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Abstract
In this paper, we introduce a class of bivariate means generated by an integral of a
continuous increasing function on (0, +∞). This class of means widens the spectrum
of possible means and leads to many easy and interesting mean-inequalities. We
show that this class of means characterizes the large class of homogeneous
symmetric monotone means.
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1 Introduction
In recent few years, many authors have introduced plenty of classes of bivariate means in
terms of functions or integrals of functions; see, for instance, [–]. Most of these classes
of means require very specific assumptions and/or conditions on the function, which in
fact restricts the range of the underlined class of means. In this paper, we also introduce a
class of bivariate means defined as an integral of functions, where the underlying function
is just continuous and increasing on (,∞), which is not restrictive and so gives much
more possibilities to define new means and new mean-inequalities.

The main result of the paper is a characterization result; in fact, we show that our class
of means characterizes a large class of means, the class of homogeneous symmetric mono-
tone means.

The paper is organized as follows: Section  is devoted to the introduction of the new
class of means with some examples. In Section , we focus ourselves on comparison re-
sults, that is, on how we could obtain mean-inequalities of interest using this new formu-
lation. In the last section, we prove a characterization result; in fact, we show that every
homogeneous symmetric strict monotone mean can be seen as an element of our class of
means.

Before starting the next section, let us recall some basic definitions and examples about
bivariate means. By a (bivariate) mean we understand a function m defined on (,∞) ×
(,∞) that satisfies the following double inequality:

∀a, b > , min(a, b) ≤ m(a, b) ≤ max(a, b). (.)

A mean is said to be strict if the inequalities in (.) are both strict for all a �= b. A con-
tinuous (resp. symmetric/homogeneous) mean is defined as usual; see, for instance, [].
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Standard examples of such means are the following:

A := A(a, b) =
a + b


; G := G(a, b) =

√
ab; H := H(a, b) =

ab
a + b

;

S := S(a, b) =
(√

a +
√

b


)

; L := L(a, b) =
b – a

ln b – ln a
, L(a, a) = a;

Q := Q(a, b) =
√

a + b


; C := C(a, b) =

a + b

a + b
,

which are known in the literature as the arithmetic mean, geometric mean, harmonic
mean, square-root mean, logarithmic mean, quadratic (or root-square) mean, and contra-
harmonic mean, respectively. For more examples and details about bivariate means and
their applications, we refer the reader to [] and the references therein.

An interesting example of nonsymmetric homogeneous mean is the so-called Schwab-
Borchardt mean, denoted by SB, and defined as [, ]

SB := SB(a, b) =

⎧⎨
⎩

√
b–a

cos–(a/b) if  < a < b,
√

a–b

cosh–(a/b) if a > b,
(.)

with SB(a, a) = a. This nonsymmetric mean stems its importance in the fact that it includes
a lot of symmetric means in the sense that

L = SB(A, G), P = SB(G, A), T = SB(A, Q), M = SB(Q, A),

where

P := P(a, b) =
a – b

 tan–(
√

a/b) – π
=

a – b
 sin–( a–b

a+b )
=

a – b

 tan–(
√

a–
√

b√
a+

√
b

)
, P(a, a) = a;

T := T(a, b) =
a – b

 tan–( a–b
a+b )

=
a – b

 tan–(a/b) – π/
=

a – b
sin–( a–b

a+b )
, T(a, a) = a;

M := M(a, b) =
a – b

 sinh–( a–b
a+b )

, M(a, a) = a;

they are, respectively, known as the first Seiffert mean [], the second Seiffert mean [],
and the Neuman-Sándor mean []. For more details about recent developments for SB,
see, for instance, [, , ]. The previous standard means satisfy the well-known chain of
inequalities

H < G < L < P < A < M < T < Q, (.)

where the notation m < m, between two means m and m, means that m(a, b) < m(a, b)
for all a, b >  with a �= b.

For a homogeneous mean m, we define its associate function φm : (,∞) −→ (,∞) via
the relationship m(a, b) = bm(a/b, ) = bφm(a/b), that is, φm(x) = m(x, ) for all x > . In this
case, (.) yields

x ≤ φm(x) ≤  if  < x ≤ ,  ≤ φm(x) ≤ x if x ≥ . (.)
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A homogeneous mean m is called monotone if φm is increasing on (,∞). In what follows,
if there is no confusion, then we write φ instead of φm. The means A, G, H , S, Q, and L are
monotone, whereas C is not; see [] for more details.

2 A new class of bivariate means
As mentioned before, in the sequel, we introduce and investigate a new class of means
generated by an integral of a function. Let f be a continuous strictly monotonic function
on the open interval (,∞). For every a, b > , we define

mf (a, b) =
b

f (a/b) – f ()

∫ f (a/b)

f ()
f –(u) du with mf (a, a) = a. (.)

