REVIEW

Open Access

Strong convergence theorems for solutions of fixed point and variational inequality problems

Lanxiang Yu^{1*} and Jianmin Song²

*Correspondence: hdyulx@yeah.net ¹ School of Mathematics and Physics, North China Electric Power University, Baoding, 071003, China Full list of author information is available at the end of the article

Abstract

The purpose of this paper is to investigate viscosity approximation methods for finding a common element in the set of fixed points of a strict pseudocontraction and in the set of solutions of a generalized variational inequality in the framework of Banach spaces.

Keywords: sunny nonexpansive retraction; inverse-strongly accretive mapping; nonexpansive mapping; variational inequality

1 Introduction

Let *C* be a nonempty, closed and convex subset of a real Hilbert space *H*, and let P_C be the metric projection of *H* onto *C*. Recall that a mapping $A : C \to H$ is said to be monotone iff

 $\langle Ax - Ay, x - y \rangle \ge 0 \quad \forall x, y \in C.$

Recall that a mapping $A : C \to H$ is said to be inverse-strongly monotone iff there exists a positive real number $\alpha > 0$ such that

 $\langle Ax - Ay, x - y \rangle \ge \alpha ||Ax - Ay||^2 \quad \forall x, y \in C.$

For such a case, *A* is said to be α -inverse-strongly monotone.

Recall that the classical variational inequality problem, denoted by VI(*C*,*A*), is to find $u \in C$ such that

$$\langle Au, v - u \rangle \ge 0 \quad \forall v \in C.$$

$$\tag{1.1}$$

It is clear that variational inequality problem (1.1) is equivalent to a fixed point problem. u is a solution of the above inequality iff it is a fixed point of the mapping $P_C(I - rA)$, where I is the identity and r is some positive real number.

Variational inequality problems have emerged as an effective and powerful tool for studying a wide class of problems which arise in economics, finance, image reconstruction, ecology, transportation, and network. Recently, many authors studied the solutions of inequality (1.1) based on iterative methods; see [1–17] and the references therein.

©2014 Yu and Song; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let $S : C \to C$ be a mapping. In this paper, we denote by F(S) the set of fixed points of the mapping *S*.

Recall that *S* is said to be nonexpansive iff

$$||Sx - Sy|| \le ||x - y|| \quad \forall x, y \in C.$$

Recall that *S* is said to be a strict pseudocontraction iff there exits a positive constant λ such that

$$||Sx - Sy||^{2} \le ||x - y||^{2} + \lambda ||(I - S)x - (I - S)y||^{2} \quad \forall x, y \in C.$$

It is clear that the class of strict pseudocontractions includes the class of nonexpansive mappings as a special case.

Recently, many authors have investigated the problems of finding a common element in the set of solution of variational inequalities for an inverse-strongly monotone mapping and in the set of fixed points of nonexpansive mappings or strict pseudocontractions; see [18–25] and the references therein. However, most of the results are in the framework of Hilbert spaces. In this paper, we investigate a common element problem in the framework of Banach spaces. A strong convergence theorem for common solutions to fixed point problems of strict pseudocontractions and solution problems of variational inequality (1.1) is established in uniformly convex and 2-uniformly smooth Banach spaces. The results presented in this paper improve and extend the corresponding results announced by liduka and Takahashi [5] and Hao [26].

2 Preliminaries

Let *C* be a nonempty closed and convex subset of a Banach space *E*. Let E^* be the dual space of *E*, and let $\langle \cdot, \cdot \rangle$ denote the pairing between *E* and E^* . For q > 1, the generalized duality mapping $J_q : E \to 2^{E^*}$ is defined by

$$J_q(x) = \left\{ f \in E^* : \langle x, f \rangle = \|x\|^q, \|f\| = \|x\|^{q-1} \right\}$$

for all $x \in E$. In particular, $J = J_2$ is called the normalized duality mapping. It is known that $J_q(x) = ||x||^{q-2}J(x)$ for all $x \in E$. If *E* is a Hilbert space, then J = I, the identity mapping. The normalized duality mapping *J* has the following properties:

- (1) if *E* is smooth, then *J* is single-valued;
- (2) if *E* is strictly convex, then it is one-to-one and ⟨x − y, x* − y*⟩ > 0 holds for all (x, x*), (y, y*) ∈ J with x ≠ y;
- (3) if *E* is reflexive, then *J* is surjective;
- (4) if *E* is uniformly smooth, then *J* is uniformly norm-to-norm continuous on each bounded subset of *E*.

