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Abstract
In this paper we consider the problem of prescribing the mean curvature on the
boundary of the unit ball of Rn, n ≥ 4. Under the assumption that the prescribed
function is flat near its critical point, we give precise estimates on the losses of the
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1 Introduction
In this paper we consider a nonlinear elliptic equation involving the Sobolev trace critical
exponent associated to conformal deformations of Riemannianmetrics onmanifolds with
boundary.We are interested in the case inwhich a non-compact group of conformal trans-
formations acts on the equation giving rise to Kazdan-Warner type obstructions, just as in
the celebrated scalar curvature problem (see []). The simplest situation is the following.
Let Bn be the unit ball inRn, n≥ , with the Euclideanmetric g. Its boundary is denoted

by Sn– and it is endowed with the standard metric still denoted by g. Let H : Sn– → R

be a given function. We study the problem of finding a conformal metric g = u 
n– g such

that Rg =  in Bn and hg =H on Sn–. Here Rg is the scalar curvature of the metric g in Bn

and hg is the mean curvature of g on Sn–.
This problem has the following analytical formulation: find a smooth positive function

which solves the following nonlinear boundary value equation:

⎧⎨⎩�u =  in Bn,
∂u
∂ν

+ n–
 u = n–

 Hu n
n– on Sn–,

(.)

where ν is the outward unit vector with respect to the metric g.
In general, there are several difficulties in facing this problem by means of variational

methods. Indeed, by virtue of non-compactness of the embeddingH(Bn) ↪→ L
(n–)
n– (∂Bn),

the Euler-Lagrange functional J associated to (.) does not satisfy the Palais-Smale con-
dition, and that leads to the failure of the standard critical point theory. Moreover, be-
sides the obvious necessary condition that H must be positive somewhere, there is, as
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we have already mentioned, another obstruction to solving the problem, the so-called
Kazdan-Warner obstruction. There have been many papers on the problem and related
ones, please see [–] and the references therein.
One group of existence results has been obtained under hypotheses involving the Lapla-

cian �H at the critical points y of H ; see [, ] for n = , and [–] for n ≥ . For
example, in [] and [], it is assumed that H is a Morse function and

�H(y) �=  whenever ∇H(y) = .

Then, if ind(H , y) denotes the Morse index of H at the critical point y, problem (.) has a
solution provided∑

�H(y)<

(–)ind(H,y) �= .

The result has been extended to any dimension n ≥  in []. Roughly, it is assumed that
there exists β , n –  < β < n – , such that in some geodesic normal coordinate system
centered at y, we have

H(x) =H() +
n–∑
i=

bi
∣∣(xi)∣∣β + R(x), (f)β

where bi = bi(y) ∈ R \ {}, ∀i = , . . . ,n – ,
∑n–

i= bi �=  and
∑[β]

s= |∇sR(x)||x|s–β = o() as x
tends to zero. Here ∇s denotes all possible derivatives of order s and [β] is an integer part
of β . Let

K =
{
y ∈ Sn–,∇H(y) = 

}
, K+ =

{
y ∈K,

n–∑
i=

bi < 

}

and ĩ(y) = �{bi, i = , . . . ,n – , such that bi < }. Then (.) has a solution provided∑
y∈K+

(–)n––ĩ(y) �= ; (.)

see [].
Let us observe that a condition like (.) appeared first in [] concerning the scalar

curvature problem; see also [].
In this work we restrict our attention to problem (.) under condition that H is a

C-function satisfying (f)β condition with n –  ≤ β < n – . This leads to an interesting
new phenomenon, that is, the presence of multiple blow-up points. In fact, when looking
to the possible formations of blow-up points, it comes out that the strong interaction of
the bubbles in the case where n– < β < n–  forces all blow-up points to be single, while
in the case where β = n – , we have a balance phenomenon, that is, any interaction of
two bubbles is of the same order with respect to the self-interaction. We denote by � the
operator which associates to H the solution v of (.), and we extend the definition of �

to the case of weak solutions of (.). Let

Kn– =
{
y ∈K,β = β(y) = n – 

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/405


Al-Ghamdi et al. Journal of Inequalities and Applications 2013, 2013:405 Page 3 of 25
http://www.journalofinequalitiesandapplications.com/content/2013/1/405

For every (yi , . . . , yiN ) ⊆ K+ ∩ Kn– such that yip �= yiq , if p �= q, we associate the matrix
M = (Mjl) defined by

⎧⎪⎪⎨⎪⎪⎩
Mjj = n–

n– c̃
–
∑n–

k= bk (yij )

H(ylj )
n– , j ∈ {, . . . ,N},

Mlj = – n–
 c

G(yil ,yij )

[H(yil )H(yij )]
n–

, l, j ∈ {, . . . ,N}, l �= j,

where

c = c
(n–)
n–



∫
Rn–

dx
( + |x|) n and c̃ = c

(n–)
n–



∫
Rn–

|x|β
( + |x|)n– dx.

Here G(q, ·) denotes Green’s function for the operator � with point q.
Let ρ = ρ(yi , . . . , yiN ) be the least eigenvalue ofM. We assume the following:

(A) ρ(yi , . . . , yiN ) �=  for distinct points yi , . . . , yiN ∈K+ ∩Kn–.

We now introduce the following set:

C+
n– =

{
(yi , . . . , yiN ),N ≥ , s.t. yij ∈K+ ∩Kn–

∀j = , . . . ,N , yij �= yil ∀j �= l and ρ(yi , . . . , yiN ) > 
}
.

We then have the following theorem.

Theorem . Assume that H is a C-function satisfying (A) and (f)β , with

n –  ≤ β < n – .

If

∑
y∈K+\Kn–

(–)n––ĩ(y) +
∑

(yi ,...,yiN )∈C+
n–

(–)N–+
∑N

j= n–+ĩ(yij) �= ,

then (.) has at least one solution.Moreover, for generic H , we have

�S ≥
∣∣∣∣ – ∑

y∈K+\Kn–

(–)n––ĩ(y) –
∑

(yi ,...,yiN )∈C+
n–

(–)N–+
∑N

j= n–+ĩ(yij)
∣∣∣∣,

where S denotes the set of solutions of (.).

Our argument uses a careful analysis of the lack of compactness of the Euler-Lagrange
functional J associated to problem (.). Namely we study the noncompact orbits of the
gradient-flow of J , the so-called critical points at infinity following the terminology of
Bahri []. These critical points at infinity can be treated as usual critical points once a
Morse lemma at infinity is performed, from which we can derive, just as in the classical
Morse theory, the difference of topology induced by these noncompact orbits and com-
pute their Morse index. Such aMorse lemma at infinity is obtained through the construc-
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tion of a suitable pseudo-gradient, for which the Palais-Smale condition is satisfied along
the decreasing flow lines as long as these flow lines do not enter the neighborhood of some
specific critical points of H .
A similar Morse lemma at infinity has been established for problem (.) under the hy-

pothesis that the function H is of class C and the order of flatness at critical points of H
is β ∈ ]n – ,n – [; see [].
The rest of this paper is organized as follows. In Section , we set up the variational

problem and we recall the expansion of the gradient of the associated Euler-Lagrange
functional near infinity. In Section , we construct a suitable pseudo-gradient andwe char-
acterize the critical points at infinity. Lastly, in Section , we prove our main result.