Proposition . For any continuous and strictly monotonic function f on (, +∞), the bi-
nary map mf defined by (.) is a homogeneous bivariate mean.

Proof It is straightforward and therefore omitted here. �

Remark . The mean mf is not always symmetric; see Example . and Example ..
Otherwise, it is not hard to check that mf +c = mf for each constant c and that mα,f =
mf for every α �= . In particular, m–f = mf . Due to this, without loss of generality, we
only consider functions f that are continuous strictly increasing on (,∞) and satisfying
f () = .

In the sequel, we will use the following notations:

C
↑(,∞) =

{
f : (,∞) −→ f (,∞) : f is continuous and strictly increasing

}

and

C
↑(,∞) =

{
f ∈ C

↑(,∞) : f is continuously differentiable
}

.

The following result gives other equivalent forms of mf .

Proposition . Let f ∈ C
↑(,∞) be such that f () = . Then the following assertions

hold:
(i) For all a, b > , we have

mf (a, b) = b
∫ 


f –(tf (a/b)

)
dt. (.)

(ii) If, moreover, f is differentiable, then we have (for all a, b > , a �= b)

mf (a, b) =
b

f (a/b)

∫ a/b


uf ′(u) du, (.)

mf (a, b) = a –
b

f (a/b)

∫ a/b


f (u) du. (.)
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Proof (i) If in (.) we make the change of variables u = tf (a/b) with  ≤ t ≤ , then we
obtain (.) by simple topics of integration.

(ii) Setting u = f (s) in (.), we obtain (.) after an elementary manipulation. By inte-
gration by parts, (.) follows from (.). �

The previous forms of mf lead to the following regularity result.

Corollary . Let f ∈ C
↑(,∞) be such that f () = . Then the mean mf is continuous

strict monotone.

Proof Since f is continuous and mf is a mean, the continuity of mf follows from (.) with
standard topics of real analysis. The fact that mf is strict monotone follows from (.). The
details are simple and therefore omitted here. �

We now present some examples that illustrate the previous mean mf . The first example
shows that the mean mf includes the standard means A, H , G, and L.

Example .
(i) With f (x) = x – , we easily verify that mf = A. If f (x) = ln x, then mf = L. Letting

f (x) =  – /
√

x, simple computation leads to mf = G, and if f (x) =  – /x, then
mf = H .

(ii) Let f (x) = –/x + . By (.) simple computation leads to (for a, b > , a �= b)

mf (a, b) =
ab

b – a
(ln b – ln a) =

ab
L(a, b)

:= L∗(a, b),

which is the dual logarithmic mean, that is, L∗(a, b) = (L(a–, b–))–.

We now state the following example, which, in its turn, includes a lot of the most inter-
esting standard means.

Example . Let f be defined by f (x) = xp – xq, where p ≥ , q ≤ , and (p, q) �= (, ). It
is easy to see that f ∈ C

↑(,∞) with f () = . By (.), elementary computation leads to
(after all manipulations and reductions)

mf (a, b) =
p(q + )bq(ap+ – bp+) + q(p + )bp(aq+ – bq+)

(p + )(q + )(apbq – aqbp)
:= Wp,q(a, b)

for all a, b > , a �= b, with q �= –. For q = –, we have

Wp,–(a, b) = lim
q→–

Wp,q(a, b) = a
(

p
p + 

+
bp+(ln a – ln b)

ap+ – bp+

)

and, in particular,

W,–(a, b) =



(
a +

bG

AL

)
, (.)

which shows that mf is in general not symmetric. Following Corollary ., Wp,q(a, b)
is continuous and strictly increasing in a and b. The -power mean Wp,q also includes



Raïssouli and Rezgui Journal of Inequalities and Applications  (2016) 2016:217 Page 5 of 19

another example of symmetric power mean in the sense that W,q(a, b) = Dq(a, b) and
Wp,(a, b) = Dp(a, b), where Dr refers to the so-called -power difference mean defined
for all real number r by

{
Dr := Dr(a, b) = r

r+
ar+–br+

ar–br , Dr(a, a) = a,
D– = H , D– = L∗, D–/ = G, D = L, D = A.

Remark . Formula (.) remains true if f is only differentiable on (, ) ∪ (,∞), pro-
vided that the integral

∫ a/b


uf ′(u) du

is well-defined (i.e., convergent as an improper integral).

As already pointed in the Introduction, the Schwab-Borchardt mean SB is of great inter-
est since it includes a lot of symmetric means. Our approach includes, in turn, the mean
SB. The following example explains this latter situation and that of the previous remark.
It also shows that mf is not always symmetric.

