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Abstract
In many applications, the available data come from a sampling scheme that causes
loss of information in terms of left truncation. In some cases, in addition to left
truncation, the data are weakly dependent. In this paper we are interested in deriving
the asymptotic normality as well as a Berry-Esseen type bound for the kernel density
estimator of left truncated and weakly dependent data.
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1 Introduction
P is a population with large, deterministic and finite size N with elements {(Yi, Ti); i =
, . . . , N}. In sampling from this population we only observe those pairs for which Yi ≥ Ti.
Suppose that there is at least one pair with this condition. The sample is denoted by
{(Yi, Ti); i = , . . . , n}. This model is called random left-truncated model (RLTM). We as-
sume that {Yi; i ≥ } is a stationary α-mixing sequence of random variables and {Ti; i =
, . . . , N} is an independent and identically distributed (i.i.d.) sequence of random vari-
ables. The definition of a strong mixing sequence is presented in Definition .

Definition  Let {Yi; i ≥ } be a sequence of random variables. The mixing coefficient of
this sequence is

α(m) = sup
k≥

{∣∣P(A ∩ B) – P(A)P(B)
∣∣; A ∈F k

 , B ∈F∞
k+m

}
,

where Fm
l denotes the σ -algebra generated by {Yj} for l ≤ j ≤ m. This sequence is said to

be strong mixing or α-mixing if the mixing coefficient converges to zero as m → ∞.

Studying the various aspects of left-truncated data is of high interest due to their ap-
plicability in much research. One of these applications is in survival analysis. It is well
known that in medical research on some specific diseases such as AIDS and dementia, the
sampling scheme results in data samples that are left truncated. This model also arises in
astronomy [].
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Strong mixing sequences of random variables are widely occurring in practice. One
application is in the analysis of time series and in renewal theory. A stationary ARMA-
sequence fulfils the strong mixing condition with an exponential rate of mixing coefficient.
The concept of strong mixing sequences was first introduced by Rosenblatt [] where a
central limit theorem is presented for a sequence of random variables that satisfies the
mixing condition.

The Berry-Esseen inequality or theorem was stated independently by Berry [] and Es-
seen []. This theorem specifies the rate at which the scaled mean of a random sample
converges to the normal distribution for all sample spaces. Parzen [] derived a Berry-
Esseen inequality for the kernel density estimator of an i.i.d. sequence of random variables.
Several works were done for left-truncated observations. We can refer to [] where the dis-
tribution of left-truncated data was estimated and asymptotic properties of the estimator
were derived. More work was done by Stute []. Prakasa Rao [] presented a Berry-Esseen
theorem for the density estimator of a sample that forms a stationary Markov process.
Liang and Un̈a-Álvarez [] have derived a Berry-Esseen inequality for mixing data that
are right censored. Yang and Hu [] presented Berry-Esseen type bounds for kernel den-
sity estimator based on a ϕ-mixing sequence of random variables. Asghari et al. [, ]
presented a Berry-Esseen type inequality for the kernel density estimator, respectively, for
a left-truncated model and for length-biased data.

This paper is organized as follows. In Section , needed notations are introduced and
some preliminaries are listed. In Section , the Berry-Esseen type theorem for the esti-
mator of the density function of the data is presented. In Section , the theorems and
corollaries of Section  are proved.

2 Preliminaries and notation
Suppose that Yi ’s and Ti’s for i = , . . . , N are positive random variables with distributions
F and G, respectively. Let the joint distribution function of (Y, T) be

H∗(y, t) = P(Y ≤ y, T ≤ t)

=

α

∫ y

–∞
G(t ∧ u) dF(u),

in which α = P(Y ≥ T).
If the marginal distribution function of Yi is denoted by F∗, we have

F∗(y) =

α

∫ y

–∞
G(u) dF(u),

so the marginal density function of Y is

f ∗(y) =

α

G(y)f (y).

A kernel estimator for f is given by

fn(y) =


nhn

n∑

i=

K
(

Yi – y
hn

)
α

G(Yi)
.
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In many applications, the distribution function of the truncation random variable G is
unknown. So fn(y) is not applicable in these cases and we need to use an estimator of G.
Before starting the estimation details, for any distribution function L on [,∞], let aL :=
inf{x >  : L(x) > } and bL := sup{x >  : L(x) < }.

Woodroof [] pointed out that F and G can be estimated only if aG ≤ aF , bG ≤ bF and
∫ ∞

aF
dF
G < ∞. This integrability condition can be replaced by the stronger condition aG < aF .

Using this assumption, here we use the non-parametric maximum likelihood estimator for
G that is presented by Lynden-Bell [] and is denoted by Gn,

Gn(y) =
∏

i:Yi>y

(
 –

S(y)
Cn(y)

)
,  ≤ y < ∞, (.)

in which S(y) =
∑n

i= I{Yi=y} and Cn(s) = 
n
∑n

i= I{Ti≤s≤Yi}.
Using the definition of Cn that is mentioned in the estimation procedure of G and also

using the empirical estimators of F∗ and G∗, which are denoted by F∗
n and G∗

n, we have

Cn(y) = G∗
n(y) – F∗

n (y), y ∈ [aF , +∞).

It can be seen that Cn(s) is actually the empirical estimator of Cn = G∗(y) – F∗(y) =
α–G(y)[ – F(y)], y ∈ [aF , +∞). This fact gives the following estimator of α:

αn =
Gn(y)[ – Fn(y)]

Cn(y)
.

For details as regards αn, see []. Using αn, we present a more applicable estimator of f ,
which is denoted f̂n and is defined as

f̂n(y) =


nhn

n∑

i=

K
(

Yi – y
hn

)
αn

Gn(Yi)
. (.)