2 General framework and some known facts
2.1 Variational problem
First, we recall the functional setting and the variational problem and its main features.
Problem (.) has a variational structure. The Euler-Lagrange functional is

J(u) =
(∫

Sn–
Hu

(n–)
n– dσg

) –n
n–

,

defined on H(Bn) equipped with the norm

‖u‖ =
∫
Bn

|∇u| dvg +
n – 


∫
Sn–

u dσg ,

where dvg and dσg denote the Riemannian measure on B
n and S

n– induced by the met-
ric g. We denote by � the unit sphere of H(Bn), and we set

�+ = {u ∈ �/u ≥ }.

The exponent (n–)
n– is critical for the Sobolev trace embedding H(Bn) → Lq(Sn–). This

embedding being not compact, the functional J does not satisfy the Palais-Smale condi-
tion.
In order to characterize the sequences failing the Palais-Smale condition, we need to

introduce some notations.
We use the notation x for the variables belonging to the unit ball Bn or to the half-

space Rn
+ defined by Rn

+ := {x ∈ R
n,xn > }. We also use the notation x = (x′,xn) for x ∈R

n
+.

It is convenient to perform some stereographic projection in order to reduce the above
problem toRn

+. LetD,(Rn
+) denote the completion ofC∞

c (Rn
+) with respect to theDirichlet

norm. The stereographic projection πq through an appropriate point q ∈ S
n– induces an

isometry i :H(Bn) →D,(Rn
+) according to the following formula:

iu(x) =
(


|x′| + (xn + )

) n–

u
(

x′

|x′| + (xn + )
,

|x′| + xn – 
|x′| + (xn + )

)
,
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where x′ = (x, . . . ,xn–). In particular, we can check that the following relations hold true
for every u ∈H(Bn):

∫
Bn

|∇u| + n – 


∫
Sn–

u =
∫
R
n
+

|∇iu| and∫
Sn–

|u| (n–)
n– =

∫
∂Rn

+

|iu| (n–)
n– .

In the sequel, we identify the function H and its composition with the stereographic
projection πq. We also identify a point x of Bn and its image by πq. These facts will be
assumed as understood in the sequel.
For a ∈ ∂Rn

+ and λ > , we define the function

δ(a,λ)(x) = c̄
λ

n–


(( + λxn) + λ|x′ – a′|) n–
,

where x ∈ R
n
+, and c̄ is chosen such that δa,λ satisfies the following equation:

⎧⎨⎩�u =  and u >  in R
n
+,

– ∂u
∂xn = u

n
n– on ∂Rn

+.
(.)

Set

δ̃a,λ = i–(δ(a,λ)). (.)

For ε > , p ∈N∗, let us define

V (p, ε) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ � s.t. ∃a, . . . ,ap ∈ S

n–,∃α, . . . ,αp > ,

∃λ, . . . ,λp > ε– with ‖u –
∑p

i= αiδ̃(ai ,λi)‖ < ε, εij < ε ∀i �= j,

and | α


n–
i H(ai)

α


n–
j H(aj)

– | < ε ∀i, j = , . . . ,p,

where

εij =
(

λi

λj
+

λj

λi
+ λiλj|ai – aj|

) –n

.

For w, a solution of (.), we also define V (p, ε,w) as

V (p, ε,w) =
{
u ∈ �/∃α >  s.t. u – αw ∈ V (p, ε) and

∣∣αJ(u)
n–
 – 

∣∣ < ε
}
.

If u is a function in V (p, ε,w), one can find an optimal representation following the ideas
introduced in Proposition . of [] (see also pp.- of []). Namely we have the
following proposition.
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Proposition . For any p ∈N
∗, there is εp >  such that if ε ≤ εp and u ∈ V (p, ε,w), then

the minimization problem

min
αi>,λi>,ai∈Sn–,

h∈Tw(Wu(w))

∥∥∥∥∥u –
p∑
i=

αiδ̃(ai ,λi) – α(w + h)

∥∥∥∥∥,
has a unique solution (α,λ,a,h), up to a permutation.

In particular, we can write u as follows:

u =
p∑
i=

αiδ̃(ai ,λi) + α(w + h) + v,

where v belongs toH(Bn)∩Tw(Ws(w)) and it satisfies (V), Tw(Wu(w)) and Tw(Ws(w)) are
the tangent spaces at w of the unstable and stable manifolds of w for a decreasing pseudo-
gradient of J and (V) is the following:

(V) :

⎧⎪⎪⎨⎪⎪⎩
〈v,ψ〉 =  for ψ ∈ {δ̃i, ∂δ̃i

∂λi
, ∂δ̃i

∂ai
, i = , . . . ,p},

〈v,w〉 = ,

〈v,h〉 =  for all h ∈ TwWu(w).

Here, δ̃i = δ̃(ai ,λi) and 〈·, ·〉 denotes the scalar product defined on H(Bn) by

〈u, v〉 =
∫
Bn

∇u∇vdvg +
n – 


∫
Sn–

uvdσg .

Notice that Proposition . is also true if we take w = , and therefore, h =  and u in
V (p, ε).
The failure of the Palais-Smale condition can be characterized taking into account the

uniqueness result of Li and Zhu []. Following the ideas introduced in [], we have the
following proposition.

Proposition . Let (uk) be a sequence in �+ such that J(uk) is bounded and ∂J(uk) goes
to zero. Then there exist an integer p ∈ N∗, a sequence (εK ) > , εk tends to zero, and an
extracted subsequence of uk ’s, again denoted by (uk), such that uk ∈ V (p, εk ,w), where w is
zero or a solution of (.).

Now, arguing as in [] (pp.,  and ), we have the following Morse lemma
which completely gets rid of the v-contributions and shows that it can be neglected with
respect to the concentration phenomenon.

Proposition . There is a C-map which to each (αi,ai,λi,h) such that
∑p

i= αiδ̃(ai ,λi) +
α(w + h) belongs to V (p, ε,w) associates v = v(α,a,λ,h) such that v is unique and satisfies

J

( p∑
i=

αiδ̃(ai ,λi) + α(w + h) + v

)
= min

v∈(V)

{
J

( p∑
i=

αiδ̃(ai ,λi) + α(w + h) + v

)}
.
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Moreover, there exists a change of variables v – v → V such that

J

( p∑
i=

αiδ̃(ai ,λi) + α(w + h) + v

)
= J

( p∑
i=

αiδ̃(ai ,λi) + α(w + h) + v

)
+ ‖V‖.

We notice that in the V variable we define a pseudo-gradient by setting

∂V
∂s

= –μV ,

where μ is a very large constant. Then at s = , V (s) = e–μsV () is very small, as we wish.
This shows that in order to define our deformation, we can work as if V was zero. The
deformation extends immediately with the same properties to a neighborhood of zero in
the V variable.