Example . Let f be defined by

f (x) = – cos– x if  < x ≤ , f (x) = cosh– x if x ≥ .

Clearly, f is continuous and strictly increasing on (,∞) and differentiable on (, ) ∪
(,∞). By (.) and Remark . we have (for all a, b >  with a �= b)

mf (a, b) =

⎧⎨
⎩

b
– cos–(a/b)

∫ a/b


u√
–u du =

√
b–a

cos–(a/b) if  < a < b,
b

cosh–(a/b)

∫ a/b


u√
u–

du =
√

a–b

cosh–(a/b) if a > b,

that is, mf = SB. It is well-known that SB(a, b) is continuous and strictly monotonic in-
creasing in its variables a and b. This is again immediately confirmed by the previous
Corollary ..

After discussing some examples, we are now in a position to state the following result,
which shows that the mean map f �−→ mf is one-to-one modulus multiplication by posi-
tive real numbers.

Theorem . Let f , g ∈ C
↑(,∞) be such that f () = g() =  and g ′() �= . Then, mf = mg

if and only if f = α · g for some real number α > .

Proof Assume that mf = mg , that is, mf (a, b) = mg(a, b) for all a, b > . By (.) we have
(after simple manipulation)

g(a/b)
∫ a/b


f (u) du = f (a/b)

∫ a/b


g(u) du
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for all a, b > . Setting x = a/b, we then have

g(x)
∫ x


f (u) du = f (x)

∫ x


g(u) du

or, equivalently,

∫ x


f (u) du =

f (x)
g(x)

∫ x


g(u) du

for all x ∈ (, ) ∪ (,∞). Differentiating (with respect to x) both sides of the last equality
we obtain

f (x) =
f ′(x)g(x) – f (x)g ′(x)

(g(x))

∫ x


g(u) du +

f (x)
g(x)

g(x)

and then

(
f ′(x)g(x) – f (x)g ′(x)

)∫ x


g(u) du = 

for all x ∈ (, ) ∪ (,∞). Since g is strictly increasing on (,∞), it is not hard to check that

∀x ∈ (, ) ∪ (,∞),
∫ x


g(u) du > .

It follows that f ′(x)g(x) – f (x)g ′(x) =  or, equivalently,

f ′(x)
f (x)

=
g ′(x)
g(x)

for all x ∈ (, ) ∪ (,∞). By integrating both sides of this last equality, there exist two
constants λ and λ such that

ln
∣∣f (x)

∣∣ =

{
ln |g(x)| + λ if x ∈ (, ),
ln |g(x)| + λ if x ∈ (,∞).

We then deduce that

f (x) =

{
cg(x) if x ∈ (, ),
cg(x) if x ∈ (,∞),

and also f ′(x) =

{
cg ′(x) if x ∈ (, ),
cg ′(x) if x ∈ (,∞)

for some two constants c and c. Since f and g are continuously differentiable on (,∞),
we must have

f ′() = lim
x→–

f ′(x) = cg ′() = lim
x→+

f ′(x) = cg ′(),

which, with g ′() �= , yields c = c := α. In summary, using the fact that f () = g() = , we
have showed that f (x) = α · g(x) for all x ∈ (,∞). Since f and g are both strictly increasing,
we conclude that f = α · g with α > . Conversely, if f = β · g for some β > , then mf =
mβ·g = mg . The proof is finished. �
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3 Mean-inequalities
In the ongoing section we shall state some mean-inequalities that are either new or easy
to obtain using the class of means introduced in the previous section. Despite its general
interest in mathematical analysis, it remains true that the major interest of introducing
new classes of means is the obtention of mean-inequalities.

Let us first recall some topics that will be needed later. The double inequality

h
(

a + b


)
≤ 

b – a

∫ b

a
h(u) du ≤ h(a) + h(b)


(.)

holds for every convex function h : [a, b] −→ R, a < b. If h is concave, then (.) are re-
versed. Such a double inequality is known in the literature as the Hermite-Hadamard in-
equality, (HHI) in short, and is important in mathematical analysis. For further details
about (HHI) and some of its extensions, refinements, and applications, see, for instance,
[–]. It is worth mentioning that if the function h is strictly convex (resp. strictly con-
cave), then (.) are strict (resp. strict and reversed).

Now, we may state the following propositions.

Proposition . Let f ∈ C
↑(,∞) be such that f () = . Then the following assertions hold:

(i) If f is convex, then for all a, b > , we have

a + b


≤ mf (a, b) ≤ bf –
(




f (a/b)
)

, (.)

with reversed inequalities if f is concave.
(ii) If f is convex and differentiable, then, for all a, b > , a �= b, we have

a + b


≤ mf (a, b) ≤ a –
a – b

f (a/b)
f
(

a + b
b

)
, (.)

with reversed inequalities if f is concave.