Note that in (.) the sum is taken over i’s for which Gn(Yi) 
= .

3 Results
Before presenting the main theorems, we need to state some assumptions. Suppose that
aG < aF and bG ≤ bF . Woodroof [] stated that the uniform convergence rate of Gn to G
is true for y ∈ [a, bG] for a > aG. Thus, we have to assume that aG < aF . Let C = [a, b] be
a compact set such that C ⊂ {y; y ∈ [aF , bF [}. As mentioned in the Introduction, {Yi; i ≥ }
is a stationary α-mixing sequence of random variables with mixing coefficient β(n), and
{Ti; i ≥ } is an i.i.d. sequence of random variables.

Definition  The kernel function K , is a second order kernel function if
∫ ∞

–∞ K(t) dt = ,
∫ ∞

–∞ tK(t) dt =  and
∫ ∞

–∞ tK(t) dt > .

Assumptions

A β(n) = O(n–λ) for some λ > +δ
δ

in which  < δ ≤ .
A For the conditional density of Yj+ given Y = y (denoted by fj(·|y)), we have fj(y|y) ≤

M for y and y in a neighborhood of y ∈R in which M is a positive constant.
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A (i) K is a positive bounded kernel function such that K(t) =  for |t| >  and
∫ 

– K(t) = .
(ii) K is a second order kernel function.

(iii) f is twice continuously differentiable.
A Let p = pn and q = qn be positive integers such that p + q ≤ n, there exists a constant C

such that for n large enough q
p ≤ C. Also phn → , qhn →  as n → ∞.

A {Ti; i ≥ } is a sequence of i.i.d. random variable with common continuous distribution
function G, and independent of {Yi; i ≥ }.

H The kernel function K(·) is differentiable and Hölder continuous with exponent β > .
H β(n) = O(n–λ) for λ > +β

β
in which β > 

 .
H The joint density of (Yi, Yj), f ∗

ij , exists and we have supu,v |f ∗
ij (u, v) – f ∗(u)f ∗(v)| ≤ C < ∞

for some constant C.
H There exists λ > + 

β
and for the bandwidth hn we have log log n

nh
n

→  and Cn
(–λ)β

β(λ+)+β+ +η <

hn < C′n


–λ which η is such that 
β(λ+)+β+ < η < (λ–)β

β(λ+)+β+ + 
–λ

.

Discussion of the assumptions. A, A, and A are common in the literature. For exam-
ple Zhou and Liang [] used A for deconvolution estimator of multivariate density of
α-mixing process. A(i)-(ii) are commonly used in non-parametric estimation. A(iii) is
specially needed for a Taylor expansion. H-H are needed to use Theorem . of [] in
Theorem  here.

Let σ 
n (y) := nhnVar[fn(y)], so by letting √

nhn
K( Yi–y

hn
) α

G(Yi)
=: Wni, we can write

σ 
n (y) = Var

( n∑

i=

√
nhn

K
(

Yi – y
hn

)
α

G(Yi)

)

= Var

( n∑

i=

Wni

)

. (.)

Let k = [ n
p+q ], km = (m – )(p + q)+ and lm = (m – )(p + q)+p+, in which m = , , . . . , k.

Now we have the following decomposition:

n∑

i=

Wni = J ′
n + J ′′

n + J ′′′
n , (.)

in which

J ′
n =

k∑

m=

j′nm, j′nm =
km+p–∑

i=km

Wni,

J ′′
n =

k∑

m=

j′′nm, j′′nm =
lm+q–∑

i=lm

Wni,

J ′′′
n = j′′nk+, j′′nk+ =

n∑

i=k(p+q)+

Wni.

From now on, we let σ (y) := αf (y)
G(y)

∫ 
– K(t) dt, u(n) :=

∑∞
j=n (α(j))

δ
δ+ .
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Theorem  If Assumptions A-A(i) and A are satisfied and f and G are continuous in
a neighborhood of y for y ≥ aF , then for large enough n we have

sup
x∈R

∣∣P
(√

nhn
[
fn(y) – Efn(y)

] ≤ xσn(y)
)

– 	(x)
∣∣ = O(an) a.s.

in which

an = h
(+δ)

+δ
n

(
p

nhn

)+δ′

+
(
λ′′′

n α(q)
)/ + λ′′/

n + λ′′′/
n + h–δ/(+δ)

n u(q), (.)

and

λ′′
n :=

kq
n

+ h–δ/(+δ)
n u(q) + qhn,

λ′′′
n :=

p
n

(phn + ).
(.)

Theorem  If the assumptions of Theorem  and A are satisfied, then for y ≥ aF and for
large enough n we have

sup
x∈R

∣∣P
(√

nhn
[
f̂n(y) – E

(
fn(y)

)] ≤ xσn(y)
)

– 	(x)
∣∣ = O

(
an + (hn log log n)/) a.s.

in which an is defined in (.).

Theorem  If the assumptions of Theorem  are satisfied, G has bounded first derivative
in a neighborhood of y and f has bounded derivative of order  in a neighborhood of y for
y ≥ aF , then for large enough n we have

sup
x∈R

∣∣P
(√

nhn
[
f̂n(y) – f (y)

] ≤ xσ (y)
)

– 	(x)
∣∣ = O

(
a′

n
)

a.s.,

in which

a′
n := h

(+δ)
+δ

n

(
p

nhn

)+δ′

+ hn(p + ) + h
–δ

+δ
n u(q) +

(
λ′′′

n α(q)
)/

+ λ′′/
n + λ′′′/

n + λ′′/
n λ′′′/

n , (.)

and λ′′ and λ′′′ are defined in (.).