Definition . A critical point at infinity of J on �+ is a limit of a flow line u(s) of the
equation⎧⎨⎩ ∂u

∂s = –∂J(u(s)),

u() = u

such that u(s) remains in V (p, ε(s),w) for s ≥ s. Here w is either zero or a solution of (.)
and ε(s) is some positive function tending to zero when s → +∞. Using Proposition .,
u(s) can be written as

u(s) =
p∑
i=

αi(s)δ(ai(s),λi(s)) + α(s)
(
w + h(s)

)
+ v(s).

Denoting α̃i := lims→+∞ αi(s), ỹi := lims→+∞ ai(s), we denote by

p∑
i=

α̃iδ(ỹi ,∞) + α̃w or (ỹ, . . . , ỹp,w)∞

such a critical point at infinity. If w �= , it is called of w-type or mixed type.

With such a critical point at infinity, stable and unstable manifolds are associated. These
manifolds can be easily described once a Morse-type reduction is performed; see []
(pp.-).

2.2 Expansion of the gradient of the functional
In this subsection we recall some useful expansions of the gradient of the functional J .
These expansions are extracted from ([], Appendix A).

Proposition . For any u =
∑p

i= αiδ̃i ∈ V (p, ε), we have the following expansions:

〈
∇J(u),λi

∂δ̃i

∂λi

〉
= J(u)

[
–c

∑
j �=i

αjλi
∂εij

∂λi
+ J(u)

n–
n–

n – 
n – 

α
n

n–
i

c�H(ai)
λ
i

]

+ o
(


λ
i
+
∑
j �=i

εij

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/405
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〈
∇J(u),


λi

∂δ̃i

∂ai

〉
= J(u)

[
–c

∑
j �=i

αj

λi

∂εij

∂ai
– J(u)

n–
n– cα

n
n–
i

∇H(ai)
λi

]

+ o
(∑

i�=j
εij

)
+O

(

λ
i

)
, (.)

where c, c and c are three positive constants.

Proposition . For each u =
∑p

i= αiδ̃i ∈ V (p, ε), if ai is close to a critical point y of H
satisfying (f)β , then we have the following expansions:

〈
∇J(u),


λi

∂δ̃i

∂(ai)k

〉
= –J(u)

n–
n– α

n
n–
i


λi

β

∫
Rn–

bk|xk + λi(ai)k|βxk
( + |x|)n dx

+O
(∑

i�=j
εij

)
+ o

(

λ

β

i

)
, (.)

〈
∇J(u),λi

∂δ̃i

∂λi

〉
= c

∑
bj

λ
β

i

∫
Rn–

∣∣xj + λi(ai)j
∣∣β  – |x|
( + |x|)n dx

– cJ(u)
∑
j �=i

αjλi
∂εij

∂λi
+ o

(

λ

β

i
+
∑
j �=i

εij

)
, (.)

where (ai)k is the kth component of ai in some geodesic normal coordinates system. Fur-
thermore, if we assume that λi|ai| ≤ ρ is a small positive constant, then〈

∇J(u),λi
∂δ̃i

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi
+ c

∑
bj

λ
β

i
+ o

(

λ

β

i
+
∑
j �=i

εij

)
. (.)

3 Characterization of critical points at infinity
This section is devoted to the characterization of critical points at infinity in V (p, ε), p ≥
, under β-flatness condition with n –  ≤ β < n – . This characterization is obtained
through the construction of a suitable pseudo-gradient at infinity, for which the Palais-
Smale condition is satisfied along the decreasing flow lines as long as these flow lines do
not enter the neighborhood of a finite number of critical points yi, i = , . . . ,p, of H such
that (y, . . . , yp) ∈ C+

n– ∪ (K+ \Kn–). Recall that the construction was done in V (, ε).

Theorem . ([], Proposition .) There exists a pseudo-gradient W̃ in V (, ε) so that
the following holds. There is a positive constant c >  independent u = αδ̃aλ ∈ V (, ε) such
that

(i)
〈
∂J(u),W̃(u)

〉≤ c
(


λβ

+
|∇H(a)|

λ

)
,

(ii)
〈
∂J(u + v),W̃(u) +

∂v
∂(αi,ai,λi)

(
W̃(u)

)〉≤ c
(


λβ

+
|∇H(a)|

λ

)
.

Furthermore, |W̃| is bounded and the only case where λ is not bounded is where a ∈ B(y,ρ),
y ∈K+.

Next, we give the characterization of the critical points at infinity in V (p, ε), p ≥ . We
have the following main result.

http://www.journalofinequalitiesandapplications.com/content/2013/1/405
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Theorem . Let β := max{β(y)/y ∈ K}. For p ≥ , there exists a pseudo-gradient W̃ in
V (p, ε) so that the following holds.
There exists a constant c >  independent of u =

∑p
i= αiδ̃i ∈ V (p, ε) so that

(i)
〈
∂J(u),W̃(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

∇H(ai)
λi

+
∑
j �=i

εij

)
,

(ii)
〈
∂J(u + v),W̃(u) +

∂v
∂(αi,ai,λi)

(
W̃(u)

)〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

∇H(ai)
λi

+
∑
j �=i

εij

)
.

Furthermore, |W̃| is bounded and the only case where the maximum of the λi’s is not
bounded is when ai ∈ B(yli ,ρ) ∀i = , . . . ,p with (yl , . . . , ylp ) ∈ C+

n–.

We will prove Theorem . later. Now we state two results which deal with two specific
cases of Theorem .. Let

V(p, ε) =

{
u =

p∑
i=

αiδ̃i ∈ V (p, ε) s.t. ai ∈ B(yli ,ρ), yli ∈K \Kn– ∀i = , . . . ,p

}
,

V(p, ε) =

{
u =

p∑
i=

αiδ̃i ∈ V (p, ε) s.t. ai ∈ B(yli ,ρ), yli ∈Kn– ∀i = , . . . ,p

}
.

We then have the following.

Proposition . ([], Proposition .) For p ≥ , there exists a pseudo-gradient W in
V(p, ε) so that the following holds.
There exists c >  independent of u =

∑p
i= αiδ̃i ∈ V(p, ε) such that

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λ

β

i
+
∑
i�=j

εij +
p∑
i=

|∇H(ai)|
λi

)
.

Furthermore, |W| is bounded and themaximumof λi’s decreases along the flow lines ofW.

Proposition . For p ≥ , there exists a pseudo-gradient W in V(p, ε) such that ∀u =∑p
i= αiδ̃i ∈ V(p, ε), we have

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λn–
i

+
∑
i�=j

εij +
p∑
i=

|∇H(ai)|
λi

)
,

where c is a positive constant independent of u. Furthermore, we have |W| is bounded and
the only case where the maximum of λi’s is not bounded is when ai ∈ B(yli ,ρ) ∀i = , . . . ,p
with (yl , . . . , ylp ) ∈ C+

n–.