Let $U = \{x \in X : ||x|| = 1\}$. A Banach space *E* is said to be uniformly convex if, for any $\epsilon \in (0, 2]$, there exists $\delta > 0$ such that, for any $x, y \in U$,

$$||x-y|| \ge \epsilon$$
 implies $\left\|\frac{x+y}{2}\right\| \le 1-\delta$.

It is known that a uniformly convex Banach space is reflexive and strictly convex. Hilbert spaces are 2-uniformly convex, while L^p is max $\{p, 2\}$ -uniformly convex for every p > 1.

A Banach space *E* is said to be smooth if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.1}$$

exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit (2.1) is attained uniformly for $x, y \in U$. The norm of *E* is said to be Fréchet differentiable if, for any $x \in U$, the limit (2.1) is attained uniformly for all $y \in U$. The modulus of smoothness of *E* is defined by

$$\rho(\tau) = \sup \left\{ \frac{1}{2} \left(\|x + y\| + \|x - y\| \right) - 1 : x, y \in X, \|x\| = 1, \|y\| = \tau \right\},\$$

where $\rho : [0, \infty) \to [0, \infty)$ is a function. It is known that *E* is uniformly smooth if and only if $\lim_{\tau \to 0} \frac{\rho(\tau)}{\tau} = 0$. Let *q* be a fixed real number with $1 < q \le 2$. A Banach space *E* is said to be *q*-uniformly smooth if there exists a constant c > 0 such that $\rho(\tau) \le c\tau^q$ for all $\tau > 0$.

We remark that all Hilbert spaces, L_p (or l_p) spaces ($p \ge 2$) and the Sobolev spaces W_m^p ($p \ge 2$) are 2-uniformly smooth, while L_p (or l_p) and W_m^p spaces (1) are <math>p-uniformly smooth. Typical examples of both uniformly convex and uniformly smooth Banach spaces are L^p , where p > 1. More precisely, L^p is min{p, 2}-uniformly smooth for every p > 1.

Recall that a mapping *S* is said to be λ -strictly pseudocontractive iff there exist a constant $\lambda \in (0, 1)$ and $j(x - y) \in J(x - y)$ such that

$$\left\langle Sx - Sy, j(x - y) \right\rangle \le \|x - y\|^2 - \lambda \left\| (I - S)x - (I - S)y \right\|^2 \quad \forall x, y \in C.$$

$$(2.2)$$

It is clear that (2.2) is equivalent to the following:

$$\left\langle (I-S)x - (I-S)y, j(x-y) \right\rangle \ge \lambda \left\| (I-S)x - (I-S)y \right\|^2 \quad \forall x, y \in C.$$

$$(2.3)$$

Next, we assume that E is a smooth Banach space. Let C be a nonempty closed convex subset of E. Recall that an operator A of C into E is said to be accretive iff

$$\langle Ax - Ay, J(x - y) \rangle \ge 0 \quad \forall x, y \in C.$$

An accretive operator *A* is said to be *m*-accretive if the range of I + rA is *E* for all r > 0. In a real Hilbert space, an operator *A* is *m*-accretive if and only if *A* is maximal monotone.

Recall that an operator *A* of *C* into *E* is said to be α -inverse strongly accretive iff there exits a real constant $\alpha > 0$ such that

$$\langle Ax - Ay, J(x - y) \rangle \ge \alpha ||Ax - Ay||^2 \quad \forall x, y \in C.$$

Evidently, the definition of an inverse-strongly accretive operator is based on that of an inverse-strongly monotone operator.

Let *D* be a subset of *C* and *Q* be a mapping of *C* into *D*. Then *Q* is said to be sunny if

$$Q\bigl(Qx+t(x-Qx)\bigr)=Qx,$$

whenever $Qx + t(x - Qx) \in C$ for $x \in C$ and $t \ge 0$. A mapping Q of C into itself is called a retraction if $Q^2 = Q$. If a mapping Q of C into itself is a retraction, then Qz = z for all $z \in R(Q)$, where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.

The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach space.