Remark  In many applications, f and G are unknown and should be estimated, so σ (y)
is not applicable in these cases. Here we present an estimator for it that is denoted by σ̂ 

n (y)
and is defined as follows:

σ̂ 
n (y) =

αnf̂n(y)
Gn(y)

∫ 

–
K(t) dt.

Using this estimator instead of σ (y) in Theorem , costs a change in the rate of conver-
gence. This change is discussed in the following corollaries.
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Corollary  Let Assumptions A, A and H-H be satisfied, then for y ∈ C

sup
y≥aF

∣∣σ̂ 
n (y) – σ (y)

∣∣ = O(cn) a.s.,

in which

cn := max

(√
log n
nhn

, h
n

)
+

√
log log n

n
. (.)

Theorem  Let Assumptions A-A and H-H be satisfied. For y ∈ C and for large enough
n we have

sup
x∈R

∣∣P
(√

nhn
(
f̂n(y) – f (y)

) ≤ xσ̂n(y)
)

– 	(x)
∣∣ = O

(
a′

n + cn
)

a.s.,

in which a′
n is defined in (.) and cn is defined in (.).

4 Proofs
In order to start the proofs of the main theorems, we shall state some lemmas that are used
in the proving procedure of the main theorems. For the sake of simplicity let C, C′ and C′′,
be positive appropriate constants which may take different values at different places.

Lemma  ([]) Let X and Y be random variables such that E|X|r < ∞ and E|Y |s < ∞ in
which r and s are constants such that r, s >  and r– + s– < . Then we have

∣∣E(XY ) – E(X)E(Y )
∣∣ ≤ ‖X‖r‖Y‖s

[
sup

A∈σ (X),B∈σ (Y )

∣∣P(A ∩ B) – P(A)P(B)
∣∣
]–/r–/s

.

Lemma  Suppose that Assumptions A-A(i) and A are satisfied. If f and G are con-
tinuous in a neighborhood of y for y ≥ aF then σ 

n (y) → σ (y) as n → ∞. Furthermore, if f
and G have bounded first derivatives in a neighborhood of y for y ≥ aF , for such y’s we have

∣∣σ 
n (y) – σ (y)

∣∣ = O(bn),

in which

bn := hn(p + ) + h–δ/(+δ)
n u(q) + λ′′/

n + λ′′′/
n + λ′′/

n λ′′′/
n ,

Proof Using the decomposition that is defined in (.) we can write

σ 
n (y) = Var

(
J ′

n + J ′′
n + J ′′′

n
)

= Var
(
J ′

n
)

+ Var
(
J ′′

n
)

+ Var
(
J ′′′

n
)

+ Cov
(
J ′

n,J ′′
n
)

+ Cov
(
J ′

n,J ′′′
n

)
+ Cov

(
J ′′

n ,J ′′′
n

)
, (.)

Var
(
J ′

n
)

= Var

( k∑

m=

j′nm

)

=
k∑

m=

km+p–∑

i=km

Var(Wni)
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+ 
∑

≤i<j≤k

Cov
(
j′ni, j′nj

)
+ 

k∑

m=

∑

km≤i<j≤km+p–

Cov(Wni, Wnj)

=: I′ + II′ + III′. (.)

As assumed in the lemma, f and G are continuous in a neighborhood of y so they are
bounded in this neighborhood. Now under Assumption A(i) we have

Var(Wni) =


nhn

{
E
[

K
(

Yi – y
hn

)
α

G(Yi)

]
– E

[
K

(
Yi – y

hn

)
α

G(Yi)

]}

=


nhn

{∫
K

(
u – y

hn

)
αf (u)
G(u)

du –
[∫

K
(

u – y
hn

)
f (u) du

]}

=

n

{∫
K(t)

αf (y + thn)
G(y + thn)

dt – hn

[∫
K(t)f (y + thn) dt

]}
, (.)

so it can be concluded that

∣∣I′
∣∣ ≤ kp

n

{∫ 

–
K(t)

αf (y + thn)
G(y + thn)

dt + hn

[∫ 

–
K(t)f (y + thn) dt

]}

= O
(

kp
n

)
. (.)

Lemma  for arbitrarily δ >  and also the continuity of f in a neighborhood of y gives

∣∣II′
∣∣ ≤ 

∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

∣∣Cov(Wns, Wnt)
∣∣

≤ C
nhn

∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

∥∥∥∥K
(

Ys – y
hn

)
α

G(Ys)

∥∥∥∥
+δ

∥∥∥∥K
(

Yt – y
hn

)
α

G(Yt)

∥∥∥∥
+δ

× (
α(t – s)

)–/(+δ)

=
C

nhn

∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

∥∥∥∥K
(

Y – y
hn

)
α

G(Y)

∥∥∥∥



+δ

(
α(t – s)

)δ/(+δ)

=
C

nhn

∥∥∥∥K
(

Y – y
hn

)
α

G(Y)

∥∥∥∥



+δ

∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

(
α(t – s)

)δ/(+δ),

now using the notation u(n) :=
∑∞

j=n (α(j))
δ

δ+ , which is defined before, and A we get the
following result:

∣∣II′
∣∣ ≤ C

nhn

∥∥∥∥K
(

Y – y
hn

)
α

G(Y)

∥∥∥∥



+δ

∑

≤i<j≤k

ki+p–∑

s=ki

kj+p–∑

t=kj

(
α(t – s)

)δ/(+δ)

≤ Ckp
nhδ/(+δ)

n

[∫ 

–

∣∣K(t)
∣∣+δ f (y + thn)

G+δ(y + thn)
dt

]δ/(+δ) ∞∑

j=q

(
α(j)

