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1 Introduction
The homotopy operator T and projection operator H defined on differential forms are
two critical operators which have been very well studied and used in recent years, see
[–]. In many situations, we need to deal with the composition T ◦ H of the homotopy
operator T and the projection operator H . For example, when we consider the decompo-
sition of H(u), we have to face the composition T ◦ H . The study of the composition T ◦ H
of homotopy and projection operators was initiated by Ding and Liu in  in [] and
[], respectively, where they investigated singular integrals of this composite operator and
established some Lp inequalities for the composite operator T ◦ H with singular factors.
Later, in , Bi and Ding proved some Lϕ-estimates for this composite operator T ◦ H
in [], where ϕ satisfies the G(p, q, C) condition. The purpose of this paper is to establish
the Lϕ-embedding theorems for the composition T ◦ H applied to differential forms, here
ϕ satisfies the NG(p, q) condition. If we choose ϕ(t) = tp, the Lϕ-norm inequalities reduce
to Lp-norm inequalities. Our main Lϕ-embedding inequality for the composite operator
can be simply stated as

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�) ≤ C‖u‖Lϕ (�), (.)

where � is any bounded domain in R
n, n ≥ , ϕ : [,∞) → [,∞) with ϕ() =  is a Young

function satisfying certain conditions described later, and C is a constant independent
of the differential form u. In order to establish the above main Lϕ-embedding inequality,
we also prove the Poincaré inequality and some inequalities with Lϕ-norm for the related
compositions of operators.
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We keep using the traditional notations throughout this paper. Let B and σB be the balls
with the same center and diam(σB) = σ diam(B). Let |E| be the n-dimensional Lebesgue
measure of a set E ⊆R

n. In this paper, we treat a ball same as a cube and use uB = 
|B|

∫

B u dx
to denote the average of a function u. Let ∧l = ∧l(Rn) be the set of all l-forms in R

n,
D′(�,∧l) be the space of all differential l-forms in �, and Lp(�,∧l) be the l-forms u(x) =
∑

I uI(x) dxI in � satisfying
∫

�
|uI |p < ∞ for all ordered l-tuples I , l = , , . . . , n. We denote

the exterior derivative by d and the Hodge star operator by �.
The definition of the operator Ky with the case y =  and its generalized version can

be found in [, ]. To each y ∈ � there corresponds a linear operator Ky : C∞(�,∧l) →
C∞(�,∧l–) defined by (Kyω)(x; ξ, . . . , ξl–) =

∫ 
 tl–ω(tx + y– ty; x – y, ξ, . . . , ξl–) dt and the

decomposition ω = d(Kyω) + Ky(dω). A homotopy operator T : C∞(�,∧l) → C∞(�,∧l–)
is defined by averaging Ky over all points y ∈ �: Tω =

∫

�
φ(y)Kyω dy, where φ ∈ C∞

 (�) is
normalized so that

∫

φ(y) dy = . For each differential form u, we have the decomposition

u = d(Tu) + T(du) (.)

and

∥
∥∇(Tu)

∥
∥

p,B ≤ C|B|‖u‖p,B and ‖Tu‖p,B ≤ C|B|diam(B)‖u‖p,B. (.)

From [], p., we know that any open subset � in R
n is the union of a sequence of cubes

Qk , whose sides are parallel to the axes, whose interiors are mutually disjoint, and whose
diameters are approximately proportional to their distances from F , where F is the com-
plement of � in R

n. Specifically, (i) � =
⋃∞

k= Qk , (ii) Q
j ∩Q

k = φ if j �= k, (iii) there exist two
constants c, c >  (we can take c = , and c = ), so that c diam(Qk) ≤ distance(Qk , F) ≤
c diam(Qk). Thus, the definition of the homotopy operator T can be generalized to any
domain � in R

n: For any x ∈ �, x ∈ Qk for some k. Let TQk be the homotopy operator
defined on Qk (each cube is bounded and convex). Thus, we can define the homotopy op-
erator T� on any domain � by T� =

∑∞
k= TQk χQk (x). The nonlinear partial differential

equation for differential forms

d�A(x, du) = B(x, du) (.)

