(sn) = Eq
n = ( + q)–n

n∑
k=

(
k
n

)
qn–ksk → s,

as n→ ∞, (E,q) method is regular,

⇒ (
(N ,pn)(E,q)(sn)

)
= tNEn → s, as n→ ∞, (N ,pn) method is regular,

⇒ (N ,pn)(E,q) method is regular.

A function f (x) ∈ Lipα if

f (x + t) – f (x) = O
(∣∣tα∣∣) for  < α ≤ , t > 

and f (x) ∈ Lip(α, r), for ≤ x ≤ π if

(∫ π



∣∣f (x + t) – f (x)
∣∣r dx)/r

= O
(|t|α)

,  < α ≤ , r ≥ , t > .

Given a positive increasing function ξ (t), f (x) ∈ Lip(ξ (t), r), [] if

ωr(t; f ) =
(∫ π



∣∣f (x + t) – f (x)
∣∣r dx)/r

= O
(
ξ (t)

)
, r ≥ , t > , (.)

we observe that

Lip
(
ξ (t), r

) ξ (t)=tα–––––→ Lip(α, r) r→∞–––––→ Lipα for  < α ≤ , r ≥ , t > .
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Lr-norm of a function f : R→ R is defined by

‖f ‖r =
(∫ π



∣∣f (x)∣∣r dx)/r

, r ≥ . (.)

L∞-norm of a function f : R → R is defined by ‖f ‖∞ = sup{|f (x)| : x ∈ R}.
A signal (function) f is approximated by trigonometric polynomials tn of order n and

the degree of approximation En(f ) is given by Zygmund []

En(f ) =min
n

∥∥f (x) – tn(f ;x)
∥∥
r (.)

in terms of n, where tn(f ;x) is a trigonometric polynomial of degree n. This method of
approximation is called Trigonometric Fourier Approximation (TFA) [].
The degree of approximation of a function f : R → R by a trigonometric polynomial tn

of order n under sup norm ‖‖∞ is defined by

‖tn – f ‖∞ = sup
{∣∣tn(x) – f (x)

∣∣ : x ∈ R
}
.

Let f (x) be a π-periodic function and Lebesgue integrable. The Fourier series of f (x) is
given by

f (x)∼ a


+
∞∑
n=

(an cosnx + bn sinnx) ≡
∞∑
n=

An(x) (.)

with nth partial sum sn(f ;x).
The conjugate series of Fourier series (.) is given by

∞∑
n=

(an sinnx – bn cosnx) ≡
∞∑
n=

Bn(x). (.)

Particular cases:
() (N ,pn)(E,q)means reduces to (N , 

n+ )(E,q)means if pn = 
n+ .

() (N ,pn)(E,q)means reduces to (N , 
n+ )(E, )means if pn = 

n+ and qn =  ∀n.
() (N ,pn)(E,q)means reduces to (N ,pn)(E, )means if qn =  ∀n.
() (N ,pn)(E,q)means reduces to (C, δ)(E,q)means if pn =

( n+δ–
δ–

)
, δ > .

() (N ,pn)(E,q)means reduces to (C, δ)(E, )means if pn =
( n+δ–

δ–

)
, δ >  and qn =  ∀n.

() (N ,pn)(E,q)means reduces to (C, )(E, )means if pn =  and qn =  ∀n.
We use the following notations throughout this paper:

ψ(t) = f (x + t) – f (x – t),

G̃n(t) =


πPn

[ n∑
k=

pn–k
( + q)k

k∑
v=

((
k
ν

)
qk–ν cos(v + /)t

sin t/

)]
.

2 Main result
The approximation of a function f̃ , conjugate to a periodic function f ∈ Lip(ξ (t), r) using
product (N ,pn)(E,q) summability, has not been studied so far. Therefore, the purpose of
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the present paper is to establish a quite new theorem on the degree of approximation of
a function f̃ (x), conjugate to a π-periodic function f belonging to Lip(ξ (t), r)-class, by
(N ,pn)(E,q) means of conjugate series of Fourier series. In fact, we prove the following
theorem.