)δ/(+δ)

= O
(
h–δ/+δ

n u(q)
)
. (.)
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Under Assumption A we can write

∣∣III′
∣∣ ≤ 

k∑

m=

∑

km≤i<j≤km+p–

∣∣Cov(Wni, Wnj)
∣∣

≤ 
nhn

k∑

m=

∑

km≤i<j≤km+p–

{
E
∣∣∣∣K

(
Yi – y

hn

)
K

(
Yj – y

hn

)
α

G(Yi)G(Yj)

∣∣∣∣

+ E
[

K
(

Yi – y
hn

)
α

G(Yi)

]}

≤ 
nhn

k∑

m=

∑

km≤i<j≤km+p–

{∫ ∫ ∣∣∣∣K
(

u – y
hn

)
K

(
u – y

hn

)∣∣∣∣

× f ∗(u|u)f ∗(u) du du +
(∫

K
(

u – y
hn

)
f (u) du

)}

≤ Chn

n

k∑

m=

∑

km≤i<j≤km+p–

{∫ 

–

∫ 

–

∣∣K(s)K(t)
∣∣ds dt +

+
[∫ 

–
K(t)f (y + thn) dt

]}

≤ C
kphn

n

{∫ 

–

∫ 

–

∣∣K(s)K(t)
∣∣ds dt +

[∫ 

–
K(t)f (y + thn) dt

]}

= O(phn). (.)

Now, using (.), (.), (.), and (.), we have

Var
(
J ′

n
)

= O
(

kp
n

+ h–δ/+δ
n u(q) + phn

)

= O(), (.)

Var
(
J ′′

n
)

= Var

( k∑

m=

j′′nm

)

=
k∑

m=

lm+q–∑

i=lm

Var(Wni) + 
∑

≤i<j≤k

Cov
(
j′′ni, j′′nj

)

+ 
k∑

m=

∑

lm≤i<j≤lm+q–

Cov(Wni, Wnj)

=: I′′ + II′′ + III′′. (.)

By the same argument as is used for |I′| and |II′| and |III′|, it can be concluded that

∣∣I′′
∣∣ = O

(
kq
n

)
,

∣∣II′′
∣∣ = O

(
h–δ/(+δ)

n u(q)
)
,

∣∣III′′
∣∣ = O(qhn).

(.)
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Now, using (.) and (.), we have

Var
(
J ′′

n
)

= O
(

kq
n

+ h–δ/(+δ)
n u(q) + qhn

)

= O
(
λ′′

n
)
. (.)

Similarly

Var
(
J ′′′

n
)

= Var

( n∑

i=k(p+q)+

Wni

)

=
n∑

i=k(p+q)+

Var(Wni) + 
∑

k(p+q)+≤i<j≤n

Cov(Wni, Wnj)

=: I′′′ + II′′′, (.)

and

∣∣I′′′
∣∣ = O

(

n

(
n – k(p + q)

))
,

∣∣II′′′
∣∣ = O

(
phn

n

)
.

(.)

So we can write

Var
(
J ′′′

n
)

= O
(


n

((
n – k(p + q)

)
+ phn

))

= O
(

p
n

(phn + )
)

= O
(
λ′′′

n
)
. (.)

Gathering all that is obtained above,

∣∣σ 
n (y) – σ (y)

∣∣ =

∣∣∣∣∣

n∑

i=

Var(Wni) – σ (y)

+ 
∑

≤i<j≤k

Cov
(
j′ni, j′nj

)
+ 

k∑

m=

∑

km≤i<j≤km+p–

Cov(Wni, Wnj)

+ 
∑

≤i<j≤k

Cov
(
j′′ni, j′′nj

)
+ 

k∑

m=

∑

lm≤i<j≤lm+p–

Cov(Wni, Wnj)

+ 
∑

k(p+q)+≤i<j≤n

Cov(Wni, Wnj) + Cov
(
J ′

n,J ′′
n
)

+ Cov
(
J ′

n,J ′′′
n

)
+ Cov

(
J ′′

n ,J ′′′
n

)
∣∣∣∣∣
, (.)
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and by letting

An :=
∑

≤i<j≤k

Cov
(
j′ni, j′nj

)
+

k∑

m=

∑

km≤i<j≤km+p–

Cov(Wni, Wnj)

+
∑

≤i<j≤k

Cov
(
j′′ni, j′′nj

)
+

k∑

m=

∑

lm≤i<j≤lm+p–

Cov(Wni, Wnj)

+
∑

k(p+q)+≤i<j≤n

Cov(Wni, Wnj) + Cov
(
J ′

n,J ′′
n
)

+ Cov
(
J ′

n,J ′′′
n

)
+ Cov

(
J ′′

n ,J ′′′
n

)
,

we have

(.) ≤
∣∣∣∣∣

n∑

i=

Var(Wni) – σ (y)

∣∣∣∣∣
+ |An|. (.)

On the other hand using (.), (.), and (.), we have

Cov
(
J ′

n,J ′′
n
) ≤ [

Var
(
J ′

n
)
Var

(
J ′′

n
)] 



= O
(
λ′′/

n
)
,

Cov
(
J ′

n,J ′′′
n

)
= O

(
λ′′′/

n
)
,

Cov
(
J ′′

n ,J ′′′
n

)
= O

(
λ′′/

n λ′′′/
n

)
.

(.)

So for An we can write

|An| = O
(

h–δ/+δ
n u(q) + phn + qhn + p hn

n
+ λ′′/

n + λ′′′/
n + λ′′/

n λ′′′/
n

)

= O
(
h–δ/+δ

n u(q) + phn + qhn + λ′′/
n + λ′′′/

n + λ′′/
n λ′′′/

n
)
. (.)