is called a non-homogeneous A-harmonic equation, where A : � × ∧l(Rn) → ∧l(Rn) and
B : � × ∧l(Rn) → ∧l–(Rn) satisfy the conditions:

∣
∣A(x, ξ )

∣
∣ ≤ a|ξ |p–, A(x, ξ ) · ξ ≥ |ξ |p and

∣
∣B(x, ξ )

∣
∣ ≤ b|ξ |p– (.)

for x ∈ � a.e. and all ξ ∈ ∧l(Rn). Here p >  is a constant related to the equation (.), and
a, b > . See [–] for recent results on the A-harmonic equations and related topics. As-
sume that ∧l� is the lth exterior power of the cotangent bundle, C∞(∧l�) is the space of
smooth l-forms on � andW(∧l�) = {u ∈ L

loc(∧l�) : u has generalized gradient}. The har-
monic l-fields are defined by H(∧l�) = {u ∈ W(∧l�) : du = d�u = , u ∈ Lp for some  <
p < ∞}. The orthogonal complement of H in L is defined by H⊥ = {u ∈ L : 〈u, h〉 =
 for all h ∈H}. Then the Green’s operator G is defined as G : C∞(∧l�) →H⊥ ∩C∞(∧l�)
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by assigning G(u) be the unique element of H⊥ ∩ C∞(∧l�) satisfying Poisson’s equation

G(u) = u – H(u), where H is the harmonic projection operator that maps C∞(∧l�) onto
H so that H(u) is the harmonic part of u. See [] for more properties of these operators.

2 Local embedding theorem
The purpose of this section is to prove the local Lϕ-embedding theorem and some related
Lϕ-norm inequalities that will be used to prove the global embedding theorem in the next
section. We first recall the following subclass of Young functions that can be found in
[–].

Definition . A Young function ϕ : [,∞) −→ [,∞) is said to be in the class NG(p, q) if
ϕ satisfies the nonstandard growth condition

pϕ(t) ≤ tϕ′(t) ≤ qϕ(t),  < p ≤ q < ∞. (.)

The first inequality in (.) is equivalent to that ϕ(t)
tp is increasing, and the second inequality

in (.) is equivalent to �-condition, i.e., for each t > , ϕ(t) ≤ Kϕ(t), where K > , and
ϕ(t)
tq is decreasing with t. Also, condition (.) implies that ϕ(t) satisfies

ctp – c ≤ ϕ(t) ≤ c
(

tq + 
)

. (.)

Particularly, ϕ(t) = tp satisfies (.) because of tϕ′(t) = pϕ(t), and this makes inequalities
with the norm ‖ · ‖p become a special case of Theorem .; for more details see [] and
[].

An Orlicz function is a continuously increasing function ϕ : [,∞) → [,∞) with
ϕ() = . The Orlicz space Lϕ(�) consists of all measurable functions f on � such that
∫

�
ϕ( |f |

λ
) dx < ∞ for some λ = λ(f ) > . Lϕ(�) is equipped with the nonlinear Luxemburg

functional

‖f ‖Lϕ (�) = inf

{

λ >  :
∫

�

ϕ

( |f |
λ

)

dx ≤ 
}

.

A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young function, then
‖ · ‖Lϕ (�) defines a norm in Lϕ(�), which is called the Luxemburg norm or Orlicz norm.
For any subset E ⊂ R

n, we use W ,ϕ(E,∧l) to denote the Orlicz-Sobolev space of l-forms
which equals Lϕ(E,∧l) ∩ Lϕ

 (E,∧l) with norm

‖u‖W ,ϕ (E) = ‖u‖W ,ϕ (E,∧l) = diam(E)–‖u‖Lϕ (E) + ‖∇u‖Lϕ (E). (.)

If we choose ϕ(t) = tp, p >  in (.), we obtain the usual Lp-norm for W ,p(E,∧l)

‖u‖W ,p(E) = ‖u‖W ,p(E,∧l) = diam(E)–‖u‖p,E + ‖∇u‖p,E . (.)