Proposition 2.1 [27] Let *E* be a smooth Banach space, and let *C* be a nonempty subset of *E*. Let $Q: E \rightarrow C$ be a retraction, and let *J* be the normalized duality mapping on *E*. Then the following are equivalent:

- (1) Q_C is sunny and nonexpansive;
- (2) $||Q_C x Q_C y||^2 \le \langle x y, J(Q_C x Q_C y) \rangle \forall x, y \in E;$
- (3) $\langle x Q_C x, J(y Q_C x) \rangle \leq 0 \ \forall x \in E, y \in C.$

Proposition 2.2 [28] Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E, and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then the set F(T) is a sunny nonexpansive retract of C.

Recently, Aoyama *et al.* [29] considered the following generalized variational inequality problem.

Let *C* be a nonempty closed convex subset of *E*, and let *A* be an accretive operator of *C* into *E*. Find a point $u \in C$ such that

$$\langle Au, J(v-u) \rangle \ge 0 \quad \forall v \in C.$$
 (2.4)

Next, we use BVI(C, A) to denote the set of solutions of variational inequality problem (2.4).

Aoyama *et al.* [29] proved that variational inequality (2.4) is equivalent to a fixed point problem. The element $u \in C$ is a solution of variational inequality (2.4) iff $u \in C$ is a fixed point of the mapping $Q_C(I - rA)$, where r > 0 is a constant and Q_C is a sunny nonexpansive retraction from *E* onto *C*.

The following lemmas also play an important role in this paper.

Lemma 2.3 [30] Assume that $\{\alpha_n\}$ is a sequence of nonnegative real numbers such that

 $\alpha_{n+1} \leq (1-\gamma_n)\alpha_n + \delta_n + e_n,$

where $\{\gamma_n\}$ is a sequence in (0,1), $\{e_n\}$ and $\{\delta_n\}$ are sequences such that

- (1) $\sum_{n=1}^{\infty} \gamma_n = \infty;$
- (2) $\sum_{n=1}^{\infty} e_n < \infty;$
- (3) $\limsup_{n\to\infty} \delta_n / \gamma_n \le 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$. Then $\lim_{n\to\infty} \alpha_n = 0$.

Lemma 2.4 [31] *Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the following inequality holds:*

$$\|x+y\|^2 \le \|x\|^2 + 2\langle y, Jx \rangle + 2\|Ky\|^2 \quad \forall x, y \in E.$$

Lemma 2.5 [29] Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q_C be a sunny nonexpansive retraction from E onto C, and let A be an accretive operator of C into E. Then, for all $\lambda > 0$,

$$BVI(C,A) = F(Q_C(I - \lambda A)).$$

Lemma 2.6 [32] Let C be a closed convex subset of a real strictly convex Banach space E and $S_i : C \to C$ (i = 1, 2) be two nonexpansive mappings such that $F = F(S_1) \cap F(S_2) \neq \emptyset$. Define $Sx = \delta S_1 x + (1 - \delta)S_2 x$, where $\delta \in (0, 1)$. Then $S : C \to C$ is a nonexpansive mapping with $F(S) = F \neq \emptyset$.

Lemma 2.7 [33] Let C be a nonempty subset of a real 2-uniformly smooth Banach space E, and let $T: C \to C$ be a κ -strict pseudocontraction. For $\alpha \in (0,1)$, we define $T_{\alpha}x = (1 - \alpha)x + \alpha Tx$ for every $x \in C$. Then, as $\alpha \in (0, \frac{\kappa}{\kappa^2}]$, T_{α} is nonexpansive such that $F(T_{\alpha}) = F(T)$.

Lemma 2.8 [34] Let *E* be a real uniformly smooth Banach space, and let *C* be a nonempty closed convex subset of *E*. Let $T : C \to C$ be a nonexpansive mapping with a fixed point, and let $f : C \to C$ be a contraction. For each $t \in (0, 1)$, let z_t be the unique solution of the equation x = tf(x) + (1-t)Tx. Then $\{z_t\}$ converges to a fixed point of *T* as $t \to 0$ and $Q(f) = s-\lim_{t\to 0} z_t$ defines the unique sunny nonexpansive retraction from *C* onto *F*(*T*).