On the other hand from (.), it can easily be concluded that
∑n

i= Var(Wni) → σ (y) as
n → ∞. Now under Assumptions A and A |An| → , so σ 

n (y) → σ (y). If f and G have
bounded first derivatives in a neighborhood of y, we can write

∣∣∣∣∣

n∑

i=

Var(Wni) – σ (y)

∣∣∣∣∣

=
∣∣∣∣


hn

{
E
[

K
(

Y – y
hn

)
α

G(Y)

]
– E

[
K

(
Y – y

hn

)
α

G(Y)

]}
– σ (y)

∣∣∣∣

=
∣∣∣∣


hn

{∫
K

(
u – y

hn

)
αf (u)
G(u)

du –
[∫

K
(

u – y
hn

)
f (u) du

]}
– σ (y)

∣∣∣∣

=
∣∣∣∣

∫ 

–
K(t)

G(y)[f (y + thn) – f (y)] + f (y)[G(y + thn) – G(y)]
G(y + hnt)G(y)

dt

– hn

[∫ 

–
K(t)f (y + thn) dt

]∣∣
∣∣

= O(hn). (.)
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From (.) we get the following result:

∣∣σ 
n (y) – σ (y)

∣∣

= O
(
hn + h–δ/+δ

n u(q) + phn + qhn + λ′′/
n + λ′′′/

n + λ′′/
n λ′′′/

n
)

= O
(
hn + h–δ/+δ

n u(q) + phn + λ′′/
n + λ′′′/

n + λ′′/
n λ′′′/

n
)

= O
(
hn(p + ) + h–δ/+δ

n u(q) + λ′′/
n + λ′′′/

n + λ′′/
n λ′′′/

n
)
, (.)

and the proof is completed. �

Before starting the next lemma, we note that

√
nhn[fn(y) – Efn(y)]

σn(y)

=


σn(y)
√

nhn

n∑

i=

{
K

(
Yi – y

hn

)
α

G(Yi)
– E

[
K

(
Yi – y

hn

)
α

G(Yi)

]}

=:
n∑

i=

Zni. (.)

If we let
∑n

i= Zni =: Sn, it can be observed that

Sn = S′
n + S′′

n + S′′′
n , (.)

in which

S′
n =

k∑

m=

Y ′
nm, Y ′

nm =
km+p–∑

i=km

Zni,

S′′
n =

k∑

m=

Y ′′
nm, Y ′′

nm =
lm+q–∑

i=lm

Zni,

S′′′ =
k∑

m=

Y ′′′
nm, Y ′′′

nm =
n∑

i=k(p+q)+

Zni.

Lemma  Suppose that Assumptions A-A(i) and A are satisfied and f and G are con-
tinuous in a neighborhood of y for y ≥ aF . Then for such y’s we have

P
(∣∣S′′

n
∣∣ > λ

′′ 


n
)

= O
(
λ

′′ 


n
)
,

P
(∣∣S′′′

n
∣∣ > λ

′′′ 


n
)

= O
(
λ

′′′ 


n
)
.

Proof With the aid of Lemma  we can write

E
(
S′′

n
) =


σ 

n (y)
E
[
J ′′

n – E
(
J ′′

n
)]

= O
(
λ′′

n
)
. (.)
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The same argument shows that E(S′′′
n ) = O(λ′′′

n ), so we have

P
(∣∣S′′

n
∣∣ > λ

′′ 


n
) ≤ E(S′′

n)

λ
′′ 


n

= O
(
λ

′′ 


n
)

(.)

and

P
(∣∣S′′′

n
∣∣ > λ

′′′ 


n
) ≤ E(S′′′

n )

λ
′′′ 


n

= O
(
λ

′′′ 


n
)
. (.)

So the proof is completed. �

In the following let Hn :=
∑k

m= Xnm in which Xnm, m = , . . . , k, are independent ran-
dom variables with the same distribution as Y ′

nm, m = , . . . , k. ϕ and ϕ′ are, respec-
tively, the characteristic functions of S′

n and Hn. Also let s′
n :=

∑k
m= Var(Xnm) and s

n :=
∑k

m= Var(Y ′
nm).

Lemma  Under the assumptions of Lemma , for y ≥ aF we have the following:

∣∣s
n – 

∣∣ = O
(
λ′′/

n + λ′′′/
n + h–δ/(+δ)

n u(q)
)
.

Proof It can easily be seen that s
n = E(S′

n) – 
∑

≤i<j≤k Cov(Y ′
ni, Y ′

nj), E(S
n) =  and

∣∣E
(
S′

n
) – 

∣∣ =
∣∣E

(
S′

n
) – E

(
S

n
)∣∣

=
∣∣E

(
S′

n
) – E

(
S′

n + S′′
n + S′′′

n
)∣∣

=
∣∣E

(
S′′

n + S′′′
n
) – E

(
S′

n
(
S′′

n + S′′′
n
))∣∣. (.)

Using (.) and Lemma , we can write

∣∣s
n – 

∣∣ =
∣∣∣∣E

(
S′

n
) – 

∑

≤i<j≤k

Cov
(
Y ′

ni, Y ′
nj
)

– 
∣∣∣∣

≤ ∣∣E
(
S′

n
) – 

∣∣ + 
∣∣∣∣

∑

≤i<j≤k

Cov
(
Y ′

ni, Y ′
nj
)
∣∣∣∣

=
∣∣E

(
S′′

n + S′′′
n
) – E

(
S′

n
(
S′′

n + S′′′
n
))∣∣ + 

∣∣∣∣
∑

≤i<j≤k

Cov
(
Y ′

ni, Y ′
nj
)
∣∣∣∣

= O
(
λ′′/

n + λ′′′/
n

)
+ 

∣∣∣∣
∑

≤i<j≤k

Cov
(
j′ni, j′nj

)
∣∣∣∣. (.)