Theorem . If f̃ (x) is conjugate to a π -periodic function f belonging to Lip(ξ (t), r)-class,
then its degree of approximation by (N ,pn)(E,q) product summability means of conjugate
series of Fourier series is given by

∥∥t̃NEn – f̃
∥∥
r = O

{
(n + )/rξ

(


n + 

)}
(.)

provided ξ (t) satisfies the following conditions:

(∫ π/n+



(
t|ψ(t)|
ξ (t)

)r

dt
)/r

= O
(
(n + )–

)
(.)

and

(∫ π

π/n+

(
t–δ|ψ(t)|

ξ (t)

)r

dt
)/r

= O(n + )δ , (.)

where δ is an arbitrary number such that s(– δ) –  > , r– + s– = ,  ≤ r ≤ ∞, conditions
(.) and (.) hold uniformly in x and t̃NEn is ˜(N ,pn)(E,q)means of the series (.), and the
conjugate function f̃ (x) is defined for almost every x by

f̃ (x) = –

π

∫ π


ψ(t) cot(t/)dt = lim

h→

(
–


π

∫ π

h
ψ(t) cot(t/)dt

)
. (.)

Note . ξ ( π
n+ ) ≤ πξ ( 

n+ ), for (
π
n+ ) ≥ ( 

n+ ).

Note . The product transform plays an important role in signal theory as a double
digital filter [] and the theory of machines in mechanical engineering.

3 Lemmas
For the proof of our theorem, the following lemmas are required.

Lemma . |G̃n(t)| = O[/t] for  < t ≤ π/(n + ).

Proof For  < t ≤ π/(n + ), sin(t/)≥ (t/π ) and | cosnt| ≤ ,

∣∣G̃n(t)
∣∣ = 

πPn

∣∣∣∣∣
n∑

k=

[
pn–k

( + q)k

k∑
v=

(
k
ν

)
qk–ν cos(v + /)t

sin t/

]∣∣∣∣∣
≤ 

πPn

n∑
k=

[
pn–k

( + q)k

k∑
v=

(
k
ν

)
qk–ν | cos(v + /)t|

| sin t/|

]

≤ 
tPn

n∑
k=

[
pn–k

( + q)k

k∑
v=

(
k
ν

)
qk–ν

]
, since

k∑
ν=

(
k
ν

)
qk–ν = ( + q)k

http://www.journalofinequalitiesandapplications.com/content/2012/1/296
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=


tPn

n∑
k=

[
pn–k

( + q)k
( + q)k

]

=


tPn

[ n∑
k=

pn–k

]

= O[/t], since
n∑

k=

pn–k = Pn.

This completes the proof of Lemma .. �

Lemma . |G̃n(t)| = O[/t] for  < π/(n + ) ≤ t ≤ π and any n.

Proof For  < π/(n + ) ≤ t ≤ π , sin(t/) ≥ (t/π ),

∣∣G̃n(t)
∣∣ = 

πPn

∣∣∣∣∣
n∑

k=

[
pn–k

( + q)k

k∑
v=

(
k
ν

)
qk–ν cos(v + /)t

sin t/

]∣∣∣∣∣
≤ 

tPn

∣∣∣∣∣
n∑

k=

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νei(v+/)t

}]∣∣∣∣∣
≤ 

tPn

∣∣∣∣∣
n∑

k=

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣∣∣eit/∣∣

=


tPn

∣∣∣∣∣
n∑

k=

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣
=


tPn

∣∣∣∣∣
τ–∑
k=

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣
+


tPn

∣∣∣∣∣
n∑

k=τ

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣. (.)

Now, considering the first term of equation (.),


tPn

∣∣∣∣∣
τ–∑
k=

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣
≤ 

tPn

∣∣∣∣∣
τ–∑
k=

[
pn–k

( + q)k

{ k∑
v=

(
k
ν

)
qk–ν

}]∣∣∣∣∣∣∣eivt∣∣

≤ 
tPn

∣∣∣∣∣
τ–∑
k=

[
pn–k

( + q)k

{ k∑
v=

(
k
ν

)
qk–ν

}]∣∣∣∣∣
=


tPn

∣∣∣∣∣
τ–∑
k=

pn–k

∣∣∣∣∣. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/296
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Now, considering the second term of equation (.) and using Abel’s lemma


tPn

∣∣∣∣∣
n∑

k=τ

[
pn–k

( + q)k

{ k∑
v=

Real part of
(
k
ν

)
qk–νeivt

}]∣∣∣∣∣
≤ 

tPn

n∑
k=τ

pn–k
( + q)k

max
≤m≤k

∣∣∣∣∣
m∑
v=

(
k
ν

)
qk–νeivt

∣∣∣∣∣
≤ 

tPn

n∑
k=τ

pn–k
( + q)k

max
≤m≤k

m∑
v=

(
k
ν

)
qk–ν

∣∣eivt∣∣

=


tPn

n∑
k=τ

pn–k
( + q)k

max
≤m≤k

m∑
v=

(
k
ν

)
qk–ν

≤ 
tPn

n∑
k=τ

pn–k
( + q)k

k∑
v=

(
k
ν

)
qk–ν =


tPn

n∑
k=τ

pn–k . (.)