Proof (i) Assume that f is convex. Since f is strictly increasing, then f – is concave. By
(.) with (.) we then have

b
f –(f ()) + f –(f (a/b))


≤ mf (a, b) ≤ bf –

(
f () + f (a/b)



)
= bf –

(



f (a/b)
)

,

from which the desired double inequality follows.
(ii) follows by combining (.) with (.). �

Similarly, (.) with (.) immediately yields the following result.

Proposition . Let f ∈ C
↑(,∞) be differentiable such that f () = . Assume further that

the map u �−→ uf ′(u) is convex on (,∞). Then, for all a, b > , we have:

a – b

bf (a/b)
f ′

(
a + b

b

)
≤ mf (a, b) ≤ a – b

bf (a/b)
(
af ′(a/b) + bf ′()

)
. (.)
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Remark . If in the previous results the considered functions are strictly convex (resp.
strictly concave), then the associated inequalities are strict (resp. reversed).

Remark . Inequalities (.) become equalities for f (u) = u –  and g(u) = ln u, which
correspond to mf = A and mf (a, b) = L(a, b), respectively. This is because the real function
u �−→ uf ′(u) is linear affine if and only if f (u) = cu + c ln u + c for some constants c, c,
and c to be chosen to ensure f ∈ C

↑(,∞) with f () = , that is, c, c ≥ , c + c �= , and
c + c = .

We now present some examples that illustrate the previous results.

Example . Let f (x) = ln x, which is strictly increasing and strictly concave on (,∞). We
have seen that mf = L. By Proposition . and Remark ., (.) and (.) are here reversed.
After simple computation, (.) gives the known double inequality G < L < A. See also []
for a direct way.

Example . Let f (x) = xp – , for which mf = Dp (see Example .). If  < p < , then
f ∈ C

↑(,∞) and x �−→ xf ′(x) is strictly concave on (,∞). Then (.), with Remark .,
yields

Jp(a, b) :=
p


(a – b)
ap + bp

ap – bp < Dp(a, b) <
p
p (a – b)

(a + b)p

ap – bp := Kp(a, b)

for all a, b >  with a �= b. It is not hard to see that the two binary maps Jp(a, b) and Kp(a, b)
are both means. In particular, simple computations yield J/ = S and K/ = A/S/.

It appears to be interesting to determine convenient conditions on f for which the left-
and right-hand sides of (.) are binary means.

The next result shows that direct comparison of two functions f , g ∈ C
↑(,∞) leads to

inequalities involving mf and mg .

Proposition . Let f , g ∈ C
↑(,∞) be such that f () = g() = . Assume further that f and

g are both differentiable. Then the following assertions hold:
(i) If f (x) < g(x) for all x > , x �= , then, for all a, b > , a �= b, we have

(
f (a/b)

)(a – mf (a, b)
)

<
(
g(a/b)

)(a – mg(a, b)
)
.

(ii) If f ′(x) ≤ g ′(x) for all x > , then, for all a, b > , we have

∣∣f (a/b)
∣∣mf (a, b) ≤ ∣∣g(a/b)

∣∣mg(a, b).

Proof (i) Assume that f (x) < g(x) for all x > , x �= , and let a, b >  with a �= b. Since f (a/b)
and (a/b – ) have the same sign, we have

b
f (a/b)

∫ a/b


f (x) dx <

b
f (a/b)

∫ a/b


g(x) dx. (.)



Raïssouli and Rezgui Journal of Inequalities and Applications  (2016) 2016:217 Page 9 of 19

Since by assumption f (a/b) < g(a/b) and f , g are both increasing and have the same sign,
we have /g(a/b) ≤ /f (a/b). This, together with (.) and

∫ a/b
 f (x) dx > , yields

b
g(a/b)

∫ a/b


f (x) dx ≤ b

f (a/b)

∫ a/b


g(x) dx.

We can then conclude by (.) with a simple manipulation.
(ii) Denote

F∗(y) =
∫ y


f –(u) du, G∗(y) =

∫ y


g–(u) du.

Since f ′(x) ≤ g ′(x) for all x > , we have

(
F∗ ◦ f

)′(x) =
(∫ f (x)


f –(u) du

)′
= xf ′(x)

≤ xg ′(x) =
(∫ g(x)


g–(u) du

)′
=

(
G∗ ◦ g

)′(x).