On the other hand, from Lemma  we know that
∑

≤i<j≤k Cov(j′ni, j′nj) = O(h–δ/(+δ)
n u(q)), so

substituting this in (.), gives the result,

∣∣s′
n – 

∣∣ = O
(
λ′′/

n + λ′′′/
n + h–δ/(+δ)

n u(q)
)
. �
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Lemma  ([]) Let {Xj, j ≥ } be a stationary sequence with mixing coefficient α(k) and
suppose that E(Xn) = , r > , and there exist τ >  and λ > r(r+τ )

τ
such that α(n) = O(n–λ)

and also E|Xi|r+τ < ∞. In this case, for any ε > , there exists a constant C, for which we
have

E

∣∣∣∣∣

n∑

i=

Xi

∣∣∣∣∣

r

≤ C

[

nε

n∑

i=

E|Xi|r +

( n∑

i=

‖Xi‖
r+τ

)r/]

.

Lemma  Under the assumptions of Lemma  for y ≥ aF we have

sup
x∈R

∣∣∣∣P
(

Hn

sn
≤ x

)
– 	(x)

∣∣∣∣ = O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′)
.

Proof Using [], Theorem ., for r >  we can write

sup
x∈R

∣∣∣∣P
(

Hn

sn
≤ x

)
– 	(x)

∣∣∣∣ ≤ C
∑k

m= E|Xnm|r
sr

n
. (.)

On the other hand, using Lemma  there exists τ >  such that for any ε > 

k∑

m=

E|Xnm|r =
k∑

m=

E|Ynm|r

=
k∑

m=

E

∣∣∣∣∣

km+p–∑

i=km

Zni

∣∣∣∣∣

r

≤
k∑

m=

C

[

pε

km+p–∑

i=km

E|Zni|r +

(km+p–∑

i=km

‖Zni‖
r+τ

) r
 ]

. (.)

Let ε = δ′, r =  + δ′ for  < δ′ < δ and τ = δ – δ′ and λ > (+δ′)(+δ)
δ–δ′ , so we have

(.) = C
k∑

m=

{
p+δ′

(nhn)+δ′

∫ [
K

(
u – y

hn

)](+δ′) f (u)
G+δ′ (u)

du

+
p+δ′

(nhn)+δ′

[∫ [
K

(
u – y

hn

)]+δ f (u)
G+δ′ (u)

du
] (+δ′)

(+δ) }

= C
k∑

m=

{
p+δ′

n+δ′hδ′
n

∫ 

–

[
K(t)

]+δ′ f (y + hnt)
G+δ′ (y + hnt)

dt

+
p+δ′

n+δ′h
δ(+δ′)

+δ
n

[∫ 

–

[
K(t)

]+δ f (y + hnt)
G+δ(y + hnt)

dt
] (+δ′)

(+δ)
}

≤ Ck
[
p+δ′

(nhn)–(+δ′)hn + p+δ′
(nhn)–(+δ′)h

(+δ′)
+δ

n
]

= O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′)
. (.)

From Lemma , s
n → , so the proof is completed. �
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Lemma  ([]) Let {Xj, j ≥ } be a stationary sequence with mixing coefficient α(k). Sup-
pose that p and q are positive integers. Let Tl =

∑(l–)(p+q)+p
j=(l–)(p+q)+ Xj in which  ≤ l ≤ k. If s, r > 

such that s– + r– = , there exists a constant C >  such that
∣∣∣∣∣
E exp

(

it
k∑

l=

Tl

)

–
k∏

l=

E exp(itTl)

∣∣∣∣∣
≤ C|t|α/s(q)

k∑

l=

‖Tl‖r .

Lemma  Under the assumptions of Lemma  for y ≥ aF we have

sup
x∈R

∣∣P
(
S′

n ≤ x
)

– P(Hn ≤ x)
∣∣ = O

((
λ′′′

n α(q)
)/ + h

(+δ′)
+δ

n

(
p

nhn

)+δ′)
.

Proof By letting b =  in [], Theorem ., p., for any T >  we have

sup
x∈R

∣∣P
(
S′

n ≤ x
)

– P(Hn ≤ x)
∣∣ ≤

∫ T

–T

∣∣∣∣
ϕ(t) – ϕ′(t)

t

∣∣∣∣dt

+ T sup
x∈R

∫

|u|≤ C
T

∣∣P(Hn ≤ u + x) – P(Hn ≤ x)
∣∣du

=: Ln + Ln. (.)

Now by letting s = r =  in Lemma , there exists a constant C >  for which we have

∣∣ϕ(t) – ϕ′(t)
∣∣ =

∣∣∣∣∣
E exp

(

it
k∑

m=

Ynm

)

–
k∏

m=

E exp(itYnm)

∣∣∣∣∣

≤ C|t|(α(q)
) 


k∑

m=

‖Ynm‖

= Ck|t|(α(q)
) 

 E



∣∣∣∣∣

km+p–∑

i=km

Zni

∣∣∣∣∣



, (.)

E(Zn) =
α

nhnσ 
n (y)

E
{

K
(

Y – y
hn

)


G(Y)
– E

[
K

(
Y – y

hn

)


G(Y)

]}

≤ 
nσ 

n (y)

{∫ 

–
K(t)

f (y + thn)
G(y + thn)

dt + hn

[∫ 

–
K(t)f (y + thn) dt

]}

= O
(
n–), (.)