Before giving the proof of Theorem . and Proposition ., we state the following no-
tation extracted from [], Section .
Let u =

∑p
i= αiδ̃(ai ,λi) ∈ V (p, ε). For simplicity, if ai is close to a critical point yli , we as-

sume that the critical point is zero, so we confuse ai with (ai – yli ). Now, let i ∈ {, . . . ,p}

http://www.journalofinequalitiesandapplications.com/content/2013/1/405
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and letM be a positive large constant. We say that

i ∈ L if λi|ai| ≤ M,

and we say that

i ∈ L if λi|ai| >M.

For each i ∈ {, . . . ,p}, we define the following vector fields:

Zi(u) = αiλi
∂δ̃i

∂λi
(.)

and

Xi = αi

n–∑
k=


λi

∂δ̃(ai ,λi)

∂(ai)k

∫
Rn–

bk
|xk + λi(ai)k|β
( + λi|(ai)k|)β–

xk
( + |x|)n dx, (.)

where (ai)k is the kth component of ai in some geodesic normal coordinates system.
We claim that Xi is bounded. Indeed, the claim is trivial if i ∈ L. If i ∈ L, by elementary

computation, we have the following estimate:

∫
Rn–

|xk + λi(ai)k|βxk
( + |x|)n dx =

(
λi
∣∣(ai)k∣∣)β ∫

Rn–

∣∣∣∣ + xk
λi((ai)k)

∣∣∣∣β xk
( + |x|)n dx

= c
(
signeλi(ai)k

)(
λi
∣∣(ai)k∣∣)β–( + o()

)
(.)

for any k,  ≤ k ≤ n –  such that λi|(ai)k| > M√
n– . Hence, our claim is valid.

Let ki be an index such that

∣∣(ai)ki ∣∣ = max
≤j≤n

∣∣(ai)j∣∣. (.)

It easy to see that if i ∈ L then λi|(ai)ki | > M√
n– .

Proof of Theorem . Thanks to Propositions . and . and in order to complete the
construction of the pseudo-gradient W̃ suggested inTheorem., it only remains to focus
attention on the two following sets of V (p, ε).
Subset : We consider here the case of u =

∑p
i= αiδ̃i =

∑
i∈I αiδ̃i +

∑
i∈I αiδ̃i such that

I �=∅, I �=∅,
∑
i∈I

αiδ̃i ∈ V(�I, ε) and
∑
i∈I

αiδ̃i ∈ V(�I, ε).

Without loss of generality, we can assume that λ ≤ · · · ≤ λp. Let

I = {} ∪ {i,  ≤ i≤ p, s.t. λi ≤ M̃λ},

where M̃ is a positive constant large enough. Now, let I ′ = I∩ I , we distinguish three cases.

http://www.journalofinequalitiesandapplications.com/content/2013/1/405


Al-Ghamdi et al. Journal of Inequalities and Applications 2013, 2013:405 Page 11 of 25
http://www.journalofinequalitiesandapplications.com/content/2013/1/405

Case . I ′ =∅. Then I ⊂ I, so we derive

u = u + u where u =
∑
i∈I

αiδ̃i and u =
∑
i /∈I

αiδ̃i.

Observe that u ∈ V(�I, ε), we can apply then the vector field W defined in Proposi-
tion . in this set. We obtain

〈
∂J(u),W(u)

〉≤ –c
(∑

i∈I


λn–
i

+
∑

i�=j;i,j∈I
εij +

∑
i∈I

|∇H(ai)|
λi

)
+O

(∑
i∈I,j /∈I

εij

)
. (.)

For the indices i such that i /∈ I , we apply the vector field
∑

i /∈I –iZi(u).
Observe that in V(p, ε)∪V(p, ε) and under assumption (f)β , we have

�H(x)∼=
n–∑
k=

bkβ(β – )|xk|β–.

Then

∣∣�H(ai)
∣∣≤ c

n–∑
k=

∣∣(ai)k∣∣β– ≤ c(n – )
∣∣(ai)ki ∣∣β–,

where ki is defined in (.). Hence, we derive that

|�H(ai)|
λ
i

=O
( |(ai)ki |β–

λ
i

)
. (.)

Using Proposition . and (.), we obtain

〈
∂J(u),

∑
i /∈I

–iZi(u)
〉

≤ c
∑
j �=i,i /∈I

iλi
∂εij

∂λi
+O

( ∑
i /∈I,i∈L

|(ai)ki |β–
λ
i

)

+O
( ∑
i /∈I,i∈L


λ

β

i

)
, (.)

where ki is defined in (.). An easy calculation yields

λi
∂εij

∂λi
≤ –cεij if λi ≥ λj or λi ∼ λj or |ai – aj| ≥ δ > . (.)

In addition, it is easy to see that for i ∈ L, we have

|(ai)ki |β–
λ
i

= o
( |(ai)ki |β–

λi

)
takingM large enough. (.)

Observe now that for i < j, we have

iλi
∂εij

∂λi
+ jλj

∂εij

∂λj
≤ –cεij. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/405
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These estimates with (.) yield

〈
∂J(u),

∑
i /∈I

–iZi(u)
〉

≤ –c
∑
i�=j,i /∈I

εij +O
( ∑
i /∈I,i∈L


λ

β

i

)

+ o
( ∑
i /∈I,i∈L

|(ai)ki |β–
λi

)
. (.)

From another part, by Proposition ., we find that

〈
∂J(u),

∑
i /∈I,i∈L

Xi(u)
〉

≤ –c
∑

i /∈I,i∈L


λ

β

i

(∫
Rn–

bki
|xki + λi(ai)ki |β
( + λi|(ai)ki |)

β–


xki
( + |x|)n dx

)

+O
( ∑
i�=j,i∈I,i∈L

εij

)
.

Identity (.) implies

〈
∂J(u),

∑
i /∈I,i∈L

Xi(u)
〉
≤ –c

∑
i /∈I,i∈L

|(ai)ki |β–
λi

+O
( ∑
i�=j,i∈I,i∈L

εij

)
. (.)

Observe that since ai ∈ B(yji ,ρ) and H satisfies (f)β , we have |∇H(ai)| ∼ |(ai)ki |β–. Thus,〈
∂J(u),

∑
i /∈I,i∈L

Xi(u)
〉

≤ –c
( ∑
i /∈I,i∈L

|∇H(ai)|
λi

+
∑

i /∈I,i∈L

|(ai)ki |β–
λi

)

+O
( ∑
i�=j,i /∈I,i∈L

εij

)
. (.)

LetW 
 =

∑
i /∈I –iZi +m

∑
i /∈I,i∈L Xi, wherem is a positive constant small enough. From

(.) and (.), we find that

〈
∂J(u),W 

 (u)
〉 ≤ –c

(∑
i�=j,i /∈I

εij +
∑

i /∈I,i∈L

|∇H(ai)|
λi

)

+O
( ∑
i /∈I,i∈L


λ

β

i

)
. (.)

Observe that ∀i /∈ I


λ

β

i
= o

(


λn–


)
for M̃ large enough.

Let, in this case,W be the following vector field.

W :=W 
 +mW.
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From (.) and (.), we obtain

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λ

β

i
+
∑
i�=j

εij +
p∑
i=

|∇H(ai)|
λi

)

since for i /∈ I and i ∈ L, we have |∇H(ai)|
λi

=O( 
λ
β
i
) = o( 

λn–
).