Next, we recall some lemmas that will be used in this paper.
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Lemma . [] Let u ∈ D′(B,∧l) and du ∈ Lp(B,∧l+). Then u – uB ∈ L
np

n–p (B,∧l), and

(∫

B
|u – uB| np

n–p dx
) n–p

np
≤ c(n, p)

(∫

B
|du|p dx

) 
p

(.)

for B is a ball or cube in �, l = , , . . . , n –  and  < p < n.

Lemma . [] Suppose ϕ is a continuous function in the class NG(p, q) with q(n–p) < np,
 < p ≤ q < ∞. For any t > , setting

A(t) =
∫ t



(
ϕ(s/q)

s

) n+q
q

ds, K(t) =
(ϕ(t/q))

n+q
q

tn/q . (.)

Then A(t) is a concave function, and there exists a constant C, such that

K(t) ≤ A(t) ≤ CK(t), ∀t > . (.)

Lemma . [] Let u be a differential form satisfying the non-homogeneous A-harmonic
equation (.) in �, σ >  and  < s, t < ∞. Then, there exists a constant C, independent
of u, such that ‖u‖s,B ≤ C|B|(t–s)/st‖u‖t,σB for all balls or cubes B with σB ⊂ �.

We are ready to state our main local Lϕ-embedding theorem as follows, which will be
used to prove the global Lϕ-embedding theorem in the next section.

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  <
p ≤ q < ∞. � be a bounded domain, u ∈ Lp(�,∧l) be a solution of the non-homogeneous
A-harmonic equation, T be the homotopy operator and H be the projection operator. If
ϕ(|u|) ∈ L

loc(�), then there exists a constant C, independent of u, such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

B

∥
∥

W ,ϕ (B,∧l) ≤ C|B|‖u‖Lϕ (σB) (.)

for all balls B with σB ⊂ �, where σ >  is a constant.

In order to prove the above local Lϕ-embedding theorem, we need to prove some local
Lϕ-norm inequalities. We begin with the following Poincaré-type inequality with Lϕ-norm
first.

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  < p ≤
q < ∞, � be a bounded domain, u ∈ Lp(�,∧l), T be the homotopy operator and H be the
projection operator. If ϕ(|u|) ∈ L

loc(�), then there exists a constant C, independent of u,
such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

B

∥
∥

Lϕ (B) ≤ C|B|‖u‖Lϕ (B) (.)

for all balls B ⊂ �.
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Proof First, we consider the case  < p < n. By assumption, we have q < np
n–p . Using the

Poincaré-type inequality, Lemma . to differential forms T(H(u))

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
np/(n–p) dx

)(n–p)/np

≤ C

(∫

B

∣
∣d

(

T
(

H(u)
))∣

∣
p dx

)/p

, (.)

we find that

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

)/q

≤ C

(∫

B

∣
∣d

(

T
(

H(u)
))∣

∣
p dx

)/p

. (.)

It is well known that, for any differential form u, d(T(u)) = uB and ‖uB‖p,B ≤ C‖u‖p,B.
Hence,

(∫

B

∣
∣d

(

T
(

H(u)
))∣

∣
p dx

)/p

≤ C

(∫

B

∣
∣H(u)

∣
∣
p dx

)/p

. (.)

Note that

∥
∥
G(u)

∥
∥

p,B =
∥
∥
(

d�d + dd�
)

G(u)
∥
∥

p,B ≤ C‖u‖p,B.

We have

∥
∥H(u)

∥
∥

p,B =
∥
∥u – 
G(u)

∥
∥

p,B

≤ ‖u‖p,B +
∥
∥
G(u)

∥
∥

p,B

≤ C‖u‖p,B. (.)