3 Main results

Theorem 3.1 Let *E* be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant *K*, and let *C* be a nonempty, closed and convex subset of *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C*, and let $A : C \to E$ be an α -inverse strongly accretive mapping. Let $S : C \to C$ be a λ -strict pseudocontraction with a fixed point. Assume that $F := F(S) \cap BVI(C, A) \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be real number sequences in (0, 1). Suppose that $x_1 = x \in C$ and that $\{x_n\}$ is given by

$$x_{n+1} = \alpha_n f(x_n) + \beta_n \left[\mu S_t x_n + (1-\mu) Q_C(x_n - \lambda A x_n) \right] + \gamma_n Q_C e_n, \quad n \ge 1,$$

where $S_t = (1-t)x + tSx$, $t \in (0, \frac{\lambda}{K^2}]$, $f : C \to C$ is a κ -contractive mapping, $\{e_n\}$ is a bounded computational error in E, $\lambda \in (0, \alpha/K^2]$ and $\mu \in (0, 1)$. Assume that the following restrictions are satisfied:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$;
- (b) $\sum_{n=1}^{\infty} \gamma_n < \infty$.

Then $\{x_n\}$ converges strongly to $x = Q_F f(x)$, where Q_F is a sunny nonexpansive retraction from *C* onto *F*.

Proof Fixing $x^* \in F$, we find that $x^* = Q_C(x^* - \lambda A x^*)$ and $Sx^* = x^*$. It follows from Lemma 2.7 that $S_t x^* = x^*$. Put $y_n = Q_C(x_n - \lambda A x_n)$. In view of Lemma 2.4, we find that

$$\|y_n - x^*\|^2 \le \|(x_n - x^*) - \lambda(Ax_n - Ax^*)\|^2$$

$$\le \|x_n - x^*\|^2 - 2\lambda\langle Ax_n - Ax^*, J(x_n - x^*)\rangle$$

$$+ 2K^2\lambda^2 \|Ax_n - Ax^*\|^2$$

$$\leq ||x_n - x^*||^2 - 2\lambda\alpha ||Ax_n - Ax^*||^2 + 2K^2\lambda^2 ||Ax_n - Ax^*||^2$$

= $||x_n - x^*||^2 + 2\lambda(\lambda K^2 - \alpha) ||Ax_n - Ax^*||^2.$

Since $\lambda \in (0, \alpha/K^2]$, we have that

$$||y_n - x^*|| \le ||x_n - x^*||.$$

This implies that $Q_C(I - \lambda A)$ is a nonexpansive mapping. Hence, we have

$$\begin{aligned} \|x_{n+1} - x^*\| \\ &= \|\alpha_n f(x_n) + \beta_n [\mu S x_n + (1 - \mu) Q_C(x_n - \lambda A x_n)] + \gamma_n Q_C e_n - x^*\| \\ &\leq \alpha_n \|f(x_n) - x^*\| + \beta_n \|\mu S x_n + (1 - \mu) Q_C(x_n - \lambda A x_n) - x^*\| \\ &+ \gamma_n \|Q_C e_n - x^*\| \\ &\leq \alpha_n \|f(x_n) - x^*\| + \beta_n \mu \|x_n - x^*\| + \beta_n (1 - \mu) \|x_n - x^*\| \\ &+ \gamma_n \|Q_C e_n - x^*\| \\ &\leq \alpha_n \kappa \|x_n - x^*\| + \alpha_n \|f(x^*) - x^*\| + \beta_n \|x_n - x^*\| \\ &+ \gamma_n \|e_n - x^*\| \\ &\leq (1 - \alpha_n (1 - \kappa)) \|x_n - x^*\| + \alpha_n \|f(x^*) - x^*\| + \gamma_n \|e_n - x^*\| \\ &\leq \max \left\{ \|x_n - x^*\|, \frac{\|f(x^*) - x^*\|}{1 - \kappa} \right\} + \gamma_n \|e_n - x^*\|, \end{aligned}$$

which implies that the sequence $\{x_n\}$ is bounded, so is $\{y_n\}$. Define

$$t_n = \mu S_t x_n + (1 - \mu) Q_C (x_n - \lambda A x_n).$$

It follows that

$$\|t_{n} - t_{n-1}\|$$

$$= \|\mu S_{t} x_{n} + (1 - \mu) Q_{C} (I - \lambda A) x_{n} - [\mu S_{t} x_{n-1} + (1 - \mu) Q_{C} (I - \lambda A) x_{n-1}]\|$$

$$\leq \mu \|S_{t} x_{n} - S_{t} x_{n-1}\| + (1 - \mu) \|Q_{C} (I - \lambda A) x_{n} - Q_{C} (I - \lambda A) x_{n-1}\|$$

$$\leq \mu \|x_{n} - x_{n-1}\| + (1 - \mu) \|x_{n} - x_{n-1}\|$$

$$= \|x_{n} - x_{n-1}\|.$$
(3.1)