This, with the help of the classical mean value theorem, implies

∀x > , x �= ,
F∗ ◦ f (x)

x – 
≤ G∗ ◦ g(x)

x – 

since F∗ ◦ f () = G∗ ◦ g() = . It follows that

∀x > , x �= ,
F∗ ◦ f (x)

f (x)
f (x)
x – 

≤ G∗ ◦ g(x)
g(x)

g(x)
x – 

or, equivalently,

∀a, b > , a �= b, mf (a, b) ≤ g(a/b)
f (a/b)

mg(a, b),

from which the desired result follows after simple manipulation. The proof is completed.
�

The following example illustrates the previous proposition.

Example . Let f : (,∞) −→ (–π/,π/) be defined by

f (x) = arctan x –
π


= arctan

x – 
x + 

.

By (.) a simple computation of integral leads to (for all a, b > , a �= b)

mf (a, b) =
b(ln(a + b) –  ln b – ln )

 arctan(a/b) – π/
:= T̃(a, b).

Let g(x) = (/) ln x for which mg = L. It is clear that

f ′(x) = /
(
 + x) ≤ /(x) = g ′(x)
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for all x > . By Proposition .(ii) we have that, for all a, b > , a �= b,

∣∣arctan(a/b) – π/
∣∣T̃(a, b) ≤ 


| ln a – ln b|L(a, b) =

|a – b|


or, equivalently, T̃(a, b) ≤ T(a, b), where T is the second Seiffert mean defined in the In-
troduction.

Proposition . Let f , g ∈ C
↑(,∞) be such that f () = g() = . Then the following asser-

tions are satisfied:
(i) If the composed function g ◦ f – is convex (resp. concave), then mf ≤ mg (resp.

mf ≥ mg ).
(ii) If f is concave and g is convex, then mf ≤ A ≤ mg .

Proof (i) Assume that g ◦ f – is convex. Then we have

g ◦ f –(tf (a/b)
)

= g ◦ f –(( – t)f () + tf (a/b)
) ≤ ( – t)g() + tg(a/b) = tg(a/b).

If we apply g– (which is strictly increasing) to both sides, then we get

f –(tf (a/b)
) ≤ g–(tg(a/b)

)
,

which, by integration over t ∈ (, ) and the help of (.), yields the desired result.
(ii) Let id be the identity map of (,∞). If f is concave (resp. g is convex), then id ◦ f – is

convex (resp. g ◦ id– is convex). To conclude, we apply (i) knowing that mid– = A. �

Remark . If, in the previous proposition, we replace the word ‘convex’ (resp. ‘concave’)
by ‘strictly convex’ (resp. ‘strictly concave’), then all the related inequalities are strict.

The following example illustrates the previous result.

Example . Let f (x) = ln x and g(x) = x – /x. We have seen that mf = L and mg = W,–;
see Example .. For all x > , we have g ◦ f –(x) = g(ex) =  sinh x, which is strictly convex
on (,∞). By Proposition .(i) with Remark . we have L < W,–. On the other hand, it is
easy to see that g is strictly concave on (,∞), and by Proposition .(ii), with Remark .
again, we infer that W,– < A. In summary, we have proved that L < W,– < A. This double
inequality, when combined with (.), yields

L <



(
a +

bG

AL

)
< A.

From the left-hand side of the last double inequality we can deduce an inequality involving
the three means A, G, and L. We omit details about this situation and refer the reader to
Example . for a similar way.

The next corollary can be considered as an example of the previous proposition.
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Corollary . Let f ∈ C
↑(,∞) be such that f () = . Assume that f is bounded below on

(,∞), that is, for all x > , f (x) > –α for some α > . Then we have:

mln((/α)f +) < mf < mα(exp f –). (.)

Proof Since mf = m(/α)f , we can then assume that α = . Now, remark that ln(f + ) and
exp f –  are strictly increasing on (,∞) with (ln(f + ))() = (exp f – )() = . On one
hand, we have

(exp f – ) ◦ f –(x) = exp
(
f ◦ f –(x)

)
–  = ex – ,

which is strictly convex. On the other hand, it is easy to verify that

(
ln(f + )

)–(x) = f –(ex – 
)

and so f ◦ (
ln(f + )

)–(x) = ex – .

The desired double inequality then follows from Proposition .(i) when combined with
Remark .. �

We now state the following example explaining how to use the previous corollary. Al-
though it is a very simple example, we will use it as a good tool for obtaining a symmetric
homogeneous bivariate mean that appears to us to be new.

Example . Let A = mf with f (x) = x –  > – for all x > . Then it is easy to see that
mln(f +) = L and

∀a, b > , a �= b, mexp f –(a, b) =
a – b

 – exp( – a/b)
.

Applying Corollary ., (.) turns to be

∀a, b > , a �= b, L(a, b) < A(a, b) <
a – b

 – exp( – a/b)
. (.)