Case . I = I ′ = {}, a is then close to yl ∈K \Kn–, we define

Z̃ = –

( n∑
k=

bk

)
ψ
(
λ|a|

)
Z, (.)

where ψ is a cutoff function defined by ψ(t) =  if |t| ≤ δ and ψ(t) =  if |t| ≥ δ (δ is a
positive constant small enough). Using Proposition ., we have

〈
∂J(u), Z̃(u) +X(u)

〉 ≤ –
c
λ

β


(∫
Rn–

bk
|xki + λi(a)ki |β
( + λi|(a)ki |)

β–


xki
( + |x|)n dx

)

–ψ
(
λ|a|

)( n∑
i=

bk

)
c
λ

β

+O

(∑
j �=

εj

)
. (.)

We need to prove the following claim:

〈
∂J(u), Z̃(u) +X(u)

〉≤ –c
(


λ

β

+

|∇H(a)|
λ

)
+O

(∑
j �=

εj

)
. (.)

Observe that if i ∈ L then using (.) we can make appear 
λ
β

and |∇H(a)|

λ
in the upper

bound of (.) and our claim follows in this case.
Now, if λ|a| < δ, thenwe haveψ(λ(a)) =  and |∇H(a)|

λ
∼ |(a)ki |β–

λ
is small with respect

to 
λ
β

. Thus (.) holds in this case. Finally, if λ|a| is bounded below and above, in this

case, using elementary calculation, we have

(∫
Rn–

bki
|xki + λi(a)ki |β
( + λi|(a)ki |)

β–


xki
( + |x|)n dx

)

≥ c > . (.)

We then obtain (.) and hence our claim is valid. This with (.), (.) and Proposi-
tion . yields

〈
∂J(u),

∑
i≥

–iZi(u) +m
(
Z̃(u) +X(u)

)〉

≤ –c
(∑

i�=j
εij +


λ

β

+

|∇H(a)|
λ

)
+O

( ∑
i≥,i∈L

|(ai)ki |β–
λ
i

)

+O
( ∑
i≥,i∈L


λ

β

i

)
(.)
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form a small positive constant. Observe that ∀i≥ , we have i /∈ I , so it is easy to see that


λn–i
= o(εi). Taking M̃ large enough, we derive that


λ

β

i
= o(εi) ∀i≥ . (.)

Let, in this case,

W =
∑
i≥

–iZi +m

(
Z̃ +X +

∑
i≥,i∈L

Xi

)
.

Using Proposition . and estimates (.), (.), (.) and (.), we find that

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Case . I ′ �=∅ and �I ≥ . Applying the above estimates, we get〈
∂J(u),

∑
i∈I′

–Zi

〉
≤ –c

∑
i�=j,i∈I′ ,j∈I

εij +O
( ∑
i∈I′ ,j /∈I

εij

)

+O
( ∑
i∈I′ ,i∈L

|(ai)ki |β–
λ
i

)
+O

( ∑
i∈I′ ,i∈L


λ

β

i

)
,

〈
∂J(u),

∑
i∈I\I′

–Zi

〉
≤ –c

∑
i�=j,i∈I\I′ ,j∈I

εij +O
( ∑
i∈I\I′ ,j /∈I

εij

)

+O
( ∑
i∈I\I′ ,i∈L


λ

β

i

)
+O

( ∑
i∈I\I′ ,i∈L

|(ai)ki |β–
λ
i

)
,

〈
∂J(u),

∑
i /∈I

–iZi

〉
≤ –c

∑
i /∈I,j �=i

εij +O
( ∑
i /∈I,i∈L

|(ai)ki |β–
λ
i

)

+O
( ∑
i /∈I,i∈L


λ

β

i

)
.

Observe that if i /∈ I , we have 
λ
β
i
= o(εi), if i ∈ I ′, we have 

λ
β
i
= o(εij), here j �= i ∈ I , and if

i ∈ I \ I ′, we have 
λn–i

=O(εij), where j �= i ∈ I . Thus, let in this case

W =
∑
i∈I′

(–Zi) –
∑
i∈I

iZi +m

(∑
i∈I\I′

(–Zi) +
p∑

i=,i∈L
Xi

)
.

We then have

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Subset :We consider the case of u =
∑p

i= αiδ̃i ∈ V (p, ε) such that there exist ai satisfying
ai /∈⋃

y∈K B(y,ρ). We order the λi’s in an increasing order, without loss of generality, we
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suppose that λ ≤ · · · ≤ λp. Let i be such that for any i < i, we have ai ∈ B(yli ,ρ), yli ∈ K
and ai /∈⋃y∈K B(y,ρ). Let us define

u =
∑
i<i

αiδ̃i.

Observe that u has to satisfy one of the three cases above, that is, u ∈ V(i – , ε) or
u ∈ V(i – , ε) or u satisfies the condition of Subset . Thus we can apply the associated
vector field, which we denote by Y , and we then have the following estimate:

〈
∂J(u),Y (u)

〉≤ –c
(∑

i<i


λ

β

i
+
∑
i<i

|∇H(ai)|
λi

+
∑

i�=j,i,j<i
εij

)
+O

( ∑
i<i,j≥i

εij

)
.

Now, we define the following vector field:

Y ′ =


λi

∂δ̃(aiλi )

∂ai

∇K(ai )
|∇H(ai )|

– c′
∑
i≥i

iZi.

Using Proposition . and the fact that |∇H(ai )| ≥ c > , we derive

〈
∂J(u),Y ′(u)

〉≤ –
c

λi
+O

(∑
i�=i

εij

)
– c′

∑
i≥i,j �=i

εij + o
(∑

i≥i


λi

)
.

Taking c′ positive large enough, we find

〈
∂J(u),Y ′(u)

〉≤ –c

( p∑
i=i


λ

β

i
+

p∑
i=i

|∇H(ai)|
λi

+
∑

i≥i,j �=i
εij

)
.

Now, letW := Y ′ +mY , wherem is a small positive constant, we then have

〈
∂J(u),W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Now, we define the pseudo-gradient W̃ as a convex combination ofWi for i = , . . . , . The
construction of W̃ is completed, it satisfies claim (i) of Theorem ..
From the construction, W̃ is bounded. Observe also that the only case where the maxi-

mum of the λi’s increases is when ai ∈ B(yli ,ρ), yli ∈K ∀i = , . . . ,p with (yl , . . . , ylp ) ∈ C+
n–.

Now, arguing as in Appendix  of [] (see also Appendix B of []), claim (ii) follows
from (i) and the estimate of v given is ([], Proposition .). The proof of Theorem . is
thereby completed. �

Proof of Proposition . We divide the set V(p, ε) into five sets.