On the other hand, we have

$$\|x_{n+1} - x_n\|$$

$$\leq \alpha_n \|f(x_n) - f(x_{n-1})\| + |\alpha_n - \alpha_{n-1}| \|f(x_{n-1})\|$$

$$+ \beta_n \|t_n - t_{n-1}\| + |\beta_n - \beta_{n-1}| \|t_{n-1}\| + \gamma_n \|Q_C e_n - Q_C e_{n-1}\|$$

$$+ |\gamma_n - \gamma_{n-1}| \|Q_C e_n\|.$$
(3.2)

Substituting (3.1) into (3.2), we see that

$$\begin{aligned} \|x_{n+1} - x_n\| \\ &\leq (1 - \alpha_n (1 - \kappa)) \|x_n - x_{n-1}\| + |\alpha_n - \alpha_{n-1}| \|f(x_{n-1})\| \\ &+ |\beta_n - \beta_{n-1}| \|t_{n-1}\| + \gamma_n \|Q_C e_n - Q_C e_{n-1}\| \\ &+ |\gamma_n - \gamma_{n-1}| \|Q_C e_n\| \\ &\leq (1 - \alpha_n (1 - \kappa)) \|x_n - x_{n-1}\| + |\alpha_n - \alpha_{n-1}| (\|f(x_{n-1})\| + \|t_{n-1}\|) \\ &+ |\gamma_n - \gamma_{n-1}| (\|t_{n-1}\| + \|Q_C e_n\|) + \gamma_n \|Q_C e_n - Q_C e_{n-1}\|. \end{aligned}$$

In view of Lemma 2.3, we find from the restrictions (a) and (b) that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.3)

Note that

$$||x_n - t_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - t_n||$$

$$\le ||x_n - x_{n+1}|| + \alpha_n ||f(x_n) - t_n|| + \gamma_n ||Q_C e_n - t_n||.$$

Using (3.3), we find from the restrictions (a) and (b) that

$$\lim_{n \to \infty} \|x_n - t_n\| = 0.$$
(3.4)

Define a mapping V by

$$Vx = \mu S_t x + (1 - \mu)Q_C(I - \lambda A)x \quad \forall x \in C.$$

Using Lemma 2.6, we see that the mapping V is a nonexpansive mapping with

$$F(V) = F(S_t) \cap F(Q_C(I - \lambda A)) = F(S_t) \cap BVI(C, A) = F(S) \cap BVI(C, A) = F.$$

From (3.4), we see that

$$\lim_{n \to \infty} \|x_n - Vx_n\| = 0. \tag{3.5}$$

Next, we show that

$$\limsup_{n \to \infty} \langle f(x) - x, J(x_n - x) \rangle \le 0, \tag{3.6}$$

where $x = Q_E f(x)$, and Q_F is a sunny nonexpansive retraction from *C* onto *F*, the strong limit of the sequence z_t defined by

$$z_t = tf(z_t) + (1-t)Vz_t.$$

It follows that

$$||z_t - x_n|| = ||(1-t)(Vz_t - x_n) + t(f(z_t) - x_n)||.$$

For any $t \in (0, 1)$, we see that

$$\begin{aligned} \|z_{t} - x_{n}\|^{2} &\leq (1 - t)^{2} \|Vz_{t} - x_{n}\|^{2} + 2t \langle f(z_{t}) - x_{n}, j(z_{t} - x_{n}) \rangle \\ &\leq (1 - t)^{2} (\|Vz_{t} - Vx_{n}\|^{2} + \|Vx_{n} - x_{n}\|^{2} \\ &+ 2\|Vz_{t} - Vx_{n}\|\|Vx_{n} - x_{n}\|) + 2t \langle f(z_{t}) - z_{t}, j(z_{t} - x_{n}) \rangle \\ &+ 2t \langle z_{t} - x_{n}, j(z_{t} - x_{n}) \rangle \\ &\leq (1 - t)^{2} \|z_{t} - x_{n}\|^{2} + \lambda_{n}(t) + 2t \langle f(z_{t}) - z_{t}, j(z_{t} - x_{n}) \rangle \\ &+ 2t \|z_{t} - x_{n}\|^{2}, \end{aligned}$$
(3.7)