On combining (.), (.) and (.), we have

∣∣G̃n(t)
∣∣ ≤ 

tPn

τ–∑
k=

pn–k +


tPn

n∑
k=τ

pn–k ,

∣∣G̃n(t)
∣∣ = O[/t].

This completes the proof of Lemma .. �

4 Proof of theorem
Let s̃n(x) denote the partial sum of series (.), we have

s̃n(x) – f̃ (x) =

π

∫ π


ψ(t)

cos(n + /)t
sin t/

dt.

Therefore, using (.), the (E,q) transform Eq
n of s̃n is given by

Ẽq
n(x) – f̃ (x) =


π ( + q)k

∫ π



ψ(t)
sin t/

{ n∑
k=

(
n
k

)
qn–k cos(k + /)t

}
dt.

Now, denoting ˜(N ,pn)(E,q) transform of s̃n as t̃NEn , we write

t̃NEn (x) – f̃ (x) =


πPn

n∑
k=

[
pn–k

( + q)k

∫ π



ψ(t)
sin t/

{ k∑
ν=

(
k
ν

)
qk–ν cos(ν + /)t

}
dt

]

=
∫ π


ψ(t)G̃n(t)dt

=
[∫ π/(n+)


+

∫ π

π/(n+)

]
ψ(t)G̃n(t)dt

= I + I (say). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/296
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We consider

|I| ≤
∫ π/(n+)



∣∣ψ(t)
∣∣∣∣G̃n(t)

∣∣dt.
Using Hölder’s inequality, equation (.) and Lemma (.), we get

|I| ≤
[∫ π/(n+)



(
t|ψ(t)|
ξ (t)

)r

dt
]/r[

lim
h→

∫ π/(n+)

h

(
ξ (t)|G̃n(t)|

t

)s

dt
]/s

= O
(


n + 

)[
lim
h→

∫ π/(n+)

h

(
ξ (t)|G̃n(t)|

t

)s

dt
]/s

= O
(


n + 

)[
lim
h→

∫ π/(n+)

h

(
ξ (t)
t

)s

dt
]/s

.

Since ξ (t) is a positive increasing function, using the second mean value theorem for
integrals,

I = O
{(


n + 

)
ξ

(
π

n + 

)}[
lim
h→

∫ π/(n+)

h

(

t

)s

dt
]/s

= O
{(


n + 

)
πξ

(


n + 

)}[
lim
h→

∫ π/(n+)

h
t–s dt

]/s

, in view of note (.)

= O
{(


n + 

)
ξ

(


n + 

)}[{
t–s+

–s + 

}π/(n+)

h

]/s

, h→ 

= O
[(


n + 

)
ξ

(


n + 

)
(n + )–/s

]

= O
[
ξ

(


n + 

)
(n + )–/s

]

= O
[
ξ

(


n + 

)
(n + )/r

]
∵ r– + s– = ,  ≤ r ≤ ∞. (.)

Now, we consider

|I| ≤
∫ π

π/(n+)

∣∣ψ(t)
∣∣∣∣G̃n(t)

∣∣dt.
Using Hölder’s inequality, equation (.) and Lemma ., we have

|I| ≤
[∫ π

π/(n+)

(
t–δ|ψ(t)|

ξ (t)

)r

dt
]/r[∫ π

π/(n+)

(
ξ (t)|G̃n(t)|

t–δ

)s

dt
]/s

= O
{
(n + )δ

}[∫ π

π/(n+)

(
ξ (t)|G̃n(t)|

t–δ

)s

dt
]/s

= O
{
(n + )δ

}[∫ π

π/(n+)

(
ξ (t)
t–δt

)s

dt
]/s

= O
{
(n + )δ

}[∫ π

π/(n+)

(
ξ (t)
t–δ+

)s

dt
]/s

.
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Now, putting t = /y,

I = O
{
(n + )δ

}[∫ (n+)/π

/π

(
ξ (/y)
yδ–

)s dy
y

]/s

.