Now, set

∀a, b > , a �= b, α := α(a, b) =
a – b

 – exp( – a/b)
.

The right-hand side of (.) gives A(a, b) < α(a, b), and by the symmetry of A we also have
A(a, b) < α(b, a). Let H be the harmonic mean, which is strictly monotone. We then have

A = H(A, A) < H
(
α(a, b),α(b, a)

)
< max

(
α(a, b),α(b, a)

)
< max(a, b)

since α is a mean. Using the standard explicit form of H := H(a, b) = (a– + b–)– for all
a, b > , we obtain by a simple computation (for all a, b > , a �= b)

H
(
α(a, b),α(b, a)

)
=

(a – b)
exp( – b/a) – exp( – a/b)

.

Summarizing the previous discussion, we have the following result.
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Proposition . The binary map

∀a, b > , Z(a, b) :=
(a – b)

exp( – b/a) – exp( – a/b)
, Z(a, a) = a,

is a symmetric homogeneous mean satisfying A < Z.

4 Characterization of homogeneous symmetric monotone means
We preserve the same notation. For f ∈ C

↑(,∞), we have seen that mf is a continuous
and strict monotone mean. Inversely, given a mean m, under what condition there exists
f ∈ C

↑(,∞) such that m = mf ? We should note here that the answer of the latter question
has to be seen as a characterization of bivariate means that could be fitted in the class of
means introduced in (.).

Before giving an answer to that question, we state the following technical lemmas.

Lemma . Let x ∈ R, and let p, q be two continuous functions on V \ {x} for some
neighborhood V of x. Assume that p(x) � q(x) as x → x, that is, limx→x p(x)/q(x) = ,
and limx→x p(x) = limx→x q(x) = ±∞. Then we have:

∫
p(x) dx �

∫
q(x) dx as x → x,

where the notation
∫

g(x) dx refers to the antiderivative of the function g .

Proof It is not hard to verify that the assumption

lim
x→x

p(x) = lim
x→x

q(x) = +∞ (resp. – ∞)

implies

lim
x→x

∫
p(x) dx = lim

x→x

∫
q(x) dx = +∞ (resp. – ∞).

Now, to obtain the desired result, we just apply the classical L’Hopital rule. �

Lemma . Let m be a symmetric homogeneous mean, and φ its associate function. Then
the following assertions hold:

(i) If φ is differentiable, then φ′() = /.
(ii) If φ is continuously differentiable then

lim
x→

(x – )φ′(x)
x – φ(x)

= . (.)

(iii) If (.) holds, then we have

lim
x→

exp

(∫
φ′(x)

x – φ(x)
dx

)
= . (.)
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Proof (i) First, (.) immediately gives φ() = . Now, writing m(x, ) = xm(, /x) =
xm(/x, ), we then have φ(x) = xφ(/x) for all x > . This relation gives, by differentia-
tion,

∀x > , φ′(x) +

x
φ′

(

x

)
= φ

(

x

)
,

which, with x = , yields φ′() = /.
(ii) It is easy to see that

lim
x→

(x – )φ′(x)
x – φ(x)

= lim
x→

φ′(x)
x––(φ(x)–)

x–

= lim
x→

φ′(x)
 – φ(x)–φ()

x–

=
φ′()

 – φ′()
= 

since φ is continuously differentiable and φ′() = /. This proves the desired result. We
can also prove it by using L’Hopital’s rule.

(iii) Applying Lemma . to (.) written in the next form

φ′(x)
x – φ(x)

� 
x – 

when x → ,

we then deduce

∫
φ′(x)

x – φ(x)
dx �

∫ 
x – 

dx = ln |x – | + constant as x → .

This implies that

lim
x→

∫
φ′(x)

x – φ(x)
dx = –∞,

and the desired result follows. �

Lemma . Let m be a symmetric homogeneous strict monotone mean, and φ its asso-
ciate function. Assume that φ is continuously differentiable. Then the ordinary differential
equation (ODE)

{
(φ(x) – x)y′ + φ′(x)y = , x ∈ (, ) ∪ (,∞),
y() = 

(.)

admits at least one solution in C
↑(,∞).

Proof Since m is strict, the equation φ(x) = x has the unique solution x = . Then the ODE
(.) has to be solved separately on both intervals (, ) and (,∞), and then we should
show that the two solutions could be joined at x = . The general solution of the ODE (.)
can be written as

y(x) =

⎧⎨
⎩

y(x) := c exp{∫ φ′(x)
x–φ(x) dx},  < x < ,

y(x) := c exp{∫ φ′(x)
x–φ(x) dx}, x > ,

(.)
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where c and c are two arbitrary constants, to be conveniently chosen later. It is clear that

y′
i(x) =

φ′(x)
x – φ(x)

yi(x), i = , .