where

$$\lambda_n(t) = \|Vx_n - x_n\|^2 + 2\|z_t - x_n\|\|Vx_n - x_n\|.$$

It follows from (3.7) that

$$\langle z_t - f(z_t), j(z_t - x_n) \rangle \leq \frac{t}{2} ||z_t - x_n||^2 + \frac{1}{2t} \lambda_n(t)$$

This implies that

$$\limsup_{n\to\infty} \langle z_t - f(z_t), j(z_t - x_n) \rangle \leq \frac{t}{2} \|z_t - x_n\|^2.$$

Since *E* is 2-uniformly smooth, $j: E \to E^*$ is uniformly continuous on any bounded sets of *E*, which ensures that the $\limsup_{n\to\infty}$ and $\limsup_{t\to 0}$ are interchangeable, hence

$$\limsup_{n\to\infty}\langle f(x)-x,j(x_n-x)\rangle\leq 0.$$

This shows that (3.6) holds.

Finally, we show that $x_n \to x$ as $n \to \infty$. Note that

$$\begin{aligned} \|x_{n+1} - x\|^2 \\ &= \alpha_n \langle f(x_n) - x, j(x_{n+1} - x) \rangle + \beta_n \langle t_n - x, j(x_{n+1} - x) \rangle \\ &+ \gamma_n \langle Q_C e_n - x, j(x_{n+1} - x) \rangle \\ &\leq \alpha_n \langle f(x_n) - x, j(x_{n+1} - q) \rangle + \beta_n \|t_n - x\| \|x_{n+1} - x\| \\ &+ \gamma_n \|Q_C e_n - x\| \|x_{n+1} - x\| \\ &\leq \alpha_n \kappa \|x_n - x\| \|x_{n+1} - q\| + \alpha_n \langle f(x) - x, j(x_{n+1} - q) \rangle \\ &+ \beta_n \|x_n - x\| \|x_{n+1} - x\| + \gamma_n \|Q_C e_n - x\| \|x_{n+1} - x\| \\ &\leq \frac{\alpha_n \kappa + \beta_n}{2} (\|x_n - x\|^2 + \|x_{n+1} - x\|^2) + \alpha_n \langle f(x) - x, j(x_{n+1} - x) \rangle \end{aligned}$$

$$\begin{aligned} &+ \frac{\gamma_n}{2} \left(\|e_n - x\|^2 + \|x_{n+1} - x\|^2 \right) \\ &\leq \frac{\alpha_n \kappa + \beta_n}{2} \|x_n - x\|^2 + \frac{1 - \alpha_n (1 - \kappa)}{2} \|x_{n+1} - x\|^2 \\ &+ \alpha_n \langle f(x) - x, j(x_{n+1} - x) \rangle + \frac{\gamma_n}{2} \|e_n - x\|^2. \end{aligned}$$

It follows that

$$\|x_{n+1} - x\|^{2} \leq (1 - \alpha_{n}(1 - \kappa)) \|x_{n} - x\|^{2} + 2\alpha_{n} \langle f(x) - x, j(x_{n+1} - x) \rangle + \gamma_{n} \|e_{n} - x\|^{2}$$

Using Lemma 2.3, we find from the restrictions (a) and (b) that

$$\lim_{n\to\infty}\|x_n-x\|=0.$$

This completes the proof.

Remark 3.2 The framework of the space in Theorem 3.1 can be applicable to L^p , $p \ge 2$.

4 Applications

In this section, we always assume that E is a uniformly convex and 2-uniformly smooth Banach space. Let C be a nonempty, closed and convex subset of E.

First, we consider common fixed points of two strict pseudocontractions.