Combining (.), (.), and (.), we obtain

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

)/q

≤ C

(∫

B
|u|p dx

)/p

(.)

for  < p < n. Next, for the case of p ≥ n, since the Lp-norm of |T(H(u)) – (T(H(u)))B|
increases with p and np

n–p → ∞ as p → n. Then, there exists  < p < n such that q < np
n–p

.
Hence, it follows that

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

)/q

≤
(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
np/(n–p) dx

)(n–p)/np

≤ C

(∫

B

∣
∣d

(

T
(

H(u)
))∣

∣
p dx

)/p

≤ C

(∫

B

∣
∣d

(

T
(

H(u)
))∣

∣
p dx

)/p

≤ C

(∫

B
|u|p dx

)/p

. (.)
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Hence, from (.) and (.), we obtain

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

)/q

≤ C

(∫

B
|u|p dx

)/p

(.)

for any p > . Using the Hölder inequality with  = q
n+q + n

n+q , we obtain

∫

B
ϕ
(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
)

dx

=
∫

B

ϕ(|T(H(u)) – (T(H(u)))B|)
|T(H(u)) – (T(H(u)))B| nq

n+q

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣

nq
n+q dx

≤
(∫

B

ϕ(|T(H(u)) – (T(H(u)))B|) n+q
q

|T(H(u)) – (T(H(u)))B|n dx
) q

n+q

×
(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

.

Applying Lemma . and noticing A(t) is a concave function, we obtain

∫

B
ϕ
(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
)

dx

≤
(∫

B
K

(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q)dx

) q
n+q

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

≤
(∫

B
A

(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q)dx

) q
n+q

(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

≤ A
q

n+q

(∫

B

(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q)dx

)(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

≤ C(n, q)K
q

n+q

(∫

B

(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q)dx

)

×
(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

= C(n, q)
ϕ((

∫

B(|T(H(u)) – (T(H(u)))B|q) dx)/q)

(
∫

B(|T(H(u)) – (T(H(u)))B|q) dx)
n

n+q

×
(∫

B

∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q dx

) n
n+q

= C(n, q)ϕ
((∫

B

(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
q)dx

)/q)

. (.)

Note that ϕ is increasing and satisfies 
-condition, substituting (.) into (.) gives

∫

B
ϕ
(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
)

dx ≤ Cϕ

((∫

B
|u|p dx

)/p)

. (.)
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Let h(t) =
∫ t


ϕ(s)

s ds. From (.) we know that ϕ(t)/tq is decreasing with t, thus,

h(t) =
∫ t



ϕ(s)
s

ds =
∫ t



ϕ(s)
sq sq– ds ≥ ϕ(t)/tq 

q
sq

∣
∣
∣
∣

t


=


q
ϕ(t).

Similarly, using the fact that ϕ(t)/tp is increasing with t, we have h(t) ≤ 
pϕ(t). Therefore,


q
ϕ(t) ≤ h(t) ≤ 

p
ϕ(t). (.)

Let g(t) = h(t/p), then (h(t/p))′ = 
p

ϕ(t/p)
t is increasing. Hence, g is a convex function. From

the definitions of g and h and using Jensen’s inequality to g , we have

h
((∫

B
|u|p dx

)/p)

= g
(∫

B
|u|p dx

)

≤
∫

B
g
(|u|p)dx =

∫

B
h
(|u|)dx. (.)

Combining (.), (.), and (.), we have

∫

B
ϕ
(∣
∣T

(

H(u)
)

–
(

T
(

H(u)
))

B

∣
∣
)

dx

≤ Cϕ

((∫

B
|u|p dx

)/p)

≤ Ch
((∫

B
|u|p dx

)/p)

≤ C

∫

B
h
(|u|)dx

≤ C

∫

B
ϕ
(|u|)dx,

which indicates (.) holds. We have completed the proof of Theorem .. �

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  <
p ≤ q < ∞, � be a bounded domain, u ∈ Lp(�,∧l) be a solution of the non-homogeneous
A-harmonic equation, T be the homotopy operator and H be the projection operator. If
ϕ(|u|) ∈ L

loc(�), then there exists a constant C, independent of u, such that

∥
∥TdTH(u)

∥
∥

Lϕ (B) ≤ C|B|‖u‖Lϕ (σB)

for all balls B with σB ⊂ �, where σ >  is a constant.