V 
 (p, ε) =

{
u =

p∑
i=

αiδ̃aiλi ∈ V(p, ε), yli �= ylj ∀i �= j, –
n–∑
k=

bk(yli ) > ,

λi|ai – yli | < δ ∀i = , . . . ,p and ρ(yli , . . . , ylp ) > 

}
,
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V 
 (p, ε) =

{
u =

p∑
i=

αiδ̃aiλi ∈ V(p, ε), yli �= ylj ∀i �= j, –
n–∑
k=

bk(yli ) > ,

λi|ai – yli | < δ ∀i = , . . . ,p and ρ(yli , . . . , ylp ) < 

}
,

V 
 (p, ε) =

{
u =

p∑
i=

αiδ̃aiλi ∈ V(p, ε), yli �= ylj ∀i �= j,λi|ai – yli | < δ

∀i = , . . . ,p, and there exists j (at least) such that –
n–∑
k=

bk(ylj ) < 

}
,

V 
 (p, ε) =

{
u =

p∑
i=

αiδ̃aiλi ∈ V(p, ε), yli �= ylj ∀i �= j, and there exists j (at least)

such that λj|aj – ylj | ≥
δ



}
,

V 
 (p, ε) =

{
u =

p∑
i=

αiδ̃aiλi ∈ V(p, ε), such that there exists i �= j satisfying

yli = ylj

}
.

We break up the proof into Steps - below.We construct an appropriate pseudo-gradient
in each region and then glue up through convex combinations.
Step : First, we consider the case of u =

∑p
i= αiδ̃aiλi ∈ V 

 (p, ε). We have, for any i �= j,
|ai – aj| > ρ , and therefore

εij =
(


( – cosd(ai,aj))λiλj

) n–
 (

 + o()
)

= 
n–


G(ai,aj)

(λiλj)
n–


(
 + o()

)
,

where G(ai,aj) = 

(–cosd(ai ,aj))
n–

, it is Green’s function of (Sn,P). Thus,

λi
∂εij

∂λi
= –

n – 



n–


G(ai,aj)

(λiλj)
n–


(
 + o()

)
.

Using Proposition . with β = n –  and the fact that α


n–
i H(ai)J(u)

n–
n– = ( + o()), we

derive that〈
∂J(u),αiλi

∂δ̃i

∂λi

〉
= (n – )J(u)–

n–


[
n – 
n – 

c̃
∑p

i= bk
H(ai)

n



λn–
i

+ c
n–

∑
i�=j

G(yli , ylj )

(H(ai)H(aj))
n–



(λiλj)

n–


]

+ o

( p∑
i=


λn–
i

+
∑
i�=j

εij

)
,
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where c̃ = c
(n–)
n–


∫
Rn–

|(x)|n–
(+|x|)n– dx. Hence, using the fact that |ai – yli | < δ, δ very small, we

get 〈
∂J(u),

p∑
i=

αiZi

〉
≤ –c t�M(yl , . . . , ylp )� + o

( p∑
i=


λn–
i

+
∑
i�=j

εij

)

≤ –cρ(yl , . . . , ylp )|�| + o

( p∑
i=


λn–
i

+
∑
i�=j

εij

)
,

where � = t( 

λ
n–




, . . . , 

λ
n–


p

). Here M(yl , . . . , ylp ) is defined in (.) and ρ(yl , . . . , ylp ) is the

least eigenvalue of M(yl , . . . , ylp ). Using the fact that ∀i �= j, we have εij ≤ c

(λiλj)
n–

. Since

|ai – aj| ≥ δ, we then obtain

〈
∂J(u),

p∑
i=

αiZi

〉
≤ –c

( p∑
i=


λn–
i

+
∑
i�=j

εij

)
.

In addition, ∀i = , . . . ,p, we have λi|ai| < δ �⇒ |∇H(ai)|
λi

∼ |(ai)k |β–
λi

≤ c
λ
β
i
. Thus, we derive,

forW 
 :=

∑p
i= αiZi,

〈
∂J(u),W 


〉≤ –c

( p∑
i=


λn–
i

+
p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Step : Secondly, we study the case of u =
∑p

i= αiδ̃aiλi ∈ V 
 (p, ε). Let e = (ei)i=,...,p be an

eigenvector associated to ρ(yl , . . . , ylp ) such that |e| =  with ei >  ∀i = , . . . ,p. Let γ > 
be such that for any x ∈ B(e,γ ) = {y ∈ Sp– s.t. |y – e| ≤ γ }, we have

txM(yl , . . . , ylp )x≤ 

ρ(yl , . . . , ylp ).

Two cases may occur.
Case : �

|�| ∈ B(e,γ ), where� = t( 

λ
n–




, . . . , 

λ
n–


p

). In this case,wedefineW 
 = –

∑p
i= αiZi.

As in Step , we find that

〈
∂J(u),W 

 (u)
〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Case : �
|�| /∈ B(e,γ ). In this case, we define

W 
 = –


n – 

|�|
p∑
i=

αiλ
n–


i

[ |�|ei –�i

|�| –
�i〈|�|e –�,�〉

|�|
]

∂δ̃aiλi
∂λi

.

Using Proposition ., we find that

〈
∂J(u),W 

 (u)
〉
= –c|�| ∂

∂t
(t

�(t)M�(t)
)
/t=

+ o

( p∑
i=


λn–
i

)
+ o

(∑
i�=j

εij

)
,
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whereM =M(yl , . . . , ylp ) and �(t) = (–t)�+t|�|e
|(–t)�+t|�|e|�. Observe that

t�(t)M�(t) = ρ +
( – t)

|( – t)� + t|�|e|
(t�M� – ρ|�|).

Thus we obtain ∂
∂t (

t�(t)M�(t)) < –c, and therefore we get

〈
∂J(u),W 

 (u)
〉≤ –c

( p∑
i=


λn–
i

+
p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Step : Now, we deal with the case of u =
∑p

i= αiδ̃aiλi ∈ V 
 (p, ε).

Without loss of generality, we can assume that , . . . ,q are the indices which satisfy
–
∑n–

k= bk(yli ) <  ∀i = , . . . ,q. Let

W̃ 
 =

q∑
i=

–αiZi.

By Proposition . and (.), we obtain

〈
∂J(u),W̃ 

 (u)
〉≤ –c

( q∑
i=


λ

β

i
+

∑
i�=j,≤i≤q

εij

)
.

Set

I =
{
i,  ≤ i≤ p s.t. λi ≤ 


min
≤j≤q

λj

}
.

It is easy to see that we can add to the above estimates all indices i such that i /∈ I . Thus

〈
∂J(u),W̃ 

 (u)
〉≤ –c

(∑
i /∈I


λ

β

i
+
∑
i�=j,i /∈I

εij

)
.

If I �=∅, in this case, we write u as follows:

u =
∑
i∈I

αiδ̃aiλi +
∑
i /∈I

αiδ̃aiλi = u + u.

Observe that u has to satisfy one of the two cases above, that is, u ∈ V 
 (�I, ε) or u ∈

V 
 (�I, ε). Thus we can apply the associated vector field, which we denote by W̃ 

 . We then
have

〈
∂J(u),W̃ 

 (u)
〉≤ –c

(∑
i∈I


λ

β

i
+
∑
i�=j,i∈I

εij +
p∑
i=

|∇H(ai)|
λi

)
+O

(∑
i�=j,i /∈I

εij

)
.