Theorem 4.1 Let *E* be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant *K*, and let *C* be a nonempty closed convex subset of *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C*, and let $T : C \to C$ be an α -strict pseudocontraction. Let $S : C \to C$ be a λ -strict pseudocontraction. Assume that $F := F(S) \cap F(T) \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be real number sequences in (0,1). Suppose that $x_1 = x \in C$ and that $\{x_n\}$ is given by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) \big[\mu S_t x_n + (1 - \mu) \big((1 - \alpha) x_n + \alpha T x_n \big) \big], \quad n \ge 1,$$

where $S_t = (1-t)x + tSx$, $t \in (0, \frac{\lambda}{K^2}]$, $f : C \to C$ is a κ -contractive mapping, $\{e_n\}$ is a bounded computational error in E, $\lambda \in (0, \alpha/K^2]$ and $\mu \in (0, 1)$. Assume that the following restrictions are satisfied:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$;
- (b) $\sum_{n=1}^{\infty} \gamma_n < \infty$.

Then $\{x_n\}$ converges strongly to $x = Q_F f(x)$, where Q_F is a sunny nonexpansive retraction from *C* onto *F*.

Proof Since (I - T) is an α -inverse strongly accretive mapping, we find from Theorem 3.1 the desired conclusion.

Closely related to the class of pseudocontractive mappings is the class of accretive mappings. Recall that an operator B with domain D(B) and range R(B) in E is accretive if for

each $x_i \in D(B)$ and $y_i \in Bx_i$ (i = 1, 2),

$$\langle y_2-y_1,J(x_2-x_1)\rangle \geq 0.$$

An accretive operator *B* is *m*-accretive if R(I + rB) = E for each r > 0. Next, we assume that *B* is *m*-accretive and has a zero (*i.e.*, the inclusion $0 \in B(z)$ is solvable). The set of zeros of *B* is denoted by Ω . Hence,

$$\Omega = \{z \in D(B) : 0 \in B(z)\} = B^{-1}(0).$$

For each r > 0, we denote by J_r the resolvent of B, *i.e.*, $J_r = (I + rB)^{-1}$. Note that if B is *m*-accretive, then $J_r : E \to E$ is nonexpansive and $F(J_r) = \Omega$ for all r > 0.

From the above, we have the following theorem.

Theorem 4.2 Let *E* be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant *K*, and let *C* be a nonempty, closed and convex subset of *E*. Let Q_C be a sunny nonexpansive retraction from *E* onto *C*, and let $A : C \to E$ be an α -inverse strongly accretive mapping. Let $B : C \to C$ be an *m*-accretive operator. Assume that F := $A^{-1}(0) \cap B^{-1}(0) \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be real number sequences in (0, 1). Suppose that $x_1 = x \in C$ and that $\{x_n\}$ is given by

$$x_{n+1} = \alpha_n f(x_n) + \beta_n \left[\mu J_r x_n + (1-\mu)(x_n - \lambda A x_n) \right] + \gamma_n Q_C e_n, \quad n \ge 1,$$

where $J_r = (I + rB)^{-1}$, $f : C \to C$ is a κ -contractive mapping, $\{e_n\}$ is a bounded computational error in $E, \lambda \in (0, \alpha/K^2]$ and $\mu \in (0, 1)$. Assume that the following restrictions are satisfied:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$;
- (b) $\sum_{n=1}^{\infty} \gamma_n < \infty$.

Then $\{x_n\}$ converges strongly to $x = Q_E f(x)$, where Q_F is a sunny nonexpansive retraction from *C* onto *F*.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this manuscript. All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Physics, North China Electric Power University, Baoding, 071003, China. ²School of Mathematics and Sciences, Shijiazhuang University of Economics, Shijiazhuang, 050031, China.

Acknowledgements

The authors are grateful to the reviewers for useful suggestions which improved the contents of this paper.