Proof For any differential form u, we have ‖dT(u)‖q,B = ‖uB‖q,B ≤ C‖u‖q,B. From (.)
and (.), it follows that

∥
∥TdTH(u)

∥
∥

q,B ≤ C|B|diam(B)
∥
∥dTH(u)

∥
∥

q,B

= C|B|diam(B)
∥
∥H(u)

∥
∥

q,B

= C|B|diam(B)‖u‖q,B. (.)
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By Lemma . and p, q > , we have

‖u‖q,B ≤ C|B|(p–q)/pq‖u‖p,σB, (.)

where σ > . Combining (.) and (.) yields

∥
∥TdTH(u)

∥
∥

q,B ≤ C|B|(p–q)/pq‖u‖p,σB. (.)

From the Hölder inequality with  = q
n+q + n

n+q , we find that

∫

B
ϕ
(∣
∣TdTH(u)

∣
∣
)

dx

=
∫

B
ϕ
(∣
∣TdTH(u)

∣
∣
)(∣

∣TdTH(u)
∣
∣
)– nq

n+q
(∣
∣TdTH(u)

∣
∣
) nq

n+q dx

≤
(∫

B

ϕ(|TdTH(u)|) n+q
q

|TdTH(u)|n dx
) q

n+q
(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

.

Using Lemma . and noticing A(t) is a concave function, we obtain

∫

B
ϕ
(∣
∣TdTH(u)

∣
∣
)

dx

≤
(∫

B
K

(∣
∣TdTH(u)

∣
∣
q)dx

) q
n+q

(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

≤
(∫

B
A

(∣
∣TdTH(u)

∣
∣
q)dx

) q
n+q

(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

≤ A
q

n+q

(∫

B

(∣
∣TdTH(u)

∣
∣
q)dx

)(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

≤ CK
q

n+q

(∫

B

(∣
∣TdTH(u)

∣
∣
q)dx

)(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

= C
ϕ((

∫

B(
∣
∣TdTH(u)

∣
∣
q) dx)/q)

(
∫

B(|TdTH(u)|q) dx)
n

n+q

(∫

B

∣
∣TdTH(u)

∣
∣
q dx

) n
n+q

= Cϕ

((∫

B

(∣
∣TdTH(u)

∣
∣
q)dx

)/q)

. (.)

Since ϕ is increasing and satisfies 
-condition, substituting (.) into (.), we have

∫

B
ϕ
(∣
∣TdTH(u)

∣
∣
)

dx ≤ Cϕ

((∫

σB
|u|p dx

)/p)

. (.)

Starting from (.) and using the same discussion as we did in the proof of Theorem .,
we obtain

∫

B
ϕ
(∣
∣TdTH(u)

∣
∣
)

dx ≤ C
∫

σB
ϕ
(|u|)dx.

We have completed the proof of Theorem .. �
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From (.) and (.), we have

∥
∥∇TdTH(u)

∥
∥

q,B ≤ C|B|∥∥dTH(u)
∥
∥

q,B

= C|B|∥∥(

H(u)
)

B

∥
∥

q,B

≤ C|B|∥∥H(u)
∥
∥

q,B

≤ C|B|‖u‖q,B. (.)

Using (.) and the similar techniques to the ones developed in the proof of Theorem .,
we obtain the following Lϕ-norm estimate.

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  < p ≤
q < ∞, � be a bounded domain, and u ∈ Lp(�,∧l) be a solution of the non-homogeneous
A-harmonic equation, T be the homotopy operator and H be the projection operator. If
ϕ(|u|) ∈ L

loc(�), then there exists a constant C, independent of u, such that

∥
∥∇TdTH(u)

∥
∥

Lϕ (B) ≤ C|B|‖u‖Lϕ (σB) (.)

for all balls B with σB ⊂ �, where σ >  is a constant.

Proof of Theorem . By definition (.), Theorem . and Theorem ., we have

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

B

∥
∥

W ,ϕ (B,∧l)

=
∥
∥TdTH(u)

∥
∥

W ,ϕ (B,∧l)

= diam(B)–∥∥TdTH(u)
∥
∥

Lϕ (B) +
∥
∥∇TdTH(u)

∥
∥

Lϕ (B)

≤ diam(B)–C|B|diam(B)‖u‖Lϕ (σB) + C|B|‖u‖Lϕ (σB)

≤ C|B|‖u‖Lϕ (σB), (.)

where σ = max{σ,σ}. We have completed the proof of Theorem .. �

3 Global embedding theorem
In this section, we prove our main result, the global Lϕ-embedding theorem for the so-
lutions of the non-homogeneous A-harmonic equation. We will use the following well-
known covering lemma.