Let, in this subsetW 
 = W̃ 

 +mW̃ 
 ,m be a small positive constant. We get

〈
∂J(u),W 

 (u)
〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.
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Step : We consider here the case of u =
∑p

i= αiδ̃aiλi ∈ V 
 (p, ε).

We order the λi’s in an increasing order. For the sake of simplicity, we can assume that
λ ≤ · · · ≤ λp. Let λi = inf{λj s.t. λj|aj| ≥ δ}. For m >  small enough, we need to prove
the following claim:

〈
∂J(u), (Xi –mZi )(u)

〉≤ –c

( p∑
i=i


λ

β

i
+
∑
j �=i

εij +
p∑
i=

|∇H(ai )|
λi

)
.

Indeed, for i �= j, we have |ai – aj| > ρ . Thus in Proposition . the term | 
λi

∂εij
∂(ai)k

| is very
small with respect to εij. Hence,

〈
∂J(u),Xi (u)

〉 ≤ –
c

λ
β

i

(∫
Rn–

bki
|xki + λi (ai )ki |β
( + λi |(ai )ki |)

β–


xki
( + |x|)n dx

)

+ o
(


λ

β

i

)
+ o

(∑
j �=i

εij

)
.

If i ∈ L in this case δ ≤ λi |ai | ≤ M, using (.), we get

〈
∂J(u),Xi (u)

〉≤ –c


λ
β

i

+ o
(∑

j �=i
εij

)

≤ –c
p∑

i=i


λ

β

i
+ o

(∑
j �=i

εij

)
. (.)

From another part, we have by Proposition . and (.)

〈
∂J(u),Zi (u)

〉≤ –c
∑
j �=i

εij +O
(


λ

β

i

)
. (.)

Using (.) and (.), our claim follows in this case.
If i ∈ L, using (.), we find

〈
∂J(u),Xi (u)

〉 ≤ –c
(


λ

β

i

+
|(ai )ki |β–

λi

)
+ o

(∑
j �=i

εij

)

≤ –c

( p∑
i=i


λ

β

i
+

|(ai )ki |β–
λi

)
+ o

(∑
j �=i

εij

)
,

and by Proposition . and (.), we have

〈
∂J(u), –Zi (u)

〉≤ –c
∑
j �=i

εij +O
( |(ai )ki |β–

λ
i

)
.
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Now, using (.), we obtain

〈
∂J(u), (Xi –mZi )(u)

〉≤ –c

( p∑
i=i


λ

β

i
+
∑
j �=i

εij +
|(ai )k|β–

λi

)

≤ –c

( p∑
i=i


λ

β

i
+
∑
j �=i

εij +
|∇H(ai )|

λi

)
,

since |∇H(ai )| ∼ |(ai )ki |β–, hence our claim is valid.
Now, let

I =
{
i,  ≤ i≤ p s.t. λi <




λi

}
,

it is easy to see that

〈
∂J(u), (Xi –mZi )(u)

〉≤ –c
(∑

i /∈I


λ

β

i
+
∑
j �=i,i /∈I

εij +
|∇H(ai )|

λi

)

since εij ≤ c

(λiλj)
n–

. Furthermore, using (.), we have

〈
∂J(u),

(
Xi –mZi +

∑
i /∈I,i∈L

Xi

)
(u)
〉
≤ –c

(∑
i /∈I


λ

β

i
+
∑
i /∈I

|∇H(ai)|
λi

+
∑
i�=j,i /∈I

εij

)

since, for i /∈ I and i ∈ L, we have |∇H(ai)|
λi

≤ c
λ
β
i
.

We need to add the remaining terms (if I �= ∅). Let u =
∑

i∈I αiδ̃aiλi ∀i ∈ I , we have
λi|ai| < δ, thus u ∈ Vj

(�I, ε), j =  or  or . We can apply then the associated vector field,
which we denote by W̃ 

 . We then have

〈
∂J(u),W̃ 


〉≤ –c

(∑
i∈I


λ

β

i
+
∑

i�=j,i,j∈I
εij +

∑
i∈I

|∇H(ai)|
λi

)
+O

(∑
i∈I,j /∈I

εij

)
.

LetW 
 = Xi –mZi +

∑
i /∈I,i∈L Xi +mW̃ 

 ,m is positive small enough, we get

〈
∂J(u),W 

 (u)
〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
i�=j

εij

)
.

Step : We study now the case of u =
∑p

i= αiδ̃aiλi ∈ V 
 (p, ε).

Let

Bk =
{
j,  ≤ j ≤ p s.t. aj ∈ B(ylk ,ρ)

}
.

In this case, there is at least oneBk which contains at least two indices.Without loss of gen-
erality, we can assume that , . . . ,q are the indices such that the set Bk ,  ≤ k ≤ q, contains
at least two indices. We decrease the λi’s for i ∈ Bk with different speed. For this purpose,
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let

χ :R →R
+,

t �−→
⎧⎨⎩ if |t| ≤ γ ′,

 if |t| ≥ ,

where γ ′ is a small constant.
For j ∈ Bk , set χ (λj) =

∑
i�=j,i∈Bk χ ( λj

λi
). Define

W̃ 
 = –

q∑
k=

∑
j∈Bk

αjχ (λj)Zj.

Using Proposition . and (.), we obtain

〈
∂J(u),W̃ 

 (u)
〉 ≤ c

q∑
k=

[ ∑
i�=j,j∈Bk

χ (λj)λj
∂εij

∂λj
+

∑
j∈Bk ,j∈L

χ (λj)O
(


λ

β

j

)

+
∑

j∈Bk ,j∈L
χ (λj)O

( |(aj)ki |β–
λ
j

)]
.

For j ∈ Bk , with k ≤ q, if χ (λj) �= , then there exists i ∈ Bk such that 
λ
β
j
= o(εij) (for ρ small

enough). Furthermore, for j ∈ Bk , if i /∈ Bk (or i ∈ Bk with λi ∼ λj), then we have by (.)

λj
∂εij

∂λj
≤ –cεij and λi

∂εij

∂λi
≤ –cεij.

In the case where i ∈ Bk with (assuming λi � λj), we have χ (λj) – χ (λi) ≥ . Thus

χ (λj)λj
∂εij

∂λj
+ χ (λi)λi

∂εij

∂λi
≤ λj

∂εij

∂λj
≤ –cεij.

Thus we obtain

〈
∂J(u),W̃ 

 (u)
〉 ≤ –c

q∑
k=

∑
j∈Bk

χ (λj)
(∑

i�=j
εij +


λ

β

j

)

+
q∑

k=

∑
j∈Bk ,j∈L

χ (λj)O
( |(aj)ki |β–

λ
j

)
. (.)

We need to add the indices j, j ∈ C(
⋃q

K= Bk)∪ {j ∈ Bk s.t. χ (λj) = }. Let

λi = inf{λi, i = , . . . ,p}.