Since m is strict monotone, then φ′(x) >  for all x > . This, with Lemma ., allows us to
choose c >  and c <  to ensure y′

i(x) >  for i = , . Consider the particular solutions
of ODE (.) such that c =  and c = –. Now, we will show that we can join the two
solutions yi, i = , . This means that

lim
x→–

y(x) = lim
x→+

y(x) = .

This immediately follows from (.) of Lemma . applied to (.). Let us denote by y the
piecewise function defined on (, +∞) as follows:

y(x) =

⎧⎪⎨
⎪⎩

y(x) if x ∈ (, ),
 if x = ,
y(x) if x ∈ (,∞).

To end the proof, we wish to establish that our chosen solution y is continuously differ-
entiable on (,∞). Obviously, y is continuously differentiable on (, ) ∪ (,∞). Further,
following our choice with Lemma ., we have y(x) � x –  as x → , and so y is differen-
tiable at x =  with y′() = . On the other hand, since

∀x > , x �= , y′(x) =
φ′(x)

x – φ(x)
y(x)

and by Lemma . again

φ′(x)
x – φ(x)

� 
x – 

as x → ,

we then deduce

y′(x) � y(x)
x – 

as x → .

This implies that limx→ y′(x) =  = y′() since y(x) � x –  as x → . The proof is finished.
�

Now, we are in a position to state our characterization theorem, which answers the ques-
tion stated at the beginning of this section.

Theorem . Let m be a symmetric homogeneous strict monotone mean, and φ its as-
sociate function. Assume that φ is continuously differentiable. Then there exists fm := f ∈
C

↑(,∞) with f () =  such that m = mf . Further, such f , called here the intrinsic function
of m, is the solution of the ODE (.) in Lemma ..

Proof According to Lemma ., the ODE (.) has at least a solution in C
↑(,∞), which

we denote here by f . We then have (for all x > )

(
φ(x) – x

)
f ′(x) + φ′(x)f (x) = 
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with f () = . It follows that

φ(x)f ′(x) + φ′(x)f (x) = xf ′(x)

or, equivalently,

(φf )′(x) = xf ′(x).

This yields

φ(x)f (x) =
∫ x


uf ′(u) du.

Since f () =  and f is strictly increasing, we have f (x) �=  for each x �= . We can then
write, for all x �= ,

φ(x) =


f (x)

∫ x


uf ′(u) du,

which, with (.) and φ() =  = mf (, ), gives φ(x) = mf (x, ) for all x > . The desired
result follows since m and mf are homogeneous. �

Before giving some examples illustrating the previous theoretical study, we would like to
interpret the previous theorem in another point of view. For this, let us denote by Mshsm

the set of all symmetric homogeneous strict monotone means and by F the set of all f ∈
C

↑(,∞) such that f () = . The binary operation defined on F by f ≡ g if and only if there
exists α >  such that f = α · g is an equivalence relation, with c(f ) = {α · f ,α > } the coset
of f . Now, denote by F/≡ the quotient set of ≡ and consider the mapping

� : Mshsm −→F/≡

m �−→ �(m) = c(f ), where m = mf .
(.)

Then we get the following corollary.

Corollary . The mapping � defined by (.) is well defined and realizes an injection
between the set of symmetric homogeneous strict monotone means, Mshsm, and the set F/≡.

Proof Due to Theorem ., for every m ∈ Mshsm, there exists f ∈ F such that m = mf .
To check that � is a map, consider two means such that m = m and let f, f be the two
associated intrinsic functions, m = mf and m = mf . We need to check that c(f) = c(f).
Since mf = mf , Theorem . implies that there exists α >  such that f = α · f, and so
c(f) = c(f).

To check the injectivity of � , let m and m be two means such that �(m) = �(m). This
means that c(f) = c(f), where f, f are respectively the two associated intrinsic functions
of m and m. By the definition of the equivalence relation ≡, c(f) = c(f) implies that
there exists α >  such that f = α · f, which again by Theorem . implies that m = m.
Note here that � is not onto because for a given f ∈ F , the mean mf is not necessarily
symmetric. The proof is finished. �
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Now, we will state some examples that illustrate our theoretical results and show the
generality of our approach.

Example . Let m = A be the arithmetic mean with its associate function φ(x) = (x+)/.
Due to Lemma ., the solution of the ODE (.) associated to A looks like

y(x) = exp
∫

φ′(x)
x – φ(x)

dx = exp
∫ 

x – 
dx = exp ln |x – | = |x – |

since y() = . Following the choice in the proof of Lemma ., we can choose f (x) = x – .
Now, by (.) we can check that

mf (a, b) =
b

a/b – 

∫ a/b


xf ′(x) dx =

b

a – b

[
x



]a/b


=

a + b


= A(a, b).