E(ZnZn) ≤ 
nhnσ 

n (y)

∫ 

–

∫ 

–

∣∣∣∣K
(

y – u
hn

)
K

(
y – u

hn

)∣∣∣∣f
∗(y|y)f ∗(y) dy dy

= O
(

hn

n

)
. (.)

Now using (.) and (.) we have

E

∣
∣∣∣∣

km+p–∑

i=km

Zni

∣∣∣∣∣



=
km+p–∑

i=km

E(Zni) + 
∑

km≤i<j≤km+p–

EZniZnj

= O
(

p
n

( + phn)
)

, (.)
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so

Ln = O
(

T
(

pα(q)
n

( + phn)
)/)

= O
(
T

(
λ′′′

n α(q)
)/). (.)

On the other hand applying Lemma  gives

sup
x∈R

∣∣P(Hn ≤ u + x) – P(Hn ≤ x)
∣∣

≤ sup
x∈R

∣∣∣∣P
(

Hn

sn
≤ u + x

sn

)
– 	

(
u + x

sn

)∣∣∣∣

+ sup
x∈R

∣∣∣∣P
(

Hn

sn
≤ x

sn

)
– 	

(
x
sn

)∣∣∣∣ + sup
x∈R

∣∣∣∣	
(

u + x
sn

)
– 	

(
x
sn

)∣∣∣∣

= O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′)
+ O

( |u|
sn

)
, (.)

so

Ln = O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′

+

T

)
. (.)

By choosing T = (α(q)λ′′′
n )–/ we get the following result:

sup
x∈R

∣∣P
(
S′

n ≤ x
)

– P(Hn ≤ x)
∣∣

= O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′

+
(
λ′′′

n α(q)
)/

)

= O(bn), (.)

and the lemma is proved. �

Lemma  ([]) Let X and Y be random variables. For any a >  we have

sup
t∈R

∣∣P(X + Y ≤ t) – 	(t)
∣∣ ≤ sup

t∈R

∣∣P(X ≤ t) – 	(t)
∣∣ +

a√
π

+ P
(|Y | > a

)
.

Proof of Theorem  Using (.) and Lemma , for any a >  and a >  we can write

sup
x∈R

∣∣P
[√

nhn
(
fn(y) – Efn(y)

) ≤ xσn(y)
]

– 	(x)
∣∣

= sup
x∈R

∣∣P
(
S′

n + S′′
n + S′′′

n ≤ x
)

– 	(x)
∣∣

≤ sup
x∈R

∣∣P
(
S′

n ≤ x
)

– 	(x)
∣∣ +

a√
π

+
a√
π

+ P
(∣∣S′′

n
∣∣ > a

)
+ P

(∣∣S′′′
n
∣∣ > a

)
. (.)

By choosing a = λ′′
n

/ and a = λ′′′/
n and using Lemma , we have

(.) = sup
x∈R

∣∣P
(
S′

n ≤ x
)

– 	(x)
∣∣ + O

(
λ′′

n
/ + λ′′′

n
/). (.)
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On the other hand using Lemmas , , and  we have

sup
x∈R

∣∣P
(
S′

n ≤ x
)

– 	(x)
∣∣

≤ sup
x∈R

∣∣P
(
S′

n ≤ x
)

– P(Hn ≤ x)
∣∣ + sup

x∈R

∣∣P(Hn ≤ x) – 	(x)
∣∣

≤ sup
x∈R

∣∣P
(
S′

n ≤ x
)

– P(Hn ≤ x)
∣∣ + sup

x∈R

∣∣∣∣P(Hn ≤ x) – 	

(
x
sn

)∣∣∣∣

+ sup
x∈R

∣∣∣∣	
(

x
sn

)
– 	(x)

∣∣∣∣

= O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′

+
(
λ′′′

n α(q)
)/

)
+ O

(
h

(+δ′)
+δ

n

(
p

nhn

)+δ′)

+ O
(∣∣s

n – 
∣∣)

= O
(

h
(+δ′)

+δ
n

(
p

nhn

)+δ′

+
(
λ′′′

n α(q)
)/ + λ′′/

n + λ′′′/
n + h–δ/(+δ)

n u(q)
)

. (.)

So the proof is completed. �

Proof of Theorem  According to Lemma  for any a >  we can write

sup
x∈R

∣∣P
(
(nhn)/[f̂n(y) – E

(
fn(y)

)] ≤ xσn(y)
)

– 	(x)
∣∣

≤ sup
x∈R

∣∣P
(
(nhn)/[fn(y) – E

(
fn(y)

)] ≤ xσn(y)
)

– 	(x)
∣∣

+
a√
π

+ P
(√

nhn|f̂n(y) – fn(y)|
σn(y)

> a
)

, (.)

and

P
(√

nhn|f̂n(y) – fn(y)|
σn(y)

> a
)

≤ 
a

E
√

nhn|f̂n(y) – fn(y)|
σn(y)

, (.)

E
√

nhn|f̂n(y) – fn(y)|
σn(y)

≤ √
nhnσn(y)

n∑

i=

E
∣∣∣∣K

(
Yi – y

hn

)
αn

Gn(Yi)
– K

(
Yi – y

hn

)
α

G(Yi)

∣∣∣∣

=
√

nhnσn(y)

n∑

i=

E
[

K
(

Yi – y
hn

)∣∣∣∣
αnG(Yi) – αGn(Yi)

Gn(Yi)G(Yi)

∣∣∣∣

]

≤ √
nhnσn(y)

n∑

i=

E
[

K
(

Yi – y
hn

)∣∣∣∣
G(Y)|αn – α| + α|Gn(Y) – G(Y)|

Gn(Yi)G(Yi)

∣∣∣∣

]
. (.)