Since ξ (t) is a positive increasing function, so ξ (/y)
/y is also a positive increasing function

and using the second mean value theorem for integrals, we have

I = O
{
(n + )δ

ξ (π/n + )
π/n + 

}[∫ (n+)/π

/π

dy
yδs+

]/s

= O
{
(n + )δ+ξ

(


n + 

)}{[
y–δs–+

–δs –  + 

](n+)/π

/π

}/s

= O
{
(n + )δ+ξ

(


n + 

)}{[
y–δs–](n+)/π

/π

}/s
= O

{
(n + )δ+ξ

(


n + 

)}
(n + )–δ–/s

= O
{
ξ

(


n + 

)
(n + )δ+–δ–/s

}

= O
{
ξ

(


n + 

)
(n + )/r

}
∵ r– + s– = ,  ≤ r ≤ ∞. (.)

Combining I and I yields

∣∣t̃NEn – f̃
∣∣ = O

{
(n + )/rξ

(


n + 

)}
. (.)

Now, using the Lr-norm of a function, we get

∥∥t̃NEn – f̃
∥∥
r =

{∫ π



∣∣t̃NEn – f̃
∣∣r dx}/r

= O
{∫ π



(
(n + )/rξ

(


n + 

))r

dx
}/r

= O
{
(n + )/rξ

(


n + 

)(∫ π


dx

)/r}

= O
(
(n + )/rξ

(


n + 

))
.

This completes the proof of Theorem ..

5 Applications
The study of the theory of trigonometric approximation is of great mathematical interest
and of great practical importance. The following corollaries can be derived from ourmain
Theorem ..

Corollary . If ξ (t) = tα ,  < α ≤ , then the class Lip(ξ (t), r), r ≥  reduces to the class
Lip(α, r), /r < α ≤  and the degree of approximation of a function f̃ (x), conjugate to a

http://www.journalofinequalitiesandapplications.com/content/2012/1/296
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π -periodic function f belonging to the class Lip(α, r), by (N ,pn)(E,q)-means is given by

∣∣t̃NEn – f̃
∣∣ = O

(


(n + )α–/r

)
. (.)

Proof We have

∥∥t̃NEn – f̃
∥∥
r =

{∫ π



∣∣t̃NEn (x) – f̃ (x)
∣∣r dx}/r

= O
(
(n + )/rξ

(
/(n + )

))
= O

(
(n + )–α+/r).

Thus, we get

∣∣t̃NEn – f̃
∣∣ ≤

{∫ π



∣∣t̃NEn (x) – f̃ (x)
∣∣r dx}/r

= O
(
(n + )–α+/r), r ≥ .

This completes the proof of Corollary .. �

Corollary . If ξ (t) = tα for  < α <  and r = ∞ in Corollary ., then f ∈ Lipα and

∣∣t̃NEn – f̃
∣∣ = O

(


(n + )α

)
. (.)

Proof For r → ∞, we get

∥∥t̃NEn – f̃
∥∥∞ = sup

≤x≤π

∣∣t̃NEn (x) – f̃ (x)
∣∣ = O

(
(n + )–α

)
.

Thus, we get

∣∣t̃NEn – f̃
∣∣ ≤ ∥∥t̃NEn – f̃

∥∥∞

= sup
≤x≤π

∣∣t̃NEn (x) – f̃ (x)
∣∣

= O
(
(n + )–α

)
.

This completes the proof of Corollary .. �

Corollary . If ξ (t) = tα ,  < α ≤ , then the class Lip(ξ (t), r), r ≥ , reduces to the class
Lip(α, r), /r < α ≤  and if q = , then (E,q) summability reduces to (E, ) summability
and the degree of approximation of a function f̃ (x), conjugate to a π -periodic function f
belonging to the class Lip(α, r), by (N ,pn)(E, )-means is given by

∥∥t̃NEn – f̃
∥∥
r = O

(


(n + )α–/r

)
. (.)

Corollary . If ξ (t) = tα for  < α <  and r = ∞ in Corollary ., then f ∈ Lipα and

∥∥t̃NEn – f̃
∥∥∞ = O

(


(n + )α

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/296
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Remark An independent proof of above Corollary . can be obtained along the same
line of our main theorem.
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