Received: 16 March 2014 Accepted: 21 May 2014 Published: 29 May 2014

References

- 1. Zegeye, H, Shahzad, N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory **2**, 374-397 (2012)
- Cho, SY, Kang, SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 32, 1607-1618 (2012)
- 3. Qin, X, Su, Y: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329, 415-424 (2007)
- 4. Qin, X, Shang, M, Su, Y: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Model. 48, 1033-1046 (2008)

- liduka, H, Takahashi, W: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61, 341-350 (2005)
- Lv, S, Wu, C: Convergence of iterative algorithms for a generalized variational inequality and a nonexpansive mapping. Eng. Math. Lett. 1, 44-57 (2012)
- 7. Wu, C: Strong convergence theorems for common solutions of variational inequality and fixed point problems. Adv. Fixed Point Theory **4**, 229-244 (2014)
- 8. Wu, C, Liu, A: Strong convergence of a hybrid projection iterative algorithm for common solutions of operator equations and of inclusion problems. Fixed Point Theory Appl. **2012**, Article ID 90 (2012)
- 9. Wu, C: Wiener-Hope equations methods for generalized variational inequalities. J. Nonlinear Funct. Anal. 2013, Article ID 3 (2013)
- 10. Qin, X, Chang, SS, Cho, YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 11, 2963-2972 (2010)
- Bnouhachem, A: On LQP alternating direction method for solving variational inequality problems with separable structure. J. Inequal. Appl. 2014, Article ID 80 (2014)
- 12. Qin, X, Cho, SY, Wang, L: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. **2014**, Article ID 75 (2014)
- 13. Chen, JH: Iterations for equilibrium and fixed point problems. J. Nonlinear Funct. Anal. 2013, Article ID 4 (2013)
- 14. Guan, WB: An iterative method for variational inequality problems. J. Inequal. Appl. 2013, Article ID 574 (2013)
- 15. Qin, X, Cho, SY, Kang, SM: Convergence of an iterative algorithm for systems of variational inequalities and
- nonexpansive mappings with applications. J. Comput. Appl. Math. 233, 231-240 (2009)
- He, R: Coincidence theorem and existence theorems of solutions for a system of Ky Fan type minimax inequalities in FC-spaces. Adv. Fixed Point Theory 2, 47-57 (2012)
- 17. Cho, SY, Qin, X: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems. Appl. Math. Comput. 235, 430-438 (2014)
- Luo, H, Wang, Y: Iterative approximation for the common solutions of an infinite variational inequality system for inverse-strongly accretive mappings. J. Math. Comput. Sci. 2, 1660-1670 (2012)
- 19. Wang, ZM, Lou, W: A new iterative algorithm of common solutions to quasi-variational inclusion and fixed point problems. J. Math. Comput. Sci. **3**, 57-72 (2013)
- 20. Lv, S: Strong convergence of a general iterative algorithm in Hilbert spaces. J. Inequal. Appl. 2013, Article ID 19 (2013)
- 21. Cho, SY, Qin, X, Wang, L: Strong convergence of a splitting algorithm for treating monotone operators. Fixed Point Theory Appl. 2014, Article ID 94 (2014)
- Hao, Y: On variational inclusion and common fixed point problems in Hilbert spaces with applications. Appl. Math. Comput. 217, 3000-3010 (2010)
- 23. Kim, KS, Kim, JK, Lim, WH: Convergence theorems for common solutions of various problems with nonlinear mapping. J. Inequal. Appl. 2014, Article ID 2 (2014)
- 24. Wang, G, Sun, S: Hybrid projection algorithms for fixed point and equilibrium problems in a Banach space. Adv. Fixed Point Theory **3**, 578-594 (2013)
- Cho, SY, Li, W, Kang, SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013, Article ID 199 (2013)
- Hao, Y: Strong convergence of an iterative method for inverse strongly accretive operators. J. Inequal. Appl. 2008, Article ID 420989 (2008)
- 27. Reich, S: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57-70 (1973)
- Kitahara, S, Takahashi, W: Image recovery by convex combinations of sunny nonexpansive retractions. Topol. Methods Nonlinear Anal. 2, 333-342 (1993)
- 29. Aoyama, K, Iiduka, H, Takahashi, W: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, Article ID 35390 (2006)
- Liu, LS: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114-125 (1995)
- 31. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- 32. Bruck, RE: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251-262 (1973)
- Zhou, H: Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 69, 3160-3173 (2008)
- 34. Qin, X, Cho, SY, Wang, L: Iterative algorithms with errors for zero points of *m*-accretive operators. Fixed Point Theory Appl. 2013, Article ID 148 (2013)

10.1186/1029-242X-2014-215

Cite this article as: Yu and Song: Strong convergence theorems for solutions of fixed point and variational inequality problems. *Journal of Inequalities and Applications* 2014, 2014:215