From Lemma . of [] we have

|αn – α| = O
(√

log log n
n

)
a.s., (.)
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and from [] we have

sup
y≥aF

∣∣Gn(y) – G(y)
∣∣ = O

(√
log log n

n

)
a.s. (.)

So we can write

(.) ≤ C
√

nhn

(√
log log n

n

)∫ 

–

∣∣K(t)
∣∣f (y + thn) dt

= O(
√

hn log log n).

Now by choosing a = (hn log log n)/ and using Theorem  we get the result

sup
x∈R

∣∣P
(
(nhn)/[f̂n(y) – E

(
fn(y)

)] ≤ xσn(y)
)

– 	(x)
∣∣

= O
(
an + (hn log log n)/). (.)

�

Proof of Theorem  By the triangular inequality and using Lemma  for

a =
√

nhn|Efn(y) – f (y)|
σ (y)

,

we have

sup
x∈R

∣∣P
(√

nhn
[
f̂n(y) – f (y)

] ≤ xσ (y)
)

– 	(x)
∣∣

≤ sup
x∈R

∣∣∣∣P
(√

nhn

[
f̂n(y) – f (y)

σn(y)

]
≤ σ (y)

σn(y)
x
)

– 	

(
σ (y)
σn(y)

x
)∣∣∣∣

+ sup
x∈R

∣∣∣∣	
(

σ (y)
σn(y)

x
)

– 	(x)
∣∣∣∣ +

√
nhn|Efn(y) – f (y)|√

πσ (y)
. (.)

Here we used the fact that the event
√

nhn
σ (y) |Efn(y) – f (y)| > a does not happen for the se-

lected a.
From the inequality supy |	(ηy) – 	(y)| ≤ 

e
√

π
(|η – | + |η– – |), it can be concluded

that

sup
x∈R

∣∣∣∣	
(

σ (y)
σn(y)

x
)

– 	(x)
∣∣∣∣ = O

(∣∣σ 
n (y) – σ (y)

∣∣). (.)

Under Assumptions A(ii) and A(iii), use of the Taylor expansion yields

∣∣Efn(y) – f (y)
∣∣ = O

(
h

n
)
. (.)

So from (.), (.), (.), Theorem , and Lemma , we have

sup
x∈R

∣∣P
(√

nhn
[
f̂n(y) – f (y)

] ≤ xσ (y)
)

– 	(x)
∣∣ = O

(
an + bn + h

n
)

= O
(
a′

n
)
. �
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Proof of Corollary  Using the triangular inequality it can be seen that

sup
y∈C

∣∣σ̂ 
n (y) – σ (y)

∣∣

= sup
y∈C

∣∣∣∣
αnf̂n(y)
Gn(y)

–
αf (y)
G(y)

∣∣∣∣

∫ 

–
K(t) dt

≤ sup
y∈C

G(y)|αnf̂n(y) – αf (y)| + αf (y)|Gn(y) – G(y)|
Gn(y)G(y)

∫ 

–
K(t) dt. (.)

Under Assumptions A, A, H-H, Theorem . of [] we obtain

sup
y∈C

∣∣f̂n(y) – f (y)
∣∣ = O

{
max

(√
log n
nhn

, h
n

)}
a.s. (.)

From (.) and (.) we have

sup
y∈C

∣∣αnf̂n(y) – αf (y)
∣∣ = sup

y∈C

∣∣αnf̂n(y) – αnf (y) + αnf (y) – αf (y)
∣∣

≤ sup
y∈C

αn
∣∣f̂n(y) – f (y)

∣∣ + sup
y∈C

f (y)|αn – α|

= O
{

max

(√
log n
nhn

, h
n

)}
+ O

(√
log log n

n

)
a.s. (.)

Using (.) and (.) in (.) proves the corollary. �

Proof of Theorem  Using the triangular inequality we can write

sup
x∈R

∣∣∣∣P
(√

nhn(f̂n(y) – f (y))
σ̂n(y)

≤ x
)

– 	(x)
∣∣∣∣

≤ sup
x∈R

∣∣∣∣P
(√

nhn(f̂n(y) – Efn(y))
σ (y)

≤ σ̂n(y)
σ (y)

x
)

– 	

(
σ̂n(y)
σ (y)

x
)∣∣∣∣

+ sup
x∈R

∣∣∣∣	
(

σ̂n(y)
σ (y)

x
)

– 	(x)
∣∣∣∣. (.)

By Assumptions A-A(i), A and A, Theorem  results in the following:

sup
x∈R

∣∣∣∣P
(√

nhn(f̂n(y) – Efn(y))
σ (y)

≤ σ̂n(y)
σ (y)

x
)

– 	

(
σ̂n(y)
σ (y)

x
)∣∣∣∣ = O

(
a′

n
)
, (.)

in which a′
n is defined in Theorem .

Under Assumptions A, A, H-H, Corollary  results in the following:

sup
x∈R

∣∣∣∣	
(

σ̂n(y)
σ (y)

x
)

– 	(x)
∣∣∣∣ = O

(∣∣σ̂ 
n (y) – σ (y)

∣∣)

= O
{

max

(√
log n
nhn

, h
n

)
+

√
log log n

n

}
a.s. (.)

Substituting (.) and (.) in (.) proves the theorem. �
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5 Conclusions
In this paper we obtained Berry-Esseen type bounds for the kernel density estimator based
on left-truncated and strongly mixing data. Here it is concluded that in RLTM, which is
also dealing with weak dependency, we can get asymptotic normality but comparing the
results with [] we see that the rates get much more complicated and also slower.
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