We distinguish two cases.
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Case : There exists j such that χ (λj) �=  and λi ∼ λj (γ ′ ≤ λi
λj

≤ ), then we can make
appear – 

λ
β
i

in the above estimate, and therefore –
∑p

i=


λ
β
i
and –

∑
k �=r εkr . Thus we obtain

〈
∂J(u),W̃ 

 (u)
〉≤ –c

( p∑
i=


λ

β

i
+
∑
i�=j

εij

)
+O

( q∑
k=

∑
j∈Bk ,j∈L

|(aj)ki |β–
λ
j

)
.

Now, let

W 
 = W̃ 

 +m

p∑
i=

Xi.

Using the above estimates with Proposition . and (.), we obtain

〈
∂J(u),W 

 (u)
〉≤ –c

( p∑
i=


λ

β

i
+
∑
i�=j

εij +
p∑
i=

|∇H(ai)|
λi

)
.

Case : For each j ∈ Bk ,  ≤ k ≤ q, we have

λi � λj

(
i.e.,

λi
λj

< γ ′
)

or if λi ∼ λj, we have χ (λj) = .

In this case, we define

D =

[{
i,χ (λi) = 

}∪
C
( q⋃

k=

Bk

)]
∩
{
i,

λi

λi
<


γ ′

}
.

It is easy to see that i ∈ D and if i �= j ∈ {i,χ (λi) = } ∪ C(
⋃q

k= Bk), we have ai ∈ B(yli ,ρ)
and aj ∈ B(ylj ,ρ) with yli �= ylj . Let

u =
∑
i∈D

αiδ̃aiλi .

u has to satisfy one of the four subsets above, that is, u ∈ Vj
(�I, ε) for j = , ,  or . Thus

we can apply the associated vector field, which we denote by Y , and we have the estimate

〈
∂J(u),Y (u)

〉≤ –c
(∑

i∈D


λ

β

i
+
∑
i∈D

|∇H(ai)|
λi

+
∑

i�=j,i,j∈D
εij

)
+O

( ∑
i∈D,j /∈D

εij

)
.

Observe that in the above majorization we have the term – 
λ
β
i

, thus we can make appear

–
∑p

i=


λ
β
i
. Now, concerning the term –

∑
i�=j εij, if i ∈D and j ∈ CD, observe that

CD =
{
i,

λi

λi
>


γ ′

}
∪
[{

i,χ (λi) �= 
}∩

( q⋃
k=

Bk

)]
.
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We have two situations: either j ∈ [{i,χ (λi) �= } ∩ (
⋃q

k= Bk)], then we have –εij in the
estimates (.), or j ∈ {i, λi

λi
> 

γ ′ }. We can prove in these cases that |ai – aj| ≥ ρ . Thus

εij ≤ c
(λiλj)

n–


<
cγ ′ n–

(λiλi)
n–


= o(εii) (for γ ′ small enough).

Thus we derive

〈
∂J(u),

(
W̃ 

 +mY
)
(u)
〉 ≤ –c

(∑
i∈D

|∇H(ai)|
λi

+
p∑
i=


λ

β

i
+
∑
i�=j

εij

)

+
q∑

K=

∑
j∈Bk ,j∈L

χ (λj)O
( |(aj)ki |β–

λ
j

)
,

and hence, by (.), we have

〈
∂J(u),

(
W̃ 

 +mY +m
∑

i=,i∈L
Xi

)
(u)
〉
≤ –c

( p∑
i=


λ

β

i
+
∑
i�=j

εij +
p∑
i=

|∇H(ai)|
λi

)

form andm two small positive constants. In this case, we define

W 
 := W̃ 

 +mY +m
∑

i=,i∈L
Xi.

The vector fieldW in V(p, ε) is a convex combination of Wj
, j = , . . . , . This concludes

the proof of Proposition .. �

Corollary . Let H be a C-function on ∂Bn satisfying (f)β condition with n –  ≤ β ≤
n – . The only critical points at infinity of J in V (p, ε), p≥  are

p∑
i=

αiδ̃(yi ,∞), where (y, . . . , yp) ∈ C+
n– ∪ (

K+ \Kn–
)
.

The Morse index of such a critical point at infinity is

i(y, . . . , yp) = p –  +
p∑
j=

(n – ) – ĩ(yj).

4 Proof of the result
Proof of Theorem . We prove the existence result by contradiction. Therefore, we as-
sume that equation (.) has no solution. It follows from Corollary . that the critical
points at infinity of the associated variational problem are in one-to-one correspondence
with the elements of C+

n– ∪ (K+ \Kn–).
Notice that, just like for usual critical points, it is associated to each critical point at

infinity w∞ of J stable and unstable manifoldsW∞
s (w∞) and W∞

u (w∞) (see [], pp.-
). These manifolds can be easily described once a finite dimensional reduction, like the
one we performed in Section , is established.
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For any w∞ = (yi , . . . , yip ) ∈ C+
n–, let c(w)∞ = Sn(

∑p
j=



K (yij )
n–

) n denote the associated

critical value. Here we choose to consider a simplified situation, where for any w∞ �= w′∞,
c(w)∞ �= c(w′)∞, and thus order the c(w)∞’s, w∞ ∈ C+

n– as

c(w)∞ < · · · < c(wk )∞.

By using a deformation lemma (see Proposition . and Theorem . of []), we know
that if c(wk–)∞ < a < c(wk)∞ < b < c(wk+)∞, then

Jb � Ja ∪W∞
u (wk)∞, (.)

where Jb = {u ∈ �+, J(u) ≤ b} and � denotes retracts by deformation.
We apply the Euler-Poincaré characteristic to both sides of (.), and we find that

χ (Jb) = χ (Ja) + (–)i(wk )∞ , (.)

where i(wk)∞ denotes the index of the critical point at infinity (wk)∞. Let

b < c(w)∞ = min
u∈�+

J(u) < b < c(w)∞ < · · · < bk < c(wk )∞ < bk+.

Since we have assumed that (.) has no solution, Jbk+ is a retard by deformation of �+.
Therefore χ (Jbk+ ) =  since �+ is a contractible set. Now, using (.), we derive, after
recalling that χ (Jb ) = χ (∅) = ,

 =
k∑
j=

(–)i(wj)∞ . (.)

Hence, if (.) is violated, (.) has a solution.
To prove themultiplicity part of the statement, we observe that it follows from the Sard-

Smale theorem that for generic H ’s, the solutions of (.) are all non-degenerate in the
sense that the associated linearized operator does not admit zero as an eigenvalue. We
need to introduce the following lemma extracted from [].

Lemma . (see [], Section .) Let w be a solution of (.). Assume that the function
H satisfies condition (f)β , with n–

 < β ≤ n – . Then, for each p ∈ N
∗, there is no critical

points neither critical points at infinity in V (p, ε,w).

Once the existence of mixed critical points at infinity is ruled out, it follows from the
above arguments that

�+ �
k⋃
j=

W∞
u (wj)∞ ∪

⋃
w,∂J(w)=

Wu(w).

Now using the Euler-Poincaré theorem, we derive that

 =
k∑
j=

(–)i(wj)∞ +
∑

w,∂J(w)=

(–)morse(w).

Hence our theorem follows. �
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