Lemma . Each domain � has a modified Whitney cover of cubes V = {Qi} such that

⋃

i

Qi = �,
∑

Qi∈V
χ√


 Qi

≤ Nχ�

and some N > , and if Qi ∩ Qj �= ∅, then there exists a cube R (this cube need not be a
member of V) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR. Moreover, if � is δ-John, then there is a
distinguished cube Q ∈ V which can be connected with every cube Q ∈ V by a chain of cubes
Q, Q, . . . , Qk = Q from V and such that Q ⊂ ρQi, i = , , , . . . , k, for some ρ = ρ(n, δ).
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We are ready to prove the following global Lϕ-embedding theorem with the Lϕ-norm
now.

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  < p ≤
q < ∞, u ∈ Lp(�,∧l) be a solution of the non-homogeneous A-harmonic equation, T be the
homotopy operator and H be the projection operator. If ϕ(|u|) ∈ L(�), then there exists a
constant C, independent of u, such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�,∧l) ≤ C‖u‖Lϕ (�) (.)

for a bounded domain � ⊂R
n.

Proof From the Lemma . and Theorem ., we have

∥
∥∇Td

(

T
(

H(u)
))∥

∥
Lϕ (�) ≤

∑

B∈V

∥
∥∇Td

(

T
(

H(u)
))∥

∥
Lϕ (B)

≤
∑

B∈V

(

C|B|‖u‖Lϕ (σB)
)

≤ CN‖u‖Lϕ (�)

≤ C‖u‖Lϕ (�). (.)

Similarly, from Theorem . and Lemma ., it follows that

∥
∥Td

(

T
(

H(u)
))∥

∥
Lϕ (�) ≤

∑

B∈V

∥
∥Td

(

T
(

H(u)
))∥

∥
Lϕ (B)

≤
∑

B∈V

(

C diam(B)‖u‖Lϕ (σB)
)

≤ C diam(�)N‖u‖Lϕ (�)

≤ C diam(�)‖u‖Lϕ (�). (.)

Using (.), (.), and (.), we find that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�)

=
∥
∥Td

(

T
(

H(u)
))∥

∥
W ,ϕ (�)

=
(

diam(�)
)–∥

∥Td
(

T
(

H(u)
))∥

∥
Lϕ (�) +

∥
∥∇Td

(

T
(

H(u)
))∥

∥
Lϕ (�)

≤ (

diam(�)
)–(C diam(�)‖u‖Lϕ (�)

)

+ C‖u‖Lϕ (�)

≤ C‖u‖Lϕ (�). (.)

We have completed the proof of Theorem .. �

Choosing ϕ(t) = tp logα
+ t in Theorems ., we have the following embedding inequality

with the Lp(logα
+ L)-norms.
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Corollary . Let ϕ(t) = tp logα
+ t, p ≥ , α ∈ R, u ∈ Lp(�,∧l) be a solution of the non-

homogeneous A-harmonic equation, T be the homotopy operator, and H be the projection
operator. If ϕ(|u|) ∈ L(�), then there exists a constant C, independent of u, such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,tp logα+ t (�) ≤ C‖u‖Ltp logα+ t (�) (.)

for any bounded domain �.

Let ϕ(t) = tp in Theorem .. Then, we obtain the following version of the embedding
inequality with Lp-norms.

Corollary . Let ϕ(t) = tp, p ≥ , u ∈ Lp(�,∧l) be a solution of the non-homogeneous
A-harmonic equation, T be the homotopy operator, and H be the projection operator. If
ϕ(|u|) ∈ L(�), then there exists a constant C, independent of u, such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,p(�) ≤ C‖u‖p,�

holds for any bounded domain �.

Similarly, Theorem . can be extended into the following global Poincaré-type inequal-
ity with Lϕ-norm.