Example . Now, consider m = G, the geometric mean whose associate function is
φ(x) =

√
x. Similarly to the previous example, we have

y(x) = exp
∫ 


√

x

x –
√

x
dx = exp

∫ du
u(u – )

,

where we make the change of variables u =
√

x. A classical integral computation, with
y() = , leads to y(x) = | – √

x |, and then we choose f (x) =  – √
x . To check this, we can

by (.) and a simple computation see that

mf (a, b) =
b

 –
√

b/a

∫ a/b


x · 

x
√

x
dx =

b
√

a√
a –

√
b

[
√

x]a/b
 =

√
ab = G(a, b).

Example . Let m = H be the harmonic mean. Then

φ(x) =
x

x + 
, φ′(x) =


(x + ) , x – φ(x) =

x(x – )
x + 

.

The general solution of the ODE (.) is

y(x) = exp
∫ 

x(x – )(x + )
dx = exp

∫ (
–
x

+


x – 
+


x + 

)
dx

= exp
(
– ln x + ln |x – | + ln(x + )

)
=

|x – |(x + )
x .

By the same arguments as before the associated intrinsic function f to H is given by

∀x > , f (x) =
(x – )(x + )

x =  –

x .

To check that mf = H , we can also use (.) with a routine integral computation.

Example . Let m = L be the logarithmic mean. Then

φ(x) =
x – 
ln x

, φ′(x) =
x ln x – x + 

x(ln x) , x – φ(x) =
x ln x – x + 

ln x
= (x ln x)φ′(x).
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Here, we have

y(x) = exp
∫ dx

x(ln x)
= exp

(
ln | ln x|) = | ln x|.

We then choose f (x) = ln x for all x > . We can easily verify that mf = L.

Example . Let m = Q be the root-square mean. It is not hard to verify that the solution
of ODE (.) is here given by

y(x) = exp



∫ x

x
√

x+
 – x+



dx.

Making the change of variables t = x/
√

 + x, an elementary computation leads to

y(x) = exp
∫ t

(
√

t – )( – t)
dt = exp

∫ ( √
√

t – 
+

√
 + 

( – t)
+

√
 – 

( + t)

)
dt,

which, after simple computation and appropriate reduction (with y() =  and by the same
reason as before), yields

∀x > , f (x) =
(
x
√

 –
√

 + x
)

exp
(√

 ln
(
x +

√
 + x

))
.

Of course, we have mf = Q, but such a relationship is not easy to check here.

Example . Let m = S be the square-root mean. We leave to the reader the routine task
to see that the intrinsic function f associated to S is given by

∀x > , f (x) =
√

x – 
(

√
x + )/ ,

and to check that mf = S.

The next example shows that the assumption ‘m is a monotone mean’ in Theorem .
is necessary.

Example . Let m = C be the contra-harmonic mean. Of course, we cannot apply The-
orem . since C is not monotone. By Corollary ., there is no f ∈ C

↑(,∞) such that
C = mf . We will check this by solving the ODE (.). In fact, here we have

φ(x) =
x + 
x + 

, φ′(x) =
x + x – 

(x + ) , x – φ(x) =
x – 
x + 

,

and the appropriate solution of the ODE (.) is given by

y(x) = exp
∫ x + x – 

x – 
dx = exp

∫ (
 +


x + 

+


x – 

)
dx =

∣∣x – 
∣∣ex.
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Following our choice, f (x) = (x – )ex. Theorem . does not confirm the relationship
mf = C. In fact, (.) implies

(∀a, b > ) mf (a, b) = a –
b

(a – b)ea/b

∫ a/b



(
x – 

)
ex dx.

After twice integration by parts, we can easily see that

mf (a, b) �= a + b

a + b
= C(a, b).

Finally, we state the following example, which includes a lot of particular situations pre-
viously discussed.

Example . Let p be a fixed real number, and let m = Dp be the power difference mean
defined in Example .. Such a power mean, which is symmetric homogeneous strict
monotone, is in turn a particular case of the so-called Stolarsky mean; see []. Its as-
sociate function φp satisfies

∀x > ,
(φp)′(x)

x – φp(x)
=

{
pxp–

xp– if p �= ,


x ln x if p = .

The associated intrinsic function fp is then given by

∀x > , fp(x) =

⎧⎪⎨
⎪⎩

xp –  if p > ,
 – xp if p < ,
ln x if p = .

The particular cases p = , p = , p = –, p = –, and p = –/ were previously discussed;
see Example ..
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