Theorem . Let ϕ be a Young function in the class NG(p, q) with q(n – p) < np,  < p ≤
q < ∞, u ∈ Lp(�,∧l) be a solution of the non-homogeneous A-harmonic equation, T be the
homotopy operator and H be the projection operator. If ϕ(|u|) ∈ L(�), then there exists a
constant C, independent of u, such that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

Lϕ (�) ≤ C diam(�)‖u‖Lϕ (�) (.)

for any bounded domain �.

Proof From (.) and Theorem ., we have

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

Lϕ (�)

= diam(�)
((

diam(�)
)–∥

∥T
(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

Lϕ (�)

)

≤ diam(�)
((

diam(�)
)–∥

∥T
(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

Lϕ (�)

+
∥
∥∇(

T
(

H(u)
)

–
(

T
(

H(u)
))

�

)∥
∥

Lϕ (�)

)

= C diam(�)
∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�,∧l)

≤ C diam(�)‖u‖Lϕ (�).

We have completed the proof of Theorem .. �
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4 Applications
As applications of our main results established in the previous sections, we consider the
following examples.

Example . Assume that r >  and k >  are any constants and � = {(x, x, x) : x
 + x

 +
x

 ≤ r} ⊂R
. Consider the -form

u(x, x, x) =
x

k + x
 + x

 + x


dx +
x

k + x
 + x

 + x


dx +
x

k + x
 + x

 + x


dx (.)

defined in �. It is easy to check that du = . Hence, u is a solution of the non-homogeneous
A-harmonic equation (.) for any operators A and B satisfying (.). Also, it can be cal-
culated that

|u| =
((

x

k + x
 + x

 + x


)

+
(

x

k + x
 + x

 + x


)

+
(

x

k + x
 + x

 + x


))/

=
(

x
 + x

 + x


(k + x
 + x

 + x
)

)/

< . (.)

Using (.) and (.), we find that

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�) ≤ C‖u‖Lϕ (�) ≤ C‖‖Lϕ (�),

that is,

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�) ≤ C

∫

�

ϕ

(

λ

)

dx ≤ Cr.

We should notice that the above example can be extended to the case of Rn. Specifically,
we can check that the -form defined in R

n

u(x, . . . , xn) =
n

∑

i=

xi

k + x
 + · · · + x

n
dxi, k >  (.)

is a solution of the non-homogeneous A-harmonic equation (.) for any operators A and
B satisfying (.). Hence, Theorem . is applicable to u(x, . . . , xn) as we did in Example ..
Finally, we consider the following example in R

.

Example . Let � = {(x, y, z) : x + y + z ≤ } ⊂R
 and u(x, y, z) be defined in R

 by

u(x, y, z) = ex+y+z
(x dx + y dy + z dz).

It is easy to check that du = . Hence, u is a solution of the non-homogeneous A-harmonic
equation (.) for any operators A and B satisfying (.) in R

. For any bounded do-
main � in R

, it would be very complicated if we calculate the integral ‖T(H(u)) –
(T(H(u)))�‖W ,ϕ (�) directly. However, using the embedding inequality (.), we can easily
obtain the upper bound of the norm ‖T(H(u)) – (T(H(u)))�‖W ,ϕ (�) as follows. We notice
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that

∣
∣u(x, y, z)

∣
∣ =

((

ex+y+z
x
) +

(

ex+y+z
y
) +

(

ex+y+z
z
))/

=
(

e(x+y+z)(x + y + z))/

≤ (

e · 
)/ = e. (.)

From (.) and (.), we have

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�) ≤ C‖u‖Lϕ (�) ≤ C‖e‖Lϕ (�),

which is equal to

∥
∥T

(

H(u)
)

–
(

T
(

H(u)
))

�

∥
∥

W ,ϕ (�) ≤ C

∫

�

ϕ

(
e
λ

)

dx ≤ C.

Remark (i) From inequalities (.), (.), and (.), we find that the compositions TH ,
TdTH and ∇TdTH are bounded operators on Lp(�,∧l). (ii) Note that our global embed-
ding theorem holds on any bounded domains. Hence, the theorem is true if � is one of
the bounded John domains, Lp-averaging domains or Lϕ(μ)-averaging domains. See [,
, ] for more properties of these kinds of